The KPML documentation

Chapters

Acknowledgements

Differences to the hardcopy
version

Contents

List of Figures
List of Tables
[ndex
[ntroduction

Computational Systemic-
Functional Linguistics

Installation and Startup

Notationa conventionsin
this document

The KPML root interface
windows

The KPML Inspector
Window

The KPML Development
Window

The “old-style' KPML
interface

Resource Verification:
Example Sets and Test Suites

Maintenance: Resource
Patching

Resource Organization and
Definition Formats

Using KPML without the
window interface

Faster Generation

Establishing and using a
generation server

References

Information display modes
and corresponding internal

flags

Data A ccess Functions used
by Inquiry Operator
| mplementations

next |lup ||previous ||contents |index

Next: Contents

KPML Development
Environment

Multilingual linguistic resource
development and sentence
generation

Release 1.0 (September 1996)

Current KPML patch level: 1.0.43 (May 30, 1997).

John Bateman
email: | . a. bat eman@tir. ac. uk

KPML versions up to 1.0 were developed at the:

Institut fUr integrierte Publikations- und Informationssysteme (1PS])
Project KOMET

German Centre for Information Technology (GMD)

Dolivostr. 15, Darmstadt, Germany.

Further development (1.1 and PC-versions) is continuing at the:
Department of English Studies

University of Stirling

Stirling, FK9 4L A, Scotland

The KPML (Komet-Penman Multilingual) development environment is a system
for developing and maintaining large-scal e sets of multilingual systemic-
functional linguistic descriptions (as originally set out in Bateman et al. (),

file:/I/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (1 von 11) [11.12.2004 14:15:54]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-patches.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=j.a.bateman@stir.ac.uk&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML
http://www.darmstadt.gmd.de/IPSI/
http://www.darmstadt.gmd.de/publish/komet/

The KPML documentation
. Bateman et a. () and Matthiessen et al. ()), and for using such resources for text
Knowledge representation - i
interface functions generation. More generally, the intended purposes of kpvL are:

About this document ...

. to offer generation projects large-scale, general linguistic resources
which:
o arewell tested and verified in their coverage,
o possess standardized input and output specifications,
o and are appropriate for practical generation;
. to offer generation projects a basic engine for using such resources for
generation;
. to encourage the development of similarly structured resources for
languages where they do not aready exist,
. to provide optimal user-support for undertaking such development and
refining general resources to specific needs;
. to minimise the overhead (and cost) of providing texts in multiple
languages,
. to encourage contrastive functional linguistic work;
. toraise awareness and acceptance of text generation as a useful
endeavor.

This document provides complete instructions for using the system for
developing and maintaining linguistic resources for natural language
generation.

The sources of the current public release of the system can be found in the
KPML directory on the IPSI anonymous ftp server. Useis free for academic
and research purposes. Users are asked to make available any developed
resources for the benefit of others. A linguistic resource development group is
currently being formed.

NOTE: thisdocumentation is also available as a hardcopy manual. Minor
differences may develop between the two versions; these differences will be
added to a special section. In addition, figuresand screendumpsare
generally replaced in thisversion by their color versions. This hasnot yet
been carried out for all screendumps, but is happening.

. Acknowledgements

. Differencesto the hardcopy version
. Contents

. List of Figures

. Listof Tables

. Index

file:/I/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (2 von 11) [11.12.2004 14:15:54]


ftp://www.darmstadt.gmd.de/pub/komet/KPML-1.0/

The KPML documentation

. Introduction

O

O

O

O

O

O

O

The purpose of the system

The functionality of the system
Overview of the interface organization
Overview of the documentation
Availability of the system

Known bugs/problems
Troubleshooting

. Computational Systemic-Functional Linguistics

O

O

O

O

The linguistic system
« Depth and Breadth
« Stratal organization
« Metafunctions
« Functiona Regions
« Intra-stratal organization: choice and delicacy; structural

redization
« Inter-stratal organization: interfaces
A generic computational systemic functional system
A specific instantiation: the Penman-style architecture
« Thegeneration process. overview
« Network traversal
» Accessing semantic information
« Stopping traversal: bottoming out
Pointersto further information

. Installation and Startup

O

O

O

O

O

O

Installing the KPML system

Installing the Emacs/Mule-interface

Installing the released linquistic resources

KPML system version maintenance: PATCHES

Making an executable image of the system

KPML resource version maintenance: RESOURCE PATCHES

. Notational conventions in this document

. The KPML root interface windows

O

O

O

O

O

O

[ ntroduction
The "new-styl€' root window: starting up
The root commands. overview
General System Behaviour

« Environment Directories

« Flags
General Multilingual Operations and Modes
Focusing Operations

« Linguistic object focusing

= Language focusing

file:/I/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (3 von 11) [11.12.2004 14:15:54]



The KPML documentation

= Region focusing
o Loading existent linguistic resources
= Simple resource set loading
« Genera commands for loading linguistic resources
« Loading particular kinds of linguistic objects
« Loading modes. overwriting and merging
« Loading and the multilingual modes
o Resource clearing
o Saving and Creating linguistic resources
« Simpleresource set saving
« Genera commands for saving linguistic resources
« Monolingual saving
« Contrastive saving
« Multilingual saving
= |nheriting language definitions
« Automatic lexical item acquisition and saving
« Creating unconditionalized linguistic resources
= Changing the Lisp package of inquiry implementations
o Interface suspension, exiting, €etc.
= Quiting the interface
« Suspending the interface
« (Re-)Activating the interface
« Clearing the interface windows
. The KPML Inspector Window
o Overview of Commands
o Graphing systemic networks
= Basic graphing options and commands
« Quit Resource Grapher
« Printgraph
« Show examples with collected features
« Clear Collected Features
« Display Modes
« Mail Intention to Work
= Producing graphsfor inclusion as figures in documents
= Mouse activated resource graph options
« Showing afull system definition
« Showing the realization statements of afeature
« Showing the chooser associated with a system
« Collecting/Discollecting features
« Pruning the displayed graph
« Redisplaying agraph
« Spawning further graphs

file:/I/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (4 von 11) [11.12.2004 14:15:54]



The KPML documentation
« Graphing regions
= Contrastive and multilinqual graphing
« Monolingual graphing
« Contrastive graphing
« Multilingual graphing
o Inspecting individual object definitions
= Introduction
« Display commands
« Print System
« Print Chooser
« Print Inquiry
« Print Inquiry Implementation
« Print Lexical ltem
« Print Concept
« Print Relation
« Définition displaying and the multilingual modes
« Monolingual definition printing
« Contrastive definition printing
« Multilingual definition printing
o Object selection according to specified criteria
« Who has' selections
« Who has asinput
« Who has as output
« Who can' selections
« Who can lexify
« Who can inflectify
« Who can classify
Who can insert
Who can order
Who can partition
« Who can preselect
« Who can ask
« Who can identify
« Who can pose identifying inquiry
« Examples Using Features
o Direct inspection and information chains
= Introduction
= |Inspection operations on grammatical systems
« Printing system definition
« Print associated chooser
« Graph Grammar starting from system
= |nspection operations on grammatical features

« Displaying usage of grammatical features
file:/I/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (5 von 11) [11.12.2004 14:15:55]




The KPML documentation

Who has as input
« Who has as output
« Show path to
« Show chooser of feature
« Graph from feature
« Collect feature
« Uncollect feature
« Clear collected features
= |nspection operations on choosers
« Print chooser
« Show inquiries of chooser
« Systems of chooser
= INnspection operations on inquiries
« Printinquiry
« Print implementation
« Who can ask
« Who can pose identifying inquiry
= |nspection operations on lexical items
= Inspection operations on SPL terms
= |Nnspection operations on examples
o Overview of information inspection chains
. The KPML Development Window
o Introduction
o Window Layout
o Overview of commands
o Generation: basics
= Introduction to generation with kpmL
« Starting generation
« Generation and the multilingual modes
« Monolingual generation
« Contrastive generation
« Semantic defaults and macros
= Run-time cautions
« Run-time warnings
= Running modes
= Boundary conditions
o Tracing and debugging during generation
« Introduction to generation debugging under kPmL
« Generation tracing modes
« Show Constituent Starts
« Show System And Inquiry Activity
« Show Why System Is Firing

file:/I/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (6 von 11) [11.12.2004 14:15:55]



The KPML documentation

Show Disabled Candidate Systems

Show System Entry Dependencies

Show Preselections

Show |mmediate Realizations

Show Lexica Selection

Show Lexical Features

Show Ordering Constraints

Show Ordering Events

Show Ordering Results

Show Associations

Show Inquiry Answer Source

Show entailed inquiry response

« Generation process control options

Realize Selectively

Realize until constituent number

= Single Step

Enter Debugger on Warnings

» Generation result focusing modes

Cumulate System and Inquiry Activity

Update Example Record Fields

« Viewing focused results

« The cumulative history window commands

O

Example of use

Activating result focusing and tracing for particular linquistic

objects

= Activation of tracing

Individual system tracing

Individual chooser tracing

Individual inquiry tracing

» Clearing tracing selections

O

Graphical representation of systemic network traversal

« Traversa and resource graphs

» Dynamic traversal tracing

O

Additional generation process control options

« Disabling and enabling systems

» Pausing on inquiries

» Pausing and restarting generation

O

I nspecting the results of generation: Graph Structure

» Introduction to structure graphs

= Structure Grapher Options

« Operations available on structure constituents

Sel ection expression

Presel ections

file:/I/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (7 von 11) [11.12.2004 14:15:55]



The KPML documentation

« Orderings
« Lexical constraints

» Associations
« All structural constraints

o Inspecting the results of generation: Operations on the produced

strings or textual structure displays

o Switching L anquages

o Summary of generation process information chains

o How to debuq resources: a sketch of a method

. The old-style KPML interface

o Description of the interface “sub-windows

o Basic Old-Style Interface Operations

Clear
Flags
Pause

uit
Resume
Reset
Show Linguistic Object
Generation Display Modes
Resource Maintenance
Multilingual Operations
Graph Grammar
Graph Sentence Structure
Ready SPL Defaults
Generate Again

o Further type-in commands

Abort

Environment Directories
Show Path To

Evaluate Lisp Expression

o Various mouse-click triggered commands

. Static Integrity Checks: Resource maintenance

o Background concepts

Static tests during resource loading
Static tests on whole resource set

. Resource Verification: Example Sets and Test Suites

o Example sets and test suites

o The example operations

L oad Examples

Write Examples

Clear Examples

file:/I/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (8 von 11) [11.12.2004 14:15:55]



The KPML documentation
« Generate from example SPL
= Graph example structure
« Display generated string
« Show examples with features
« Copy examples with new names
« Delete some examples
« Example runner
« Starting the example runner
« Levelsof detail while example running
« Low detall example running
« Medium detail example running
« High detail example running
« Features used in examples survey
o Operations on example strings and textually displayed structures
« Operations on displayed strings
« Show corresponding fundle
« Graph corresponding constituent and below
« Inspect selection expression
« Ingpect corresponding semantic term
« Partial re-generation
= Operations on displayed structures
« Graph this constituent and below
« Show selection expression
« Show corresponding semantic term
« Generate again up to but not including this
constituent
o Full summary of lingquistic resource information chains
. Maintenance: Resource Patching
o Introduction
o Patching and loading linguistic resources
o Patching and saving linguistic resources
o Some further consequences of using the patching facility
o Modifying linguistic resources
o Examplerecord versioning
o Acquiring lexical items
. Resource Organization and Definition Formats
o Directory structure and contents
o Resource definition formats
« Resource definition files
= Genera language property declarations
« Morphology style declarations
« Standard default environments

« Language-font associations
file:/l/E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (9 von 11) [11.12.2004 14:15:55]




The KPML documentation

« Disabling systems
L anguage variety range declarations
= Systems
Realization Statements
« Introduction
« Basic redization constraints
« User-defined realization operators
« Morphological realization constraints
Choosers
Inquiries
L exicons
Examples
Punctuation
Non-systemic system dependencies
Default orderings
Domain concepts and links with the lexicon
SPL macros and defaults
o Language variety conditionalization
o Requirements for resource definitions
« Special inquiries
= Specia semantic concepts and relations
. Accessing external information sources
o Semantic information from inquiry implementations
o External information from the lexicon
o Morphological information from external components
. Using KPML without the window interface
o Blackbox operation as atactical generator
o Bookkeeping functions
« Switching languages
« Establishing network connectivity
« Inguiry default initialization
« Generd initialization
o Multilingual behaviour flags
o Development tools
« Linguistic Resource Loading Operations
« Generating the example set
« Modifying the resources
« Saving the resources
o Using the mouseabl e structures for mousing and mark-up
= The structure produced
« Conditionalization of mouse sensitivity
= Specifying additional linksin the SPL: annotations

file:/IIE:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (10 von 11) [11.12.2004 14:15:55]



The KPML documentation

o Window startup functions
Faster Generation

o Strictly Monolingual Generation

o Knowledge base package reduction

o Compilation of inquiry implementations
Establishing and using a generation server

o Creating aKPML generation server

o Creating aKPML client from Lisp

o Anexample of aKPML Lisp client: aWWW-KPML server
References
| nformation display modes and corresponding internal flags

o More detailed tracing and display modes

o Loading and storing modes

o Miscellaneous global variables
Data Access Functions used by Inquiry Operator | mplementations
Knowledge representation interface functions
About this document ...

next

up ||previous [|contents |findex

Next: Contents

John Bateman -- GMD/IPS -- Darmstadt, Ger many

ﬂ mail to bateman@gmd.de

file:/IIE:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (11 von 11) [11.12.2004 14:15:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Differences to the hardcopy version

next |lup ||previous ||contents |index

Next: Contents

Differences to the hardcopy version

The hardcopy documentation for KPML 1.1 is now available in the documentation ftp directory for
KPML 1.0. The functionalities described are available from the patches from 31 January 97 (KPML
1.0.33). The newer documentation is therefore provided there. The online version has not yet been
brought up to date with the newer documentation, but can still serve asthe first place to look. The new
documentation is available as compressed (gzip) postscript from the ftp directory.

The currently released version of KPML isstill 1.0. To update see the currently available patches.
These are detailed on the KPML patch page.

= John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/diffs.html [11.12.2004 14:16:05]


ftp://ftp.darmstadt.gmd.de/pub/komet/KPML-1.0/documentation
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-patches.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Notational conventions in this document

next |jup ||previous ||contents []index

Next: The KPML root interface Up: No Title Previous: KPML resource version maintenance:

Notational conventions in this
document

In the description of operations available under kemL, we will use the following notation for referring
to commands and kpmL operations throughout this document.

Basic kpmL commands are shown as <Load linguistic resources> ; these are generally selected by
single mouse-clicks from the appropriate menus. Arguments to such commands are shown in the
following font: RANK. These arguments may either be presented as menu options or by typing when
prompted in the Command Interaction window. Subcommands reached by further menus of options
are shown separated by colons. Several windows offer command menus. Where necessary, the
originating window for acommand will be given preceding the command.

For example, the command to show all grammatical systems using arealization statement of
presel ection concerning the grammatical function "Thing', which is available in the Inspector window,
will be indicated thus:

INSPECTOR: <Who can ... ...preselect thing>

This means that the command was given by clicking first on the "Who can..." menu option in the main
command menu of the Inspector window (cf. Figure 6.1), then on "...preselect’ in the secondary option
menu that this brought up, and finally by typing "thing' in at the Command Interaction pane of the

I nspector window as prompted.

The possible windows from which commands can be issued explicitly are: RooT, INSPECTOR,
DEVELOPMENT, GRAPH, and HisToRrY. There are four subtypes of graphing windows. STRUCTURE-GRAPH,
RESOURCE-GRAPH, CHOOSER-GRAPH, and DYNAMIC-TRAVERSAL ; and two types of history windows:
GENERATION-HISTORY and CUMULATIVE-HISTORY. The subtypes will often only be distinguished if the

context does not make the intended type of window clear gif

We will also occasionally use ‘relative’ commands, i.e., commands that assume that the user is already
in the context of some submenu. These will be specified with aroot command "..."; thus the following
command description might be used to describe the same command as above, but assuming that we
are aready in adiscussion about the possible options leading on from the <Who can ...> command.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node36.html (1 von 2) [11.12.2004 14:16:25]



Notational conventions in this document

Finally, there are also often alternative forms of commands that can be given directly by typing within
a Command Interaction pane. These will be indicated below by preceding the command name with a
colon. Thus, an alternative to the above sequence of mouse clicksis:

INSPECTOR: <:Who can preselect thing>

This means that the command "Who can preselect’ was typed directly. Command completion (up to
the next word in the command) is provided during entry by typing a space.

Generally, al typed input is terminated by typing a carriage return.
Partially typed in or executed commands can be aborted by typing a control-Z.

When descriptions of Lisp functions, macros, etc. are given, the notation of Steele Jr. () will be
adopted for their usage patterns.

next |fup |lprevious [Jcontents |]index

Next: The KPML root interface Up: No Title Previous: KPML resource version maintenance:

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node36.html (2 von 2) [11.12.2004 14:16:25]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Acknowledgements

next |lup ||previous ||contents |index

Next: Contents

Acknowledgements

Many people have contributed during the beta releases (0.1-0.9) leading to the current state of kpwvL,
both in terms of actual code additions/corrections and in terms of critical feedback: particular thanks
go to Markus Fischer (ITRI, Brighton) for the original port to CLIM-2, to Cécile Paris and Keith
Vander Linden (ITRI, Brighton) for various bug fixes, to Richard Whitney (1Sl, Los Angeles) for the
code for the Loom 2.1 conversion, to John Wilkinson (Univerisity of Waterloo, Canada) for several
speed-ups, to Tony Hartley (ITRI, Brighton), Cécile Paris, Brigitte Grote (FAW, Ulm), Elke Teich
(IPSI, Darmstadt), Liesbeth Degand (Université Catholique of Louvaine-la-neuve), Bernhard Hauser
(Technische Hochschule, Darmstadt) for providing much feedback throughout the early releases, and
to Melina Alexa (1PSI, Darmstadt) and Fabio Rinaldi (University of Udine and IRST, Trento) for test
driving the current interface and the documentation.

Fabio Rinaldi also receives a special additional vote of thanks for preparing the WWW-versions of
this documention!

Section 2.1 is adapted from Bateman et a. (). Appendix B, concerning the interface between inquiry

implementations and knowledge base, is taken from Bob Kasper's contributions to the Penman
documentation.

The "old-style' kpvL interface (Chapter 8) is an outgrowth of a Penman window interface written by

Richard Whitney and Kevin Knight (1SI), which wasin turn based on atext planner interface by
Vibhu Mittal and Cécile Paris (ISl). The ssimpler, non-graphical generation debugging tools and
grammar tracing facilities build on those of the Penman system--particularly those parts concerned
with the grammar. Hence, corresponding parts of this guide are updates of the Nigel Manual (Penman
Project, 1989, 1S1), originally prepared by Lynn Poulton, Christian Matthiessen and John Bateman.

The original beta versions of the KPML interface and resource devel opment environment (0.1-0.5)
and its documentation were prepared in the context of a DAAD/British Council cooperation project
(DAAD/ARC-313) between GMD/IPSI and ITRI (University of Brighton). The development of the
Penman system on which the KPML system builds was supported by the U.S. National Science
Foundation Grant IST-8408726, and U.S. Federal Contract numbers MDA 903-81-C-0335, MDA903-
87-C-0641, F49620-84-C-0100, and F49620-87-C-0005. The multilingual extensions to the system
have been supported in part by the German Ministry for Research and Technology (BMFT: Project
INTEGRA') and in part by the Australian Research Council. The development of the stratification
available in the experimental kpmL-E versions of the system for supporting text type (genre) networks
and register has been supported by U.S. National Science Foundation Grant |RI-9003087, the
European Union Basic Research Action EP-6665 ('Dandelion’), and the German BMFT Project
INTEGRA".

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/ack.html (1 von 2) [11.12.2004 14:16:43]



Acknowledgements

next |lup ||previous ||contents |lindex

Next: Contents

* - | John Bateman -- GMD/IPS -- Darmstadt, Germany

' ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/ack.html (2 von 2) [11.12.2004 14:16:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contents

next |jup |lprevious |lindex

Next: List of Figures Up: No Title Previous: No Title

Contents

. List of Figures
. Listof Tables
. Index
« Introduction
o The purpose of the system
o Thefunctionality of the system
o Overview of the interface organization
o Overview of the documentation
o Availability of the system
o Known bugs/problems
o Troubleshooting
. Computational Systemic-Functional Linguistics
o Thelinguistic system
« Depth and Breadth
« Stratal organization
« Metafunctions
« Functional Regions
« Intra-stratal organization: choice and delicacy; structural realization
« |Inter-stratal organization: interfaces
oA generic computational systemic functional system
o A specific instantiation: the Penman-style architecture
« Thegeneration process. overview
« Network traversa
» Accessing semantic information
« Stopping traversal: bottoming out
o Pointersto further information
. Installation and Startup
o Installing the KPML system
o Installing the Emacs/Mule-interface
o Installing the released linguistic resources
o KPML system version maintenance: PATCHES
o Making an executable image of the system
o KPML resource version maintenance: RESOURCE PATCHES
. Notational conventionsin this document
. The KPML root interface windows

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (1 von 10) [11.12.2004 14:17:50]



Contents

o Introduction
o The new-style root window: starting up
o Theroot commands. overview
o General System Behaviour
« Environment Directories
« Hags
o General Multilingual Operations and Modes
o Focusing Operations
= Linguistic object focusing
« Language focusing
« Region focusing
o Loading existent linguistic resources
« Simple resource set loading
« General commands for loading linguistic resources
« Loading particular kinds of linguistic objects
« Loading modes: overwriting and merging
« Overwriting mode
« Merging mode
« Loading and the multilingual modes
« Monolingual loading
« Contrastive loading
« Multilingual loading

o Resource clearing
o Saving and Creating linguistic resources
= Simple resource set saving
« General commands for saving linguistic resources
« Monolingual saving
« Contrastive saving
« Multilingual saving
| nheriting language definitions
« Automatic lexical item acquisition and saving
Creating unconditionalized linguistic resources
« Changing the Lisp package of inquiry implementations
o Interface suspension, exiting, etc.
« Quiting the interface
« Suspending the interface
« (Re-)Activating the interface
« Clearing the interface windows
. The KPML Inspector Window
o Overview of Commands
o Graphing systemic networks

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (2 von 10) [11.12.2004 14:17:50]



Contents

« Basic graphing options and commands
« Quit Resource Grapher
« Printgraph
« Show examples with collected features
« Clear Collected Features
« Display Modes
« Content-oriented resource graph options
« Layout and hardcopy oriented resource graph options
« Continuation options
« Mail Intention to Work
« Producing graphsfor inclusion as figures in documents
= Mouse activated resource graph options
« Showing afull system definition
« Showing the realization statements of afeature
= Showing the chooser associated with a system
« Collecting/Discollecting features
« Pruning the displayed graph
« Redisplaying agraph
« Spawning further graphs
« Graphing regions
« Contrastive and multilingual graphing
« Monolingual graphing
« Contrastive graphing
« Multilingual graphing
o Inspecting individual object definitions
« Introduction
« Display commands
« Print System
« Print Chooser
« Print Inquiry
« Print Inquiry Implementation
« Print Lexical ltem
« Print Concept
« Print Relation
« Definition displaying and the multilingual modes
« Monolingual definition printing
« Contrastive definition printing
« Multilingual definition printing
o Object selection according to specified criteria
« Who has selections
« Who has asinput

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (3 von 10) [11.12.2004 14:17:50]



Contents

« Who has as output
« Who can' selections
« Who can lexify
« Who can inflectify
« Who can classify
« Who can insert
« Who can order
« Who can partition
« Who can preselect
« Who can ask
« Who can identify
« Who can pose identifying inquiry
« Examples Using Features
o Direct inspection and information chains
= Introduction
« |nspection operations on grammatica systems
« Printing system definition
« Print associated chooser
« Graph Grammar starting from system
= |nspection operations on grammatical features
« Displaying usage of grammatical features
« Who has asinput
« Who has as output
« Show path to
« Show chooser of feature
« Graph from feature
« Collect feature
« Uncollect feature
« Clear collected features
= INnspection operations on choosers
« Print chooser
« Show inquiries of chooser
« Systems of chooser
« |Nnspection operations on inquiries
« Printinquiry
« Print implementation
« Who can ask
« Who can pose identifying inquiry
=« INnspection operations on lexical items
« |nspection operations on SPL terms
= |nspection operations on examples

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (4 von 10) [11.12.2004 14:17:50]



Contents

o Overview of information inspection chains
. The KPML Development Window
o Introduction
o Window Layout
o Overview of commands
o Generation: basics
« Introduction to generation with kemL
« Starting generation
« Generation and the multilingual modes
« Monolingual generation
« Contrastive generation
= Semantic defaults and macros
« Run-time cautions
« Run-time warnings
= Running modes
« Boundary conditions
o Tracing and debugging during generation
« Introduction to generation debugging under kPmL
« Generation tracing modes
« Show Constituent Starts
« Show System And Inquiry Activity
« Show Why System Is Firing
« Show Disabled Candidate Systems
« Show System Entry Dependencies
« Show Preselections
« Show Immediate Readlizations
« Show Lexical Selection
« Show Lexical Features
« Show Ordering Constraints
« Show Ordering Events
« Show Ordering Results
« Show Associations
« Show Inquiry Answer Source
« Show entailed inquiry response
« Generation process control options
«» Redize Selectively
« Redlize until constituent number
« Single Step
« Enter Debugger on Warnings
« Generation result focusing modes
» Cumulate Systemn and Inquiry Activity

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (5 von 10) [11.12.2004 14:17:50]



Contents

« Update Example Record Fields
« Viewing focused results
« Thecumulative history window commands
- Redisplay
« Clear history
« Display options
« Quit
« Example of use
o Activating result focusing and tracing for particular linguistic objects
= Activation of tracing
« Individual system tracing
« Individua chooser tracing
« Individua inquiry tracing
« Clearing tracing selections
o Graphical representation of systemic network traversal
« Traversal and resource graphs
« Dynamic traversal tracing
o Additional generation process control options
« Disabling and enabling systems
« Pausing on inquiries
« Pausing and restarting generation
o Inspecting the results of generation: Graph Structure
« Introduction to structure graphs
= Structure Grapher Options
« Operations available on structure constituents
« Selection expression
« Preselections
« Orderings
« Lexical constraints
« Associations
« All structural constraints
o Ingpecting the results of generation: Operations on the produced strings or textual

structure displays
o Switching Languages
o Summary of generation process information chains
o How to debug resources: a sketch of a method
. The old-style KPML interface
o Description of the interface “sub-windows
o Basic Old-Style Interface Operations
« Clear

- Flags

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (6 von 10) [11.12.2004 14:17:50]



Contents

« Pause
« Quit
« Resume
« Reset
= Show Linguistic Object
« Generation Display Modes
« Resource Maintenance
« Multilingual Operations
« Graph Grammar
« Graph Sentence Structure
« Ready SPL Defaults
= Generate Again
o Further type-in commands
= Abort
« Environment Directories
« Show Path To
« Evauate Lisp Expression
o Various mouse-click triggered commands
. Static Integrity Checks. Resource maintenance
o Background concepts
= Static tests during resource loading
« Static tests on whole resource set
. Resource Verification: Example Sets and Test Suites
o Example sets and test suites
o The example operations
« Load Examples
« Write Examples
« Clear Examples
« Generate from example SPL
« Graph example structure
« Display generated string
= Show examples with features
« Copy examples with new names
« Delete some examples
« Example runner
« Starting the example runner
« Levelsof detall while example running
« Low detail example running
« Medium detail example running
« High detall example running
Features used in examples survey

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (7 von 10) [11.12.2004 14:17:50]



Contents

o Operations on example strings and textually displayed structures
« Operations on displayed strings
« Show corresponding fundle
« Graph corresponding constituent and below
« Inspect selection expression
« Ingpect corresponding semantic term
« Partia re-generation
« Operations on displayed structures
« Graph this constituent and below
« Show selection expression
« Show corresponding semantic term
« Generate again up to but not including this constituent
o Full summary of linquistic resource information chains
. Maintenance: Resource Patching
o Introduction
o Patching and loading linguistic resources
o Patching and saving linguistic resources
o Some further consequences of using the patching facility
o Modifying linguistic resources
o Example record versioning
o Acguiring lexical items
. Resource Organization and Definition Formats
o Directory structure and contents
o Resource definition formats
« Resource definition files
« Genera language property declarations
« Morphology style declarations
« Standard default environments
« Language-font associations
« Disabling systems
« Language variety range declarations
= Systems
« Redlization Statements
« Introduction
« Basic redization constraints
« User-defined realization operators
« Morphological redlization constraints
« Choosers
« Inquiries
« Lexicons

« Examples

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (8 von 10) [11.12.2004 14:17:50]



Contents

« Punctuation
« Non-systemic system dependencies
« Default orderings
« Domain concepts and links with the lexicon
« SPL macros and defaults
o Language variety conditionalization
o Requirements for resource definitions
= Specia inquiries
= Special semantic concepts and relations
. Accessing external information sources
o Semantic information from inquiry implementations
o Externa information from the lexicon
o Morphological information from external components
. Using KPML without the window interface
o Blackbox operation as atactical generator
o Bookkeeping functions
= Switching languages
« Establishing network connectivity
Inquiry default initialization
« Generd initialization
o Multilingual behaviour flags
o Development tools
« Linguistic Resource Loading Operations
= Generating the example set
« Modifying the resources
= Saving the resources
o Using the mouseabl e structures for mousing and mark-up
« The structure produced
= Conditionalization of mouse sensitivity
« Specifying additional linksin the SPL : annotations
o Window startup functions
. Faster Generation
o Strictly Monolingual Generation
o Knowledge base package reduction
o Compilation of inquiry implementations
. Establishing and using a generation server
o Creating aKPML generation server
o Creating aKPML client from Lisp
o An example of aKPML Lisp client: a WWW-KPML server
. References
. Information display modes and corresponding internal flags

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (9 von 10) [11.12.2004 14:17:50]



Contents

o More detailed tracing and display modes

o Loading and storing modes

o Miscellaneous global variables
. Data Access Functions used by Inquiry Operator | mplementations
. Knowledge representation interface functions
. About this document ...

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel.html (10 von 10) [11.12.2004 14:17:50]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

List of Figures

next

up |lprevious ||contents |lindex

Next: List of Tables Up: No Title Previous: Contents

List of Figures

Internal KPML components

Stratal organization of linquistic resources

Constituency and the rank scale: English |exicogrammar

Meta-stratal organization of the computational systemic functional account

Penman-style architecture for |exicogrammar, semantics, and their interrel ationships

Further documentation map

Exampl e configuration dialogue

The KPML root interface

Example non-interface trace of generation

The KPML inspector window

Dependency region (extract)

Extract from Dependency region with links to other regions shown

Example of EPS figure showing systemic resources

Pruned extract from the Dependency region

Example of region graphing: the region Tac

Example of multilingual (monochrome) graphing

Multilingual graphs with and without preservation of grammatical system integrity

Graphical display of a chooser

Graphical chooser display included in this document as an EPS file

M ouse sengitive objects within atextual display

Summary of information chain possibilities: resources

KPML development environment window

Example structural result of generation

Generation tracing and result focusing modes

Generation History Window

Example of using the cumulative generation history

Example of graphed chooser showing generation path

Example of generation path tracing

Successive views of the features selected during network traversal
Example of selective traversal tracing by collecting features
Example of structure graphing

Successive structural snapshots during generation indicating “last' generated node
Summary of actualization process information chains

Old-style top level interface window

The relation of the generation process to example records

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node2.html (1 von 2) [11.12.2004 14:18:12]



List of Figures

. Reducing constituent discrimination in example structure graphs

. Using collected features and example string displays

. Information chain possibilities: potential and realizations

. Selective patching according to language

. Contrastive generation in English and Greek using font associations for Greek pop-up
generated result windows

. Generated structure graph using font associations for Greek

. Use of Mule for extended character displays

. Useof Mulefor showing grammatical structures filled by Mule-compatible lexeme definitions

. Example definition of amorphological realization operator

. Example highly multilingual system

. Distinct views on amultilingual resource (contrastive)

. Distinct views on amultilingual resource (multilingual)

. Example of mouseable structure for the sentence: "The difference has lead to some
schizophrenic behavior'

. Program configuration of the example WWW server

. Example WWW generation server in use

i John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node2.html (2 von 2) [11.12.2004 14:18:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

List of Tables

next |jup ||previous ||contents []index

Next: Index Up: No Title Previous: List of Figures

List of Tables

. Comparison of representation schemes
. Redlization statements and systemic notation
. Timingsfor differently configured KPML generation

¥ John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node3.html [11.12.2004 14:18:20]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index Root for KPML

iINI<IX|sI<ICIHIbITOIvIDIZ|ZIF XL =T mImIDIDIDI>

John Bateman -- GMD/IPS -- Darmstadt, Germany
' ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node4.html [11.12.2004 14:18:28]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next |jup ||previous ||contents []index

Next: The purpose of the Up: No Title Previous: Prerequisites

Introduction

. The purpose of the system

. Thefunctionality of the system

. Overview of the interface organization
. Overview of the documentation

. Availability of the system

. Known bugs/problems

. Troubleshooting

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node6.html [11.12.2004 14:18:37]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Computational Systemic-Functional Linguistics

next |jup ||previous ||contents []index

Next: Thelinguistic system Up: No Title Previous. Troubleshooting

Computational Systemic-Functional
Linguistics

This chapter offers a generic overview of computational systemic functional linguistics. It first
presents how the linguistic system as awhole is conceived; thisisthe model for all aspects of the
generic system and so is the foundation on which all decisions, including many “implementational’
decisions, are made. Following this, it introduces an organization for thinking about the relationship
between theory, description, and implementation. This should make it easier to see where one should
look for details of particular aspects of the generic system.

. Thelinguistic system
o Depth and Breadth
« Stratal organization
« Metafunctions
« Functional Regions
o Intra-stratal organization: choice and delicacy; structural realization
o Inter-stratal organization: interfaces
. A generic computational systemic functional system
. A specific instantiation: the Penman-style architecture
o The generation process: overview
« Network traversal
« Accessing semantic information
« Stopping traversal: bottoming out
. Pointersto further information

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel4.html [11.12.2004 14:18:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The purpose of the system

next |jup ||previous ||contents []index

Next: The functionality of the Up: Introduction Previous. Introduction

The purpose of the system

The kpmL (Komet-Penman Multilingual) development environment is a system for devel oping and
maintaining large-scal e sets of multilingual systemic-functional linguistic descriptions (as originally
set out in Bateman et al. (), Bateman et al. () and Matthiessen et al. (), and for using such resources
for text generation. More generally, the intended purposes of kpmL are:

. to offer generation projects large-scale, general linguistic resources which:
o arewell tested and verified in their coverage,
o possess standardized input and output specifications,
o and are appropriate for practical generation;
. to offer generation projects abasic engine for using such resources for generation;
. to encourage the development of similarly structured resources for languages where they do
not already exist,
. to provide optimal user-support for undertaking such development and refining general
resources to specific needs;
. to minimise the overhead (and cost) of providing texts in multiple languages,
. to encourage contrastive functional linguistic work;
. toraise awareness and acceptance of text generation as a useful endeavor.

A fundamental tenet of the approach followed with kpvL isthat it is often mistaken to simplify the
generation task by simplifying or restricting the linguistic resources employed, just because resource
development or coverage is not a primary concern. KemL attempts to simplify the generation task by
improving access and handleability of large-scale resources. This should prompt projects to work with
large-scal e resources, even when the main aims are elsewhere. The benefits of this are that fragmented
solutions that do not scale up are more easily avoided, and that proof-of-concept demonstrations can
draw on amore redlistic strategic generation capability. KemL seeks to offer a stable development and
generation environment that can be used for application-near text generation and demonstration.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node7.html [11.12.2004 14:18:54]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The functionality of the system

next Jjup |lprevious |]contents index

Next: Overview of theinterface Up: Introduction Previous. The purpose of the

The functionality of the system

The kpvL devel opment environment provides a convenient platform for the construction and maintenance of multilingual

linguistic resources. Interaction with the system is predominantly by combined mouse-click and graphical/textual information
presentation. User commands are offered for loading definitions of (multilingual and monolingual) linguistic resources in systemic
form, displaying these resources in a variety of ways useful for development and maintenance, performing static integrity checks
on the systemic network defined by the resources loaded, and using the resources for generation. It is also possible to use the
system as a blackbox tactical generator. The environment takes over and extends the functionality of the Penman text generation
system (Mann , Mann & Matthiessen , Penman Project ), going beyond that system in terms of ease of use, development support,

and multilingual design gif The internal components of kpmL and their functionality and communication channels are shown in
the block diagram in Figure 1.1.

. Mono/Mulilingual resources : . Maonolingual resources !
X systems - CUF .
1 Cl'l!ﬂ-'iﬂ]‘& L 1
. S . TFS !
terioogrammr e (systems only) .
ponctoation ! ‘
{__examples (YPLy ‘ -
KP M L <[> <= IMPORTIEXPORT Resource Intagrity 'black box'
A Verification genarator
Y ey
K - Static T
GRAPHICAL Dy namic T EPL

(((. A+» DISPLAY 1 (annotaied semantic
B J‘ specification)

Mulfilingual resources (e

h 4
MULTILUNGUAL OPERATIONS 1

GEMERATOR .

- ;
{marked-up)
. sentence
¢ ) 4 i sy

INTERACTION MANAGER: \ windowsfiles/Hy

L

\\Z TreIging of resouroes Graphkaldiplasof T .
V- dynamic axtraction of X & resourges and structures:
v pontrastive views ; E’EP ' — monolingualmulfilingual/sontrastive

Figure: Internal KPML components

Particular points of emphasis of the system include:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node8.html (1 von 2) [11.12.2004 14:19:05]



The functionality of the system

. anintegrated view of examples and linguistic resources: resource maintenance is supported by extensive test suites which
are interlinked with the resource definitions providing example-based on-line "documentation’;

. the possibility of combining graphical views of the linguistic resources with particular details of the generation process:
generation debugging is graphically driven;

. avery high degree of modularity in the linguistic resource definitions;

. very extensive graphical and textual inspection of all aspects of the linguistic resources and their use;

. automatic resource management, including patch facilities for extending linguistic resources;

. provision of “fast generation' modes;

. provision of structured and annotated “string' generation to support hyperlinks and other application specific mouse-driven
functionalities;

. multilinguality throughout.

The view of multilingual resources supported by kPmL defines a very fine granularity of language-specific conditionalization.
In Bateman et al. () and

Bateman et al. () we claim that this organization generalizes substantially beyond all previous approaches to multilinguality. The

development environment is also rel eased with sizeable examples of multilingual linguistic resources; the most substantial of these
being the English grammar Nigdl, originally devel oped within the Penman project , and the komeT grammars for German and

Dutch gif

The basic units manipulated by the system are grammatical systems, choosers, inquiries, lexical units, punctuation rules, and
examples (the latter including Penman-style SPL input specifications: Kasper ). All of these are potentially multilingual in that
their contributing elements may be conditionalized to apply in specific languages. Using these object-types as the basic units that
the system manages allows kpmL to offer fully automatic merging and dynamic extraction of monolingual and contrastive views of
those objects. That is, given that a system of a given name is defined as having various forms depending on the language in which
itisused, kpmL can freely merge such descriptions and subsequently take them apart. As argued in Bateman et al. () and elsewhere,
thisis a useful approach to managing multilinguality since it constructs multilingual descriptions around the paradigmatic unit
rather than the structural: functional equivalences are therefore more likely to be preserved.

Building on this functionality, monolingual language descriptions can be freely and automatically merged to produce multilingual
specifications and, from these, further monolingual or contrastive resource sets can be automatically extracted. Dynamic
contrastive browsing of the resource setsis also supported, as well as contrastive generation and special features for the rapid
development of resources for languages not previously handled.

next |jup [lprevious ||contents ||index

Next: Overview of theinterface Up: Introduction Previous. The purpose of the

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node8.html (2 von 2) [11.12.2004 14:19:05]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

References

next

up |lprevious [Jcontents ||index

Next: Information display modes and Up: No Title Previous: An example of a

References

Bateman, J. A. (1991), Language as constraint and language as resource: a convergence of
metaphors in systemic-functional grammar, Technical report, Gesellschaft fir Mathematik und
Datenverarbeitung - Institut fir Integrierte Publikations- und Informationssysteme, Darmstadit,
Germany. Written version of paper presented at the International Workshop on Constraint-
based Formalisms for Natural Language Generation, November 27-30, 1990, Bad Teinach.

Bateman, J. A., Emele, M. & Momma, S. ( 1992), The nondirectional representation of
Systemic Functional Grammars and Semantics as Typed Feature Structures, in “Proceedings of
COLING-92', Nantes, France.

Bateman, J. A., Matthiessen, C. M., Nanri, K. & Zeng, L. (1991a), Multilingual text
generation: an architecture based on functional typology, in "International Conference on
Current Issuesin Computational Linguistics, Penang, Malaysia. Also available astechnical
report of the department of Linguistics, University of Sydney.

Bateman, J. A., Matthiessen, C. M., Nanri, K. & Zeng, L. (1991b), The re-use of linguistic
resources across languages in multilingual generation components, in “Proceedings of the 1991
International Joint Conference on Artificial Intelligence, Sydney, Australia, Vol. 2, Morgan
Kaufmann Publishers, pp. 966 - 971.

Bateman, J. A., Matthiessen, C. M. & Zeng, L. (in preparation), A general architecture for
multilingual resources for natural language processing, Technical report, GMD/IPSI,
Darmstadt and University of Sydney.

Bateman, J. A. & Teich, E. (1995), "Selective information presentation in an integrated
publication system: an application of genre-driven text generation’, Information Processing
and Management: an international journal; Special Issue on Summarizing Text 31(5), 753-
768.

Brachman, R. J. & Schmolze, J. ( 1985), "An overview of the kL-oNE knowledge representation
system’, Cognitive Science 9(2).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (1 von 6) [11.12.2004 14:19:37]



References

Brew, C. (1991), "Systemic Classification and its Efficiency’, Computational Linguistics
17(4), 375 - 408.

Carpenter, B. (1992), The Logic of Typed Feature Sructures, Cambridge University Press,
Cambridge, England.

Degand, L. (1993), Dutch grammar documentation, Technical report, GMD/Institut fur
Integrierte Publikations- und Informationssysteme, Darmstadt, Germany.

Devlin, K. (1990), Infons and types in an information-based logic, in R. Cooper, K. Mukai &
J. Perry, eds, "Situation Theory and its applications, Vol. |, CSLI: Center for the Study of
Language and Information, Stanford University, California, pp. 79 - 96. CSLI Lecture Notes
Number 22.

Emele, M., Heid, U., Momma, S. & Zgjac, R. ( 1992), "Interactions between linguistic
constraints: Procedural vs. declarative approaches, Machine Trandlation 6(1). (Special edition
on the role of text generation in MT).

Finkler, W. & Neumann, G. (1988), MorprHIx: A fast redlization of a classification-based
approach to morphology, in “Proceedings of the 4th. OGAI: Wiener Workshop
Wissensbasierte Sprachverarbeitung', number 176 in “Informatik Fachberichte', Springer
Verlag, Berlin.

GOtz, T. & Meurers, W. (1995), Compiling HpsG type constraints into definite clause programs,
in "Proceedings of the 33rd. Annual Meeting of the Association for Computational Linguistics.

Halliday, M. A. (1961), Categories of the theory of grammar’, Word 17, 241-292. Reprinted in
abbreviated form in Halliday (1976) edited by Gunther R. Kress, pp 52-72.

Halliday, M. A. (1976), The English verbal group, in G. R. Kress, ed., 'Halliday: system and
function in language', Oxford University Press, London.

Halliday, M. A. (1978), Language as social semiotic, Edward Arnold, London.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (2 von 6) [11.12.2004 14:19:37]



References

Halliday, M. A. (1985), An Introduction to Functional Grammar, Edward Arnold, London.

Henschel, R. (1992), A proposal for merging the english and german upper models, Technical
report, GMD/Institut fir Integrierte Publikations- und Informationssysteme, Darmstadt, West
Germany, Darmstadt, Germany.

Henschel, R. (1994), Declarative representation and processing of systemic grammars, in
C. Martin-Vide, ed., "Current Issuesin Mathematical Linguistics, Elsevier Science Publisher
B.V., Amsterdam, pp. 363-371.

Henschel, R. (1995), Traversing the Labyrinth of Feature Logics for a Declarative
Implementation of Large Scale Systemic Grammars, in Suresh Manandhar, ed., "Proceedings
of the CLNLP 95'. April 1995, South Queensferry.

Kameyama, M., Ochitani, R. & Peters, S. ( 1991), Resolving translation mismatches with
information flow, in "Annual Meeting of the Assocation of Computational Linguistics,
Association of Computational Linguistics, Berkeley, California, pp. 193-200.

Kasper, R. T. (1987), Systemic grammar and functional unification grammar, in J. D. Benson
& W. S. Greaves, eds, Systemic Perspectives on Discourse, Volume 1', Ablex, Norwood, New
Jersey. Also available as USC/Information Sciences Institute, Reprint Report | SI/RS-87-179,
1987.

Kasper, R. T. (1989), A flexible interface for linking applications to PENMAN'S Sentence
generator, in "Proceedings of the DARPA Workshop on Speech and Natural Language'.
Available from USC/Information Sciences Institute, Marina del Rey, CA.

Kasper, R. T. & O'Donnell, M. (1 1990), Representing the Nigel grammar and semanticsin
Loom, Technical report, USC/Information Sciences Institute, Marinadel Rey, California

Kay, M. (1979), Functional grammar, in "Proceedings of the 5th meeting of the Berkeley
Linguistics Society', Berkeley Linguistics Society, pp. 142 - 158.

Mallery, J. C. (1994), A common lisp hypermedia server, in "Proceedings of the 1st.
International Conference on the World-Wide Web', CERN, Geneva.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (3 von 6) [11.12.2004 14:19:37]



References

Mann, W. C. (1983a), 'The anatomy of a systemic choice', Discourse Processes . Also
available as USC/Information Sciences Institute, Research Report | SI/RR-82-104, 1982.

Mann, W. C. (1983b), An overview of the PENMAN text generation system, in "Proceedings of
the National Conference on Artificial Intelligence, AAAL, pp. 261-265. Also appears as
USC/Information Sciences Institute, RR-83-114.

Mann, W. C. (1985), "The anatomy of a systemic choice', Discourse Processes 8(1), 53-74.
Also available as | SI/RR-82-104.

Mann, W. C. & Matthiessen, C. M. ( 1985), Demonstration of the Nigel text generation
computer program, in J. D. Benson & W. S. Greaves, eds, “Systemic Perspectives on
Discourse, Volume 1', Ablex, Norwood, New Jersey, pp. 50-83.

Matthiessen, C. M. (1984), Choosing tense in English, Technical Report 1SI/RR-84-143,
USC/Information Sciences Institute, Marina del Rey, CA.

Matthiessen, C. M. (1987), Notes on the organization of the environment of atext generation
grammar, in G. Kempen, ed., 'Natural Language Generation: Recent Advancesin Artificia
Intelligence, Psychology, and Linguistics, Kluwer Academic Publishers, Boston/Dordrecht.
Paper presented at the Third International Workshop on Natural Language Generation, August
1986, Nijmegen, The Netherlands.

Matthiessen, C. M. (1995), Lexicogrammatical cartography: English systems, International
L anguage Science Publishers, Tokyo, Taipei and Dallas.

Matthiessen, C. M. & Bateman, J. A. ( 1991), Text generation and systemic-functional
linguistics: experiences from English and Japanese, Frances Pinter Publishers and St. Martin's
Press, London and New Y ork.

Matthiessen, C. M., Nanri, K. & Zeng, L. ( 1991), Multilingual resourcesin text generation:
ideational focus, in "Proceedings of the 2nd Japan-Australia Joint Symposium on Natural
Language Processing’, Kyushu I nstitute of Technology, Kyushu, Japan.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (4 von 6) [11.12.2004 14:19:37]



References

Mellish, C. S. (1988), "Implementing systemic classification by unification’, Journal of
Computational Linguistics 14(1), 40-51.

Monachini, M. & Calzolari, N. ( 1994), Synopsis and comparison of morphosyntactic
phenomena encoded in lexicons and corpora. a common proposal and applications to European
languages, Technical report, Istituto di Linguistica Computazionale. Draft version of EU-LRE
Project Eagles deliverable EAG-LSG/IR-T4.6/CSG-T3.2.

Nerbonne, J. (1992), 'Representing grammar, meaning and knowledge'. (Papers from KIT-
FAST Workshop, Technical University Berlin, October 9th - 11th 1991).

Penman Project (1989), pEnmaN documentation: the Primer, the User Guide, the Reference
Manual, and the Nigel manual, Technical report, USC/Information Sciences Institute, Marina
del Rey, California.

Pollard, C. & Sag, |. A. (1987), Information-based syntax and semantics. volume 1, Chicago
University Press, Chicago. Center for the Study of Language and Information; Lecture Notes
Number 13.

Rosner, D. & Stede, M. (1994), Generating multilingual documents from a knowledge base:
the TECHDOC project, in "Proceedings of the 15th. International Conference on Computational
Linguistics (CoLing 94)', Vol. |, Kyoto, Japan, pp. 339 - 346.

Sefton, P. M. (1990), Making plans for Nigel (or defining interfaces between computational
representations of linguistic structure and output systems: Adding intonation, punctuation and
typography systems to the pENMAN System), Technical report, Linguistic Department,
University of Sydney, Sydney, Australia. Batchelor's Honours Thesis.

Steele Jr., G. L. (1990), Common Lisp: the language, (2nd. edition) edn, Digital Press.

Teich, E. (1992), Komet: grammar documentation, Technical report, GMD/Institut fiir
Integrierte Publikations- und Informationssysteme, Darmstadt, West Germany.

Tomita, M. & Carbonell, J. G. ( 1986), Another stride towards knowledge-based machine
tranglation, in "Proceedings of coLinG 86", pp. 633-638. 11th. International Conference on
Computational Linguistics, Bonn, August.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (5 von 6) [11.12.2004 14:19:37]



References

Uszkoreit, H. (1991), Strategies for adding control information to declarative grammars, in
"Proceedings of the 1991 Meeting of the Association for Computational Linguistics,
Association for Computational Linguistics, Berkeley, California.

Zgac, R. (1992a), "Inheritance and constraint-based grammar formalisms, Computational
Linguistics 18(2), 159 - 182. (Special issue on inheritance: 1).

Zgac, R. (1992b), Towards computer-aided linguistic engineering, in "Proceedings of
COLING-92, Val. I, pp. 828 - 834.

Zeng, L. (1992), ML-Penman: implementation notes, Technical report, GMD/IPS| and
University of Sydney.

H#1#

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (6 von 6) [11.12.2004 14:19:37]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of the interface organization

next |jup ||previous ||contents []index

Next: Overview of the documentation Up: Introduction Previous: The functionality of the

Overview of the interface organization

The user interface for kemL provides specialized windows for three distinct kinds of work that are
typically involved in linguistic resource development and maintenance. These are:

. Loading and saving sets of linguistic resources and determining overall system behavior.
. Developing, maintaining and debugging sets of resources by generation.
. Inspecting linguistic resources and objects.

Each of these activities requires different commands and are conceptually separate. The
documentation reflects this separation and describes the functionalities offered to support each activity
In distinct chapters.

) John Bateman -- GMD/IPS -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node9.html [11.12.2004 14:19:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of the documentation

next |jup ||previous ||contents []index

Next: Availability of the system Up: Introduction Previous. Overview of the interface

Overview of the documentation

Thisuser guideis primarily concerned with enabling a user to use kpmL for resource development and
multilingual text generation. Particular sections provide details on:

. installing and loading the release version of the kpmL system (Chapter 3),

. loading released versions of linguistic resources into the system for inspection or generation
(Section 5.7),

. Inspecting the organization of loaded resources (Chapter 6),

. testing the integrity of resources and using them for generation (Chapters 9 and 10),

. Creating new resources (Section 5.9.1).

. using the system in blackbox generation mode as a tactical generator (Section 14.1),

. using the system directly from other Lisp programmes (Section 14.4) and from other
processes/machines (Chapter 16).

Finally, although this document assumes a general familiarity with systemic-functional linguistic
representations, abrief abstract overview isgivenin Section 2.1, and a set of pointers to further

information is given in Section 2.4.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node10.html [11.12.2004 14:19:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Availability of the system

next |jup ||previous ||contents []index

Next: Known bugs/problems Up: Introduction Previous. Overview of the documentation

Availability of the system

KpmL isfreely available for research purposes; the latest public release can be found on the IPSI ftp-
server, f t p. dar nst adt . gnd. de, under the directory / pub/ konet . The system iswritten in
Common Lisp, using cLos and cLim. The resources also assume the presence of the knowledge
representation language Loowm, available free from |Sl, Los Angeles, for some of their semantic
specifications. Use of other knowledge representation systems is straightforward (see Appendix C).

Note: the full functionality of KPML isnow dependent on Allegro Common Lisp 4.2 or newer
with CLIM 2.0 or newer.

The system will run with reduced functionality (approximately that of KPML 0.8) on other
Common Lisp configurations; in particular with:

« Lucid Common Lisp 4.1 with and without CLIM 1 (SunOS 4)
. Lucid Common Lisp 4.2 with and without CLIM 2 (SunOS 5.3/Solaris 2.3)

Note that due to ongoing code changes that are bringing kevL into accordance with Common Lisp the
Language, second edition (Steele Jr. ) and the ANSI standard, kpvL is no longer available for any

Lisps prior to the versions given above. Moreover, the version for Allegro Common Lisp/CLIM isthe

only version that is currently being fully supported gif Standalone versions of the system can be
made available for Solaris 2.3 and up.

= John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodell.html [11.12.2004 14:20:03]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Known bugs/problems

next

up |lprevious [Jcontents ||index

Next: Troubleshooting Up: Introduction Previous. Availability of the system

Known bugs/problems

The following are known to be problematic or missing at the time of the present release of kpmL.

. Themultilingual interaction of stacked SPL default environments from differing languages

simultaneously is not yet supported. Since it appears that virtually no one knows that one can
use stacked SPL default environments anyway, thisis probably not overly problematic at this
time.

. The argument completion facility can be fairly slow if large resource sets have been loaded and

the machine being run on is not the fastest.

The following problems can be encountered with non-Allegro use of the system.

. SomecLim releases (e.g., Lucid cLim) produce a header for hardcopy postscript files that may

not be directly appropriate for printing. Lucid cLim produces

% nonconform ng
Wereator: CLIM1.0
%9®ocunent Font s: (at end)

Thefirst line of this should be simply edited to make it palatable for a printer, e.g.:

% PS- Adobe-2.0
WEreator: CLIM1.0
%@ocunent Fonts: (atend)

There are some occasional incompatibilities left in the Lucid CLIM-2 version that can result in
the window manager throwing control to the Lisp debugger: theabor t option offered in the
Lisp listener generally alows one to continue.

The entire window interface can freeze under Lucid CLIM-1 (SunOS 4). This behaviour has
not been traceable to any particular cause. Use of the system with this somewhat aged
configuration is, however, certainly not recommended.

John Bateman -- GMD/IPS -- Darmstadt, Germany

; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel12.html [11.12.2004 14:20:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Troubleshooting

next |jup ||previous ||contents []index

Next: Computational Systemic-Functional Linguistics Up: Introduction Previous. Known
bugs/problems

Troubleshooting

If serious errors occur during the loading of Loom, check that Loom has been previously compiled.
KpmeL will not try to compile Loom itself, but loading a noncompiled Loom version will fail.

If installation appears to have been completed successfully, but examples do not generate the intended
strings, then some component of the lingusitic resources has not been loaded appropriately. There are
some systematic failures that can be indicative of particular causes. Most typical isthat all SPL inputs
result only in nominal phrases being generated: thisis usually due to the Upper Model not having
been loaded during the configuration phase.

If Emacs and Allegro Common Lisp are not being used, then error conditions can cause more than
one process to use the originating Lisp listener simultaneously! The user must ensure that the required
input makes it way to the appropriate process (e.g., by repeating it until accepted).

If the interface is up and running but after selection of some command it stops reacting, then check:

1. that all of the kpmL windows are “open’ or “expanded'--if awindow is "closed’ or “iconized,
menus dependent on that window will not be brought up until the window is open;

2. that no error condition (e.g., a network or X-server fault) has thrown control back to the calling
Lisp process.

It is possible that some unfortunately syntactically misformed resource definitions that escape
detection on loading can bring the interface to a halt if arequest is made to inspect them. Since
inspection can only take place in the Inspector window (Chapter 6), it is generally only this window
that is affected. Should this occur, there is no available option for continuing, and control-Z from the
interface fails to abort, then the Inspector can be restarted by typing at the originating Lisp listener (cf.
Section 14.6):

(kpm -i::startup-resource-inspector-frane T)

next |fup |lprevious [Jcontents |]index

Next: Computational Systemic-Functional Linguistics Up: Introduction Previous. Known
bugs/problems

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel13.html (1 von 2) [11.12.2004 14:20:21]



Troubleshooting

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel13.html (2 von 2) [11.12.2004 14:20:21]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The linguistic system

next |jup ||previous ||contents []index

Next: Depth and Breadth Up: Computational Systemic-Functional Linguistics Previous:
Computational Systemic-Functional Linguistics

The linguistic system

This generic account of computational systemic-functional linguistic (srL) systems begins with the
structure and organization of the linguistic system. Thisis crucia for understanding every aspect of
the computational system. We aso use it below to more finely articulate what levels of description are
available to us computationally.

. Depth and Breadth

o Stratal organization

o Metafunctions

o Functional Regions
. Intra-stratal organization: choice and delicacy; structural realization
. Inter-stratal organization: interfaces

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel15.html [11.12.2004 14:20:34]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Depth and Breadth

next |jup ||previous ||contents []index

Next: Stratal organization Up: The linguistic system Previous: The linguistic system

Depth and Breadth

SrL conceives of language as a resource for making and expressing meanings--a potential for making
meaning, or ‘meaning potential’ for short. Thisresource isinterpreted (i) as a multi-functional system
and (ii) asamulti-stratal system of systems; we describe what this entails for alinguistic account in
the following two subsections. We then go on to illustrate how linguistic descriptions are represented
in sFL and show how thisis particularly suited for use as a resource for uncovering the kinds of
information and processes that are necessary for controlling linguistic resources.

. Stratal organization
. Metafunctions
. Functional Regions

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel16.html [11.12.2004 14:20:39]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Stratal organization

next |jup ||previous ||contents []index

Next: Metafunctions Up: Depth and Breadth Previous. Depth and Breadth

Stratal organization

The context-embedded system of language as awholeisin srL organized as aresource for making and
exchanging meanings. It is organized in such away that it can construe the symbolic "gap' between
high-level communicative goals in the context of communication and expressions in speech or
writing; it construes this "gap’ through organization into a series of stratified subsystems -- from the
most abstract stratum of semantics to the |least abstract level of expression, the resources for
expressing the grammar's wordings in writing (graphology) or speech (phonology). Each stratal
subsystem is organized in such away that it can relate to its immediate stratal environment: it is
organized as inter-related strategic options available to the next higher stratum. Thus, any given
stratum is contextualized by the immediately higher stratum -- the higher stratum provides the
functional motivation for the lower one; and the lower one provides the resources to realize the higher
stratum. Thisiscrucial in the design of a multilingual system: languages may have afair amount of
functional commonality at one stratum but diverge with respect to the realization at the stratum next
below.

So far three levels of abstraction in the resources that make up language have received extensive
computational treatments -- a higher level that supports processing global to atext, alower level that
supports more local text processing, and an intermediate level that serves as an interface between the
former two. These three levels constitute three strata in a stratal theory of language in context such as
systemic functional theory or stratificational theory:

. the highest stratum -- the semantic environment: higher-level meanings that provide the
semantic environment for any text, and the principal means of relating to context;

. theintermediate stratum -- the semantic interface: the semantic interface resources for relating
these higher-level meaningsto the grammar;

. thelowest stratum -- the lexicogrammar: the grammatical resources for wording the meanings,
for expressing them lexically and structurally.

We therefore prefer arather more finely differentiated stratification than that typical in computational
linguistics and give full stratal status to the relations defined between semantics and grammar. Thisis
both linguistically necessary and practically useful. Emele et a. () demonstrate that the sheer diversity
of interactions between distinct kinds of linguistic information is guaranteed to defeat any staged
approach to generation/understanding that successively maps between levels of representation. A
highly differentiated scheme of stratification then ssmplifies inter-stratal mappings and provides
maximal support for the necessarily simultaneous resolution of constraints drawn from multiple levels
of representation. This becomesincreasingly important the further one moves away from toy research
prototypes.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel7.html (1 von 2) [11.12.2004 14:20:50]



Stratal organization

next |jup ||previous ||contents []index

Next: Metafunctions Up: Depth and Breadth Previous. Depth and Breadth

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel7.html (2 von 2) [11.12.2004 14:20:50]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

M etafunctions

next |Jup |J|previous ||contents ||index

Next: Functional Regions Up: Depth and Breadth Previous. Stratal organization

Metafunctions

All three of these strata are concerned with meaning. Thisisreflected in their functional organization in various ways. Most
generally, this can be seen in the functional diversity of the resources associated with each stratum. SrL traditionally diversifies
the functional spectrum into three highly generalized metafunctions, to which any use of language is necessarily simultaneously
responsive. They constitute fundamental principles of linguistic organization and are thus embodied in the linguistic system.
Each makes its own contribution. The three metafunctions, the ideational, the interpersonal, and the textual, have been
described extensively in the srL literature (e.g., Halliday , Halliday ) but, for present purposes, may be simply glossed as
follows.

. ldeational: the meanswe have of representing the world to ourselves; it largely corresponds to what has been termed
“propositional content'. It is, as the name suggests, concerned with “ideation'. It provides the speaker with the resources
for interpreting and representing “reality'. There are two ideational subtypes, the “experiential’ metafunction and the
“logical' one. The former isamode of ideation that construes experience in terms of particular components and
subcomponents. It is the mode of organization of, e.g., the TRaANSITIVITY structure of the clause (configurations of
transitivity functions, such as Actor (she) + Process (gave) + Recipient (to the poor). The latter is a highly generalized
mode of ideation that operates in terms of very general relations such as modification. It is the mode of organization for
creating complexes of various kinds, such as coordinate and appositional structures, which are chains of interdependent
elements (rather than configurations of constituent components).

. Interpersonal: therange of meaning concerned with the expression of social relationships and speakers' attitudes and
evaluations. It provides the speaker with the resources for creating and maintaining interpersonal relations with the
listener, e.g., by assigning speech roles such as questioner and (intended) answerer and by intruding into the speech
situation by giving or demanding comments on what is being said. These resources are represented in the grammar of
the clause as moop, MoDALITY, and other types of interpersonal assessments. For instance, independent clausesin
English are organized into Mood (e.g., he will) + Residue (e.g., leave tomorrow). The Mood element consists of Subject
and Finite verbal element and reflects moop selections; thus Subject preceding Finite realizes the selection of declarative
(he will), whereas Finite before Subject realizes yes-no interrogative (will he).

. Textual: theresourcesresponsible for making language appropriate to its particular context of use, including resources
that support the connectivity and coherence of text. It provides the speaker with the resources for contextualizing the
ideational and interpersonal information to be presented. We will see extensive illustrations of the particular resources
available below.

These three metafunctional components within lexicogrammar and the semantic interface relate to three functionally distinct
bases of support within the highest stratum. The semantic environmental manifestations of the metafunctions are the ideation
base, the interaction base, and the text base. We use the term “ideation’ base in preference to the traditional “knowledge base'
since it makes the functional position, or “address (i.e., the intersection of the semantic stratum with the ideational
metafunction, which we shall write as “semanticsideational’) of the base explicit. The interaction base (semanticsinterpersonal)
is then concerned, among other things, with the social and epistemic relationship between speaker and listener; it subsumes the
notion of “user model'. The text base (semanticstextual) is concerned with, among other things, rhetorical relations,
newsworthiness, identifiability and thematic progression in text; it subsumes the notion of “discourse model'. In more detail, the
semantic environment of the lexicogrammar is organized into:

theideation base, whichisatheory of “redlity’ -- what one might call a semanticization of the world gif Thisis
apart of the context that supports “ideation’ and hence the ideational component of the lexicogrammar, i.e., a particular
interpretation of the world. The phenomena of the world are ranked and are organized into networks -- taxonomies of
seguences, process configurations, and simple phenomena. They are interpreted as units with a functional type of
structure. For instance, process configurations are configurations of a nuclear process, participants, and circumstances --
processes of doing and happening, of sensing, of saying, and of being and having.

. Theinteraction base, whichisatheory of (symbolic) interaction and role relationships. Thisisthe part of the context
that supports linguistic interaction or exchange and hence the interpersonal component of the grammar, i.e., the
speaker's assignment of linguistic role-relationships, the speaker's evaluations, attitudes, and so on. In some respects, we
can think of the interaction base as different interpersonal colourings superimposed on the ideation base.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node18.html (1 von 2) [11.12.2004 14:21:04]



M etafunctions

. Thetext base, whichisatheory of information astext. Thisisthe part of the context that supports the presentation of
information from the ideation base and the interaction base as text in context.

The contents of the linguistic system are thus cross-classified along two dimensions: stratal "height' and metafunctional
“breadth’; thisis summarized in Figure 2.1.

Strabfication

‘\ mebafun ctio nal
o~

J diversification

\ tex tnal

'T'l'lr‘nrr‘f'ir'nl l'."i'n'l r‘nninnn

idecational

context

sermantics

textnual lexivogram-

intorpeorsonal

lime of arbitrariness’

Figure: Stratal organization of linguistic resources

next [Jup ||previous ||contents index

Next: Functional Regions Up: Depth and Breadth Previous. Stratal organization

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node18.html (2 von 2) [11.12.2004 14:21:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Intra-stratal organization: choice and delicacy; structural realization

next Jjup |lprevious [Jcontents []index

Next: Inter-stratal organization: interfaces Up: The linguistic system Previous. Functional Regions

Intra-stratal organization: choice and delicacy; structural
realization

All stratal subsystems have the same general principles of organization. Since these principles always reoccur, at al the
differing scales, or strata, in the system, we refer to them as fractal principles. The fundamental fractal principleis that of
taxonomic choice. This has often been obscured by the fact that different "notations' are usually used for the ideation or
knowledge base and for the lexicogrammar -- for example, frame-based inheritance networks such as those found in kL-oNE
and the systemic networks of systemic grammar. We emphasize the similarity in the organization because any solution to the
problem of integrating multiple languages in the resources that has been worked out for one stratal subsystem has
implications for the others. That is, the issue of how to represent commonality and difference in choice is general across the
whole system of language in context, including for example, the ideation base and the grammar. To bring out the
commonalities, we will first characterize the common organization principle without committing to any particular notational
representation for encoding the information in the ideation base or the grammar.

Both the ideation base and the grammar are organized as a network of types that form a taxonomic hierarchy (known
variously as a concept hierarchy, subsumption lattice or system network). These types are related by Boolean operators. a
given type may be a subtype of a single type, a conjunction of other types or a disjunction of other types. For our purposes
here, types are distinguished in terms of structural properties. each type may have structural consequences -- a configuration
of roles (dlots, attributes, functions). Each role may be restricted as to what type can serve that role (value restriction, type,
preselection). Thetablein Table 2.1 summarizes the manifestation of the general organization just sketched in frame-based
inheritance networks used for representing “knowledge' and in system networks used for representing lexical and
grammatical information.

Ideation hase lexicogrammear
basic nolafion [rarpe-based wherilance pelwork gyalem pelwork
sodes concepl [rames (wilh roles) grammaiical [ealures (will assoc-
aled realicalion slalemenis)
selwork logic Boolean — classes Boolean — ayslems (wilk npul and
oulpul prammalical lalures)
redalion  belween || deolbcal — concepl [rame pramunalical [ealure — realized by
mode  and  slruc- specificalions of alruclure [ragmenis
frre specificalion
unil; slruclure concepl [rame: coolipurabion of | pgrammalical woil: coolipuralbions of
roles pramrnalical luoclions
role resiriclion value reslriclion of role [lers preselection ol pramumalical
[unclins

Table: Comparison of representation schemes

We adopt the system network representation as our general representation medium and have extended the notation for
multilingual representation--it now captures what is required of a multilingual representation generally. Our selection of
multilingual system networks as the basic representational resource mirrors corresponding attempts to use a single formalism,
such as typed feature structures (cf. Carpenter ) or “infons' (cf. Devlin), for all types of linguistic information (as donein, for
example, Pollard & Sag (), Zajac (), Kameyamaet al. (), Nerbonne () and others). We draw a distinction, however, between
the linguistic theoretical level of description (at which systemic networks appear) and the representation theoretical level (at
which typed feature structures or infons appear). We present thisin more detail below.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node20.html (1 von 3) [11.12.2004 14:21:28]



Intra-stratal organization: choice and delicacy; structural realization

The specification of taxonomically organized choices as a hierarchy of alternative types constitutes a potential. Any type may
be instantiated as a token -- an actual concept or an actual grammatical unit such as a clause. In the ideation base of a
generation system, tokens are stored as "instantial knowledge' (or assertional knowledge, contrasting with the type of
knowledge sometimes called terminological; see, e.g., Brachman & Schmolze () for a standard description) -- particular facts
about particular individuals at particular times, etc. In the grammar, tokens are not stored -- they are only created in the
process of generation/understanding: particular paths through the taxonomic hierarchy and instantial wordings. That is, the

system stores instantial meaning in the ideation base but not in the grammar gif

We can now describe the fractal dimensions of the linguistic theoretical level in more detail. The most important are axis,
rank and delicacy.

The dimension of axis separates the strategic, taxonomic organization within a stratum as choice -- as represented by
system networks -- and the tactic realizations of choices -- as represented in realization statements. The former givesrise to
paradigmatic descriptions; the latter to syntagmatic descriptions. Within the lexicogrammatical stratum, for example, axis
separates the network of strategic options available for realizing meanings as wordings and the tactic realization of particular
options as fragments of structure. Thus, in English, if aclauseis ‘interrogative', thereis afurther (i.e., more delicate: see
below) choice between “wh-interrogative' and “yes/no-interrogative'; these latter two systemic options are realized either by
the presence of a Wh-element (indicated by the realization statement [+ WHh]), which is ordered before the Finite-element (the
finite part of the verb, i.e., that carrying agreement and tense; realization statement: [Wh a Finite]), or by ordering the Subject
after the Finite-element [Finite a Subject] respectively. Crucialy, the realization statements are always given in the context of
paradigmatic options such as "wh-interrogative' and "yes/no-interrogative', and the coherence of the paradigmatic
organization is given preference over generalizations concerning phrase structure. The paradigmatic orientation is perhaps the
central distinctive feature of the architecture overall.

The second dimension of intra-stratal organization, delicacy, orders paradigmatic options with respect to one another. This
refers to the dependency between systemsin a system network; it corresponds to the subsumption partial ordering in atype
|attice representation. The more general options provide the context in which more delicate ones are available.

Finally, the third dimension, rank, refers to the typical constituency potential of a stratum. In English, clauses consist of
groups/phrases, which consist of words, which consist of morphemes; thus, the rank scale of the English lexicogrammar is
clause, group/phrase, word, and morpheme. Each higher-ranking unit constitutes the context in which units of the rank below
serve (see Figure 2.2). Clause, being the highest-ranking unit, is the most transparent gateway to semantics (cf. Halliday ).

rank

clause

group /phrase

word

morpheme

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node20.html (2 von 3) [11.12.2004 14:21:28]



Intra-stratal organization: choice and delicacy; structural realization

Figure: Constituency and the rank scale: English lexicogrammar

next [Jup [lprevious [|contents ||index

Next: Inter-stratal organization: interfaces Up: The linguistic system Previous. Functional Regions

€D | John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ: mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node20.html (3 von 3) [11.12.2004 14:21:28]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Functional Regions

next |jup ||previous ||contents []index

Next: Intra-stratal organization: choice and Up: Depth and Breadth Previous. Metafunctions

Functional Regions

While the metafunctions provide a general division of linguistic resources, thisis not sufficiently
fine for usefully manipulating large scale linguistic resources. For this reason, within each
metafunction, linguistic resources are further divided into functional regions. A functional regionisa
subset of the resources that are concerned with a single “semantic/functional’ area. A lexicogrammar
then typically dividesinto 30 or more functional regions, each of which isresponsible for expressing
some particular aspect of the functional distinctions made by the stratum above. Organizing a
grammar by ‘rank’ (see below) and “region’ then provides an overall ‘'map’ of the linguistic system
which can be used to focusin on areas of interest. The regions can be seen as akind of meta-network
imposed over the base-level network of linguistic resources. KpmL strongly encourages orientation to
regions as a basic means of finding one's way about in large-scale resources.

John Bateman -- GMD/IPS -- Darmstadt, Germany
! | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node19.html [11.12.2004 14:21:36]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inter-stratal organization: interfaces

next |jup ||previous ||contents []index

Next: A generic computational systemic Up: Thelinguistic system Previous:. Intra-stratal
organization: choice and

Inter-stratal organization: interfaces

The basic inter-stratal organization employed is still the framework known as chooser and inquiry
semantics (Mann ). This can be briefly described as follows.

The chooser and inquiry framework for systemic-functional grammar (sFG) arose out of the need to
make atext generation system that was modular and re-usable across different contexts and across
different computational systems, knowledge representation languages, text planning components, etc.
It was necessary to be able to provide semantic control of the grammar component without insisting
that a user, or other computational system, be aware of the grammatical distinctions maintained and
organized within the grammar. The chooser and inquiry framework provides such alevel of semantic
control by associating a chooser with each grammatical system in the system network. A chooser isa
semantic procedure which knows how to make a purposeful choice among the grammatical features of
the system with which it is associated. It makes the choice by asking one or more questions, called
inquiries, concerning parameters that, typically, refer to aspects of the meaning, concepts, etc. that
need to be expressed. It isthe responsibility of the inquiries to obtain the information relevant for the
grammatical decision. Asfar as the grammar and choosers are concerned, therefore, the inquiries
represent oracles which can be relied on to motivate grammatical alternations appropriately for the
current communicative goals that need to be accomplished. Thisisasimpler task than directly
requiring a selection of grammatical features, since the choosers and inquiries decompose asingle
selection among minimal grammatical distinctions into a number of selections among minimal
semantic distinctions. While the grammatical alternations may not be directly relevant to a component
external to the grammar, the semantic distinctions are: this level supplies a situation-independent
semantic classification in terms of which a computational system can organize its information for
expression in natural language.

The meaning of inquiries can be defined in two ways:. either an informal natural language description
of the semantic discrimination can be given, or an actual process may be implemented which
interrogates a knowledge base, text plan, etc. in order to establish the response appropriate for the
particular communicative goa being achieved. In general, the inquiries associated with choosers of
systems from the different metafunctions in the grammar need to look to different sources for their
responses. |deational inquiries typically examine the knowledge base or domain model of a
computational system (i.e., the ideation base); interpersonal inquiries examine a user model, beliefs,
attitudes and intentions (i.e., the interaction base); and textual inquiries examine the text plan and text
history (i.e., the text base). M atthiessen () describes the relation between the metafunctions and

different kinds of “support knowledge' that are required in some detail.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node21.html (1 von 2) [11.12.2004 14:21:43]



Inter-stratal organization: interfaces

One direction of ongoing development is to replace the association of choosers with individual
systems by a more general semantic network of inquiries. The arguments for this are presented, with
some examples, in Matthiessen & Bateman (). Currently released systems still use the individual
chooser packages however.

next |fup ||previous [Jcontents |]index

Next: A generic computational systemic Up: The linguistic system Previous: Intra-stratal
organization: choice and

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node21.html (2 von 2) [11.12.2004 14:21:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

A generic computational systemic functional system

next |Jup |J|previous ||contents ||index

Next: A specific instantiation: the Up: Computational Systemic-Functional Linguistics Previous: Inter-stratal organization:
interfaces

A generic computational systemic functional
system

We now describe the computational instantiation of sets of linguistic resources of the kind described in the previous section.
Just as the linguistic system was organized, the organization of a generic computational functional systemic systemisalso to be
described at a number of levels of abstraction. These levels or, to use Christian Matthiessen's suggestive metaphor, meta-strata,

are motivated by a consideration of semiotic systems as awhole but also relate interestingly to modern practises of software
engineering. We separate out the following levels:

. Theory: at thislevel, the theoretical perspective -- i.e., the particular questions to be asked, the ways of going about
answering them, the view of what kind of phenomenon language is, etc. -- is specified. In the present case, we find at
this level a statement of what systemic functional linguisticsis.

. Linguistic representation: here, we find:

o arepresentation dimension, where we describe the theoretically motivated representational devices available to
us for approaching language. In the present case, the most important linguistic representational device isthe
systemic network.

o adescription dimension, where we find concrete linguistic descriptions of actual languages and linguistic
phenomena, expressed using the representational resources defined.

Note that this meta-stratum involves linguists primarily; there is no necessary connection drawn with computation and
the representation adopted is specified only in terms of the theory.

. Computational representation: here, we find are-expression of the previous representational information but in terms
which are explicitly computational. The aim would be for all information that is expressed at the linguistic
representational level to find some corresponding reflex at the computational representational level. This meta-stratum
necessary involves computational linguists -- in fact, we would use the existence of this meta-stratum as a definition of
what computational linguisticsis. Crucialy, as with the relation of theory to linguistic representation, there is assumed
to be anatural realizational relationship between the meta-strata of linguistic and computational representation.

. Implementation: here, we pass a 'line of arbitrariness in realization and are concerned with how we make the
computational representation run as best we can. Thereis no need at this level to respect modularities defined and used
at the higher meta-strata if they do not contribute to desired run-time behavior.

Itiscrucial to draw the distinction between the linguistic representation meta-stratum and the computational representation
meta-stratum since the two are responsive to quite different concerns. Demonstrations such as those of Méellish () or Carpenter
(, pp27-32) that systemic networks are generally “equivalent' to type lattice specifications only hold for the representation
theoretical level construal of systemic networks. Such interpretations are, however, underconstraining at the linguistic
theoretical level and make no criteria available for distinguishing between systemic networks that represent aspects of language
and “arbitrary' networks that appear very unlikely as language descriptions (such as, for example, Brew's () “systemic' network
for 3-sa1). The dimensions of organization that find expression in systemic accountsin general, and in kpmL in particular, are
all to be construed at the linguistic theoretical level, i.e., a the linguistic representation meta-stratum; it remains for future work
to define possible realizations of constructs beyond the basic type lattice organization at the representation theoretical level,
although some first steps are presented in Kasper & O'Donnell () and Bateman et a. (). For more on the differences between a
systemic network and, e.g., the subsumption lattices of HpsG at the linguistic theoretical level, see Bateman (); for further
information about the two levels of theoretical representation considered abstractly, see below. The implementational basis of
other levels could similarly be changed without affecting the linguistic representation specifications at al; this reflects a further
important principle of modularity.

Although the Penman system (see Penman Project () and Section 2.3) straddled the lower two meta-strata somewhat
uncomfortably, future systemic functional systems will move steadily towards respecting this division and so it makes sense to
interpret even current systems in itsterms. In particular, current considerations for aternative implementations in terms of
typed feature structures (cf., e.g., Bateman et al. , Henschel ) make this division concrete. At present, the grammar definition

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node22.html (1 von 3) [11.12.2004 14:21:53]



A generic computational systemic functional system

notation used in Penman-style architectures can be placed at the computational representation meta-stratum, while the Penman
code which interprets these and compiles an internal data structure which is “traversed' as a network, building up internal
representations of syntactic descriptions, is best placed at the implementation meta-stratum. We can expect that both the
implementation detail s and the computational representation will change substantially over the next decade, whereas the
linguistic representation will probably be extended rather than changed.

It is perhaps useful to bear in mind that the meta-strata are to be considered as being related in arealization relationship, just as
the strata of the linguistic system. Thus, each meta-stratum contains a compl ete representation of the linguistic system at the
level of abstraction appropriate. A comparison with an idealized view of a generic systemic functional system should clarify
the distinctions drawn here. Such a system would consist of:

. theory: systemic-functional linguisticsin general,

. linguistic representation: systemic networks used to describe some linguistic phenomena,

. computational representation: statements made in atyped feature structure formalism compiled automatically from the
linguistic representation and capable of being executed according to the the abstract semantics of the formalism,

. implementation: efficient implementation of the formalism.

This scheme is shown graphically in Figure 2.3. A representation at the computational representation meta-stratum is intended
to correspond to Uszkoreit's () “declarative specifications or to Zajac's (, p830) “executable specifications. They should also be

supportive, therefore, of automatic compilation for specific tasks as done, for example, by the compilation of Lrc-like
grammars in kemT (Tomita & Carbonell ) and in the recent flurry of reports on automatic “migration’ of HPsG resources into

various forms (e.g., GOtz & Meurers). The main concern is then with the principles of organization of such resources.

theory

linguistic
rCop

comp. Tep.

implementation

Figure: Meta-stratal organization of the computational systemic functional account

next Jjup |lprevious [Jcontents |]index

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node22.html (2 von 3) [11.12.2004 14:21:53]



A generic computational systemic functional system

Next: A specific instantiation: the Up: Computational Systemic-Functional Linguistics Previous. Inter-stratal organization:

interfaces

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node22.html (3 von 3) [11.12.2004 14:21:53]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

A specific instantiation: the Penman-style architecture

next |jup ||previous ||contents []index

Next: The generation process: overview Up: Computational Systemic-Functional Linguistics
Previous: A generic computational systemic

A specific instantiation: the Penman-
style architecture

Here we introduce very briefly the Penman-style generation architecture that is also used for the
lexicogrammatical and semantic strata supported by kpwvL.

The approach to generation is resource-driven, rather than instance-driven (or data-driven). The
organization of the systemic network determines the order in which information is gathered and what
information is sought. Thisis managed via the choosers and inquiries as described above.

The architecture is shown in graphical form in Figure 2.4, with the flow of information indicated by
broken gray arrows.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node23.html (1 von 3) [11.12.2004 14:22:08]



A specific instantiation: the Penman-style architecture

domain and application @ %D

Bases y

X Text ! Interaction | :

¥ " g cbject -

o hase o hae o ]ﬂ per

¥ ’ _ "4 A

' h 4 1

o inquir 14 ) S

Inquiries inquirs-g iz} inguiry-g {7

Choosers 2 R F Qf

R . A, S
Grammatical 2 E —
System 4){ d — !
Network b >
. —>
_________________________________________ —h
SUBJECTAFINITE
Realization
Statements THEMELOCATION
4

“strings”

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node23.html (2 von 3) [11.12.2004 14:22:08]



A specific instantiation: the Penman-style architecture

“strings”

Figure: Penman-style architecture for lexicogrammar, semantics, and their interrelationships

. The generation process. overview
o Network traversa
o Accessing semantic information
o Stopping traversal: bottoming out

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node23.html (3 von 3) [11.12.2004 14:22:08]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The generation process: overview

next |jup ||previous ||contents []index

Next: Network traversal Up: A specific instantiation: the Previous: A specific instantiation: the

The generation process: overview

This section provides avery brief overview of the generation process depicted in Figure 2.4. For more
details, see Mann & Matthiessen (), Matthiessen & Bateman (). Also described here are some
particular details of the basic Penman and kpvL style generation strategy.

. Network traversa
. Accessing semantic information
. Stopping traversal: bottoming out

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node24.html [11.12.2004 14:22:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Network traversal

next |jup ||previous ||contents []index

Next: Accessing semantic information Up: The generation process. overview Previous. The
generation process. overview

Network traversal

The generation process in a Penman-style architecture such askpvL is as follows. Generation proceeds
in cycles of traversal through the defined systemic network. Each grammatical unit that is generated is
created by one cycle through the network. The result of traversing the network is a set of selected
grammatical features (the “selection expression’) and a corresponding grammatical structure. The
grammatical structureis created by resolving all the collected grammatical constraints associated with
features of the selection expression. Further cycles (for grammatical subconstituents) are created by
constraining agrammatical constituent to require realization involving further features selected from
the systemic network. More information about the kinds of grammatical constraints that may be
employed is given in Section 12.2.5.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node25.html [11.12.2004 14:22:27]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Accessing semantic information

next |jup ||previous ||contents []index

Next: Stopping traversal: bottoming out Up: The generation process. overview Previous. Network
traversal

Accessing semantic information

The features that are chosen during traversal of a network are generally selected by virtue of the
semantics to be expressed. Thisis mediated by the chooser and inquiry framework (devel oped

in Mann ()). Choosers organize inquiries into “decision trees, and inquiries are resonsible for (a)
Inspecting the semantic specification that is being expressed in order to classify that specification
along specific semantic dimensions and (b) providing access to particular portions of the semantic
specification for triggering further realization. The connection between grammar and semanticsis
made via a function association table that relates grammatical functions (i.e., labels for grammatical
constituents defined by the grammar) and semantic "hubs' (i.e., labels for portions of the semanticsto
be expressed). Inquiries typically take grammatical functions as arguments, thus providing access to
the associated semantic information in a modular fashion. More information is provided in

Section 12.2.7.

The usual semantic organization adopted in the Penman-style architecture, and when using kpmL, isan
Upper Model. All of the kpmL resources are defined so that generation is possible with respect to a
single Upper Model. This provides the concrete instantiation of the ideation base introduced above.
One of the most versions of an upper model is the Generalized Upper Model (version 2.0).

= John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node26.html [11.12.2004 14:22:34]


http://www.darmstadt.gmd.de/publish/komet/gen-um/newUM.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Stopping traversal: bottoming out

next |jup ||previous ||contents []index

Next: Pointersto further information Up: The generation process: overview Previous. Accessing
semantic information

Stopping traversal: bottoming out

Cycles of generation will continue for all sub-constituents of a grammatical unit until al sub-
constituents are filled by some specific linguistic substance--typically lexemes or morphemes. Thus,
one possible error is an infinite regression caused by underconstraining some grammeatical constituent.

In kpvL there are four main ways by which a grammatical constituent may be sufficiently specified as
to receive lexical material asits realization and so not to trigger a further cycle through the grammar:

1. an explicit lexical entry can be selected for realization (with the realization statement: | exi fy
(Section 12.2.5),

2. aset of lexical features can be associated with a grammatical constituent (by means of the
cl assi fy redization constraint: Section 12.2.5); on completion of atraversal through the
grammar, the complete collection of lexical features for agrammatical constituent is used to
pick amatching lexical item (i.e., alexical item whose lexical features unify),

3. an explicit lexicalization on semantic grounds can be asked for by invoking the inquiry t er m
resol ve-i d.

4. an explicit selection of a morpheme can be made with the morphological realization operators:
presel ect - subst ance, presel ect - subst ance-as-stemor
presel ect - subst ance- as- property (Section 12.2.5.4).

Note: if aconstituent has been classified, then the selection of alexical item as described in (2) above
will not respect any additional information--it is a purely lexicogrammar internal selection. That is, no
semantic information or SPL information will be consulted. If the user wants semantic information to
be taken into account then option (3) must be taken by including thet er m r esol ve-i d inquiry in
some chooser that is activated at an appropriate point during generation (cf. Section 12.4.1).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node27.html [11.12.2004 14:22:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pointers to further information

next Jjup |lprevious [Jcontents []index

Next: Installation and Startup Up: Computational Systemic-Functional Linguistics Previous. Stopping traversal: bottoming
out

Pointers to further information

Check for the existence of a more extensive WW W.page giving further
documentation pointers as well as more general information.

We can now describe the documentation available to a user of a generic systemic-functional computational system in terms
of which module of the system is described. This can be done not only for each module of linguistic resources, but also for
each meta-stratum at which the module exists. Each level of abstraction and each component with each level has distinct
documentation corresponding to its differing concerns. Moreover, any additions and modifications to the framework should
position themselves explicitly with respect to this organization, sinceit is only by doing this that the issues and design criteria
can be defined. The dangerous tendency of mixing the linguistic and computational meta-strata should be avoided.

An overview of the documentation and its assignment to modulesis given in Figure 2.5.

(@

Semantles {descriptlon)

Ideatlonal:

textnal:

theory Grammar (deserlpilon)

lingn Isibe

rep o putatlonal Representation
(Fenman —siyle archlicanre):

Seience Flan Langna g@
Ki: Luum:@

comp. rep

Figure: Further documentation map

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node28.html (1 von 3) [11.12.2004 14:23:05]



Pointers to further information

Thus, the following documents together form the basis of a documentation of the generic computational system gif

Document Area 1. systemic theory
John Bateman. 1992. " Systemic Grammar". Encyclopedia of Al.

Christian Matthiessen and M.A K. Halliday. 1994. "~ Systemic Functional Grammar: afirst step into the theory".

Document Area 2: ideational semantics
John Bateman, Bob Kasper, Johanna Moore and Richard Whitney. 1990. *"A general organization of knowledge for
natural language processing: the Penman upper model." 1SI Penman note.

Renate Henschel. 1994. “"Merging the English and German Upper Model." Arbeitspapiere der GMD, 848. Sankt
Augustin, Germany.

Renate Henschel and John Bateman. 1994. *" The merged upper model: alinguistic ontology for German and English".
Proceedings of COLING '94.

John Bateman, Renate Henschel and Fabio Rinaldi. 1995. * Generalized Upper Model 2.0: documentation”. Technical
report. GMD/Institut fur Integrierte Publikations- und Informationssysteme, Darmstadt, Germany.
URL =htt p://ww. dar nst adt . gnd. de/ publ i sh/ konet / gen- um newUM ht m .

Halliday, Michael A.K. and Christian M.I.M. Matthiessen, Construing experience through meaning: a language-
based approach to cognition. Berlin: de Gruyter, to appear.

Document area 3: textual semantics
John Bateman. 1993. ""Nigel: textual semantics documentation”. Technical report. GMD/Institut fr Integrierte
Publikations- und Informationssysteme, Darmstadt, Germany.

John Bateman and Christian Matthiessen. ““Uncovering the text base". In: Kegi Hao, Hermann Bluhme and Renzhi Li
(eds.), Proceedings of the International Conference on Texts and Language Research (29-31 March 1989, Xi'an,
China), pp3-45, Xi'an Jiaotong University Press, 1993.

Christian Matthiessen, " Interpreting the textual metafunction”. Linguistics Department, University of Sydney. 1992.

Document area 4: grammar
Christian Matthiessen. 1995. " Lexicogrammatical Cartography”. Tokyo, Tapel and Dallas: International Language
Sciences Publishers.

Elke Teich. 1992. ~"KomeTt grammar of German”. Technical report. GMD/Institut fUr Integrierte Publikations- und
I nformationssysteme, Darmstadt, Germany .

Liesbeth Degand. 1993. “"Dutch Grammar Documentation”. Technical report. GMD/Institut fir Integrierte
Publikations- und Informationssysteme, Darmstadt, Germany.

Bernhard Hauser. 1995. ““Multilinguale Textgenerierung am Beispiel des Japanischen". Technische Hochschule
Darmstadt, Diplomarbeit.

Document area 5: semantic interface
Robert T. Kasper. 1989. A flexible interface for linking applications to PENMAN'S sentence generator”. Proceedings of
the DARPA Workshop on Speech and Natural Language.

Document area 6: knowledge r epr esentation
Bob MacGregor. 1995 “"The Loom 2.0 Manua". 1Sl Technical Report.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node28.html (2 von 3) [11.12.2004 14:23:05]



Pointers to further information

In case of difficulties, the unpublished documents can be sent on request. It is, of course, also possible to focus on particular
areas of interest by referring to the overall map of documentation concerns set out in Figure 2.5. The documentation is being

steadily extended.

next [Jup [lprevious ||contents |]index

Next: Installation and Startup Up: Computational Systemic-Functional Linguistics Previous. Stopping traversal: bottoming

out

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node28.html (3 von 3) [11.12.2004 14:23:05]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Footnotes

...design.
The multilingual generation functionality is based on the the multilingual extensions to the
Penman system made by Licheng Zeng (University of Sydney) as documented in Zeng ().
Other extensionsin kpmL include provision of an integrated systemic morphology, work on
higher levels of text organization, such as genre and register, as well as numerous code
improvements and bug fixes. Only those aspects of the system relevant to developing and
maintaining multilingual grammatical resources are described in this documentation however;
for overviews of other aspects, see, for example, Bateman & Teich ().

...Dutch.
For details of these resources, see their respective documentation and
descriptions (Matthiessen , Teich , Degand ).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (1 von 59) [11.12.2004 14:23:40]



Footnotes

...supported.
Thanksto Mick O'Donnell, kemL without the window interface has also been compiled with
Allegro PC Common Lisp with minor changes. Interested parties should contact the author.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (2 von 59) [11.12.2004 14:23:40]



Footnotes

..world.
As a complement to the notion of a conceptualization, if we take the ideation base to be a
meaning base rather than a knowledge base - thisis described further in Matthiessen &

Bateman

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (3 von 59) [11.12.2004 14:23:40]



Footnotes

...grammar.
Thisisthe basic generalization; we do, of course, store instantial wordings - quotes, proverbs,
etc.

..System.
There are many more documents covering areas such as grammar and semantics; those listed

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (4 von 59) [11.12.2004 14:23:40]



Footnotes

here are those of particular relevance to the linguistic resources currently available
computationally.

...Slize=-1>KPML.
For some indication of what isinvolved in using other knowledge representation systems, see
Appendix C.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (5 von 59) [11.12.2004 14:23:40]



Footnotes

...found.
kpmL Will not try to compile Loowm itself. Problems will arise if one attempts to continue loading
kPML Without a compiled version of Loom being available-loading will fail ungracefully if one
attempts to use the source Loowm files without compilation. Note that if the Loom pathnames and
directory structure have not been properly set up, then the compiled version of Loom may fail
to be found and the system may attempt (incorrectly) to use the uncompiled source files. This
can fail with unpleasant messagessuch as: >>Error: The functi on COPY- EQ
SLOTS i s undefi ned or similar.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (6 von 59) [11.12.2004 14:23:40]



Footnotes

...System.
It is possible to install the system without cLim being present; see the configuration step below.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (7 von 59) [11.12.2004 14:23:40]



Footnotes

...Size=-1>CLOS
For newer Lisps, such as Allegro 4.2 and newer, cLos is aready present in the standard Lisp
release.

...loaded.
In order to spare garbage and also for more reliability if asingle image of the system isto be
used on various machines, it can be advantageous if the compilation and loading phases are
carried out separately rather than during asingle Lisp session as described here.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (8 von 59) [11.12.2004 14:23:40]



Footnotes

...0Nes.
Onceinstalled, it is possible for the knowledgeable user to weed out particular patches, but this
Is not suggested for normal use.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (9 von 59) [11.12.2004 14:23:40]



Footnotes

...Clear.
KprmL-e versions include afifth graph subtype: GENRE-STRUCTURE-GRAPH; thisis not described
here.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (10 von 59) [11.12.2004 14:23:40]



Footnotes

...monochrome.

Where thisis not the case-for example, with the red/blue differentiation used for contrasting
multilingual systemic resources according to language when presented graphically (cf.
Section 6.2.5)-alternative representation-styles are selected.

...used.
For Allegro 4.2 or 4.3, for example, see Chapter 14 of the Allegro documentation.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (11 von 59) [11.12.2004 14:23:40]



Footnotes

...readable.
Note that thisis a destructive operation. Having started up the window interface in demo mode,

it is not then possible to revert to non-demo mode. A similar effect can be obtained by
changing the allocated fonts-although this requires that particular known fonts are installed and
can only work to best effect if the size of some of the window panesis also atered. Thisis
done automatically by using the demo mode.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (12 von 59) [11.12.2004 14:23:40]



Footnotes

...options.
Patching is not activated as the default behaviour since it changes the operation of several
commands and the user needs to be aware of this-cf. Chapter 11.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (13 von 59) [11.12.2004 14:23:40]



Footnotes

...configured.
Note that configuring kpmL for a given language (Chapter 3) is no guarantee that resources for

that language exist!

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (14 von 59) [11.12.2004 14:23:40]



Footnotes

...language.
|.e., loading a system of the same name but for another language will have no effect on the
status of the existing definition.

...Sze=-1>KPML.
From Lisp, pushing the values onto the value of the global variable kpmi : : al | | anguages
Is sufficient.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (15 von 59) [11.12.2004 14:23:40]



Footnotes

..origin.
Actually they are interned in the package identified by the value of kpni : : *current -
| anguage- package*, but in kpvL thisisawayskpmn .

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (16 von 59) [11.12.2004 14:23:40]



Footnotes

...automatically.
Unlesstheflagkpm -1 ::*auto-print* isset.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (17 von 59) [11.12.2004 14:23:40]



Footnotes

...bateman@gmd.de.
At present, only the most recently activated resource graph determines the region about which
amessage is sent.

..figure
There are severa utilities for this: it appears that most versions of cLim do not produce an
appropriate bounding box size for figures.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (18 von 59) [11.12.2004 14:23:40]



Footnotes

list.
This behaviour can be changed by means of theflag kpmi - i : : *show- col | ect eds*
(Section A.3).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (19 von 59) [11.12.2004 14:23:40]



Footnotes

...Systems.
Definitions can include more than one system possessing a given feature, but all but the last
such definition are disabled during loading: cf. Section 7.5.2.4.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (20 von 59) [11.12.2004 14:23:40]



Footnotes

...HREF="nodel07.html#chooserepseg">6.10.
The chooser graphs are the only kinds of graph produced by kpmL which are displayed
vertically: note that although the display modes options still callsthis "vertical spacing'
although in this case the effect is more one of changing the horizontal spacing. The EPS
examplein Figure 6.10 was produced with “vertical' spacing of 5.

...generated.
Regardless of how input. Thus an spL input specification could be given as an argument to the
function say and subsequently regenerated with <Generate Again>.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (21 von 59) [11.12.2004 14:23:40]



Footnotes

...command.
The displayed versions of the generated strings are in fact produced with the example record
operation <Display Generated Sring> (Section 10.2.5.1). The mouse-sensitive structure can
therefore be fine-tuned to differing granularities-it need not be a direct representation of the
syntactic structure. KemL uses the same structure for this presentation as the "rich mouseable
structure’ that can be passed back to applications for further processing (e.g., adding
hyperlinks, defining their own mouse sensitivity, etc.). Section 14.5 describes these facilitiesin
detail.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (22 von 59) [11.12.2004 14:23:40]



Footnotes

...generation.
All warnings can be suppressed by setting the flag * denb- node* to true: not recommended
for everyday use!

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (23 von 59) [11.12.2004 14:23:40]



Footnotes

...mode.

This mode played a more important role in the early days of the Penman system before the
inquiry interface and semantic representations had become stable. It is still potentially useful
for getting to understand in detail how the architecture works and the kind of modularities that
it achieves. A detailed example of a mock-up deimplemented generation traversal is given

by Mann & Matthiessen ().

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (24 von 59) [11.12.2004 14:23:40]



Footnotes

... Off",
The internal symbol names for these flags are listed in Appendix A below; this enables them to

be used to control the amount of information that is given during generation when the window
interface is not being used.

...entered.
From this one can determine the effect on system entry that the system dependencies, defined
in the global variable syst em dependenci es, have. These system dependencies are

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (25 von 59) [11.12.2004 14:23:40]



Footnotes

responsible for helping to decide which of several apparently equally eligible systems should
be entered. Relying on particular ordersis therefore possible, although not recommended. The
forms for defining such dependencies are described in Section 12.2.11.

...augmentation.
Note that since kpmL does not attempt to provide a semantically complete internal

representation of the subsumption lattice entailed by the systemic network (thisis still beyond
the practical capabilities of available feature logic implementations: cf. (Henschel )), it
approximates full paths by tracing backwards (i.e., rightwards in the systemic network) until a
feature participates in a digunctive entry condition. Guidance is then given for preselections
through such entry condition: see Section 12.2.7.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (26 von 59) [11.12.2004 14:23:40]



Footnotes

...hand.

It appears currently not possible to giveani | setting once a number has been given; asa
workaround, the number zero can be given. This has the same effect asni | since traversa
cycle counting starts from 1 and so a cycle number zero is never found.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (27 von 59) [11.12.2004 14:23:40]



Footnotes

...graph.
Note that this particular chooser definition contains an oddity: the “notprecede’ option for
pr ecede- g that does not lead anywhere; this can be ignored here.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (28 von 59) [11.12.2004 14:23:40]



Footnotes

...window.
Note that displaying a chooser graphically when only some of its inquiries have been traced
and the flag “show generation paths' is set can lead to an incorrect graph. This can be avoided
by tracing the chooser rather than inquiries.

...S.ze=-1>TENSE.
The linguistic details and motivations for this treatment of tense are based on (Halliday ) and

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (29 von 59) [11.12.2004 14:23:40]



Footnotes

are given in Matthiessen ().

...right.
This orientation can be changed, see the options below; it is, however, probably the most
suitable for systemic functional structures due to the long functional labels that constituents
receive.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (30 von 59) [11.12.2004 14:23:41]



Footnotes

...release.
It is also possible to graph individual constituents from a generated structure. Thisis managed
however via the example record and the facilities offered there for structure graphing: cf.
Sections 10.2.5 and 10.3.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (31 von 59) [11.12.2004 14:23:41]



Footnotes

..facilities.
Slightly more than was available in kpmL 0.8.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (32 von 59) [11.12.2004 14:23:41]



Footnotes

...follows.
Minor differences in the positioning and ordering of the options can occur asthe menu is
dynamically constructed.

...loaded.
With the present release, thistest is probably best run only when single language varieties are
loaded.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (33 von 59) [11.12.2004 14:23:41]



Footnotes

...HREF="node274.html#exrename">10.2.7),
Only available from the Devel opment window under kpvL 0.9.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (34 von 59) [11.12.2004 14:23:41]



Footnotes

... failing'.
This does not, therefore, include Lisp errors. If resources are so misformed that Lisp errors
occur, then the example runner enters the Lisp debugger as usual and example running is
suspended.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (35 von 59) [11.12.2004 14:23:41]



Footnotes

...grow.
When more than one generated string is produced for an example, only the first of these
appears in the example runner file. This restriction does not apply to the: conpl et e detail
file.

...therefore:
Note that the function structure information appearing is not ideal if thisfileisto beread into
Lisp for automatic processing since some care is necessary to avoid reader errors.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (36 von 59) [11.12.2004 14:23:41]



Footnotes

..NAME=3324> .
Thisisequivaent to issuing an expliciti n- | anguage command at the Lisp listener (cf.
Section 12.2.1). The effects of thei n- | anguage command can be overridden by a

subsequent i n- | anguage or by calling the function ( cl ear - r egi on- and- | anguage-
defaults).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (37 von 59) [11.12.2004 14:23:41]



Footnotes

...Emacs/Mule.
Note: the mode of interaction provided in the Penman interface whereby SPL specifications
could be edited from a stand-alone Penman process by starting a new editor-process for each
edit is not supported.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (38 von 59) [11.12.2004 14:23:41]



Footnotes

...required.
The version of Nigel released as akpPmL-resource set does, however, include systemic resources
for morphology. This provides a more flexible and transparent representation of the linguistic
resources at word and morpheme rank, but increases the generation time alittle since further
cycles through the grammar are required.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (39 von 59) [11.12.2004 14:23:41]



Footnotes

...networks.
In older resources-for example, the Nigel grammar and resources created from this resource-

the lexical features and the grammatical features belong to digoint symbol spaces and so
require a mapping from one to the other. Thisis being gradually changed as time permits (see

the linguistic resource descriptions accompanying those resources).

...HREF="node271.html#grexstruct">10.2.5).
Setting the global flag * gl obal - f ont - swi t chi ng* to true will cause all information

displayed in the inspector and devel opment windows to be effected however. Such global font
changes take effect when an appropriate <Set Language> isissued.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (40 von 59) [11.12.2004 14:23:41]



Footnotes

...Mule.
GNU Mule is the Emacs-extension permitting editing with many different character fonts,
including Japanese, Chinese, Vietnamese, Thai, Arabic, Russian, etc.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (41 von 59) [11.12.2004 14:23:41]



Footnotes

...enforced.
Note that thisis an additional realization operator over those defined in Penman-style
resources; reports of experience with its use would be appreciated.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (42 von 59) [11.12.2004 14:23:41]



Footnotes

... preselect’.
Although one differenceis that use of inflectify allows use of the lexicon to check for
idiomatic realizations of features: i.e., irregular forms. Theoretically there is no reason why this
should not apply to higher ranks for idiomsin general, but thisis not currently supported in
KPML.

...HREF="node317.html#rsnotation">12.1.
The notation actually extends the standard somewhat, since not all the realization statements
supported here are standard.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (43 von 59) [11.12.2004 14:23:41]



Footnotes

..explicitly.
For early experimentsin this direction, see, for example, Sefton ().

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (44 von 59) [11.12.2004 14:23:41]



Footnotes

..user.
That thisiscalled : engl i sh isahangover from the Penman system; it will be changed to
: gl oss inthe near future.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (45 von 59) [11.12.2004 14:23:41]



Footnotes

...not.
Thisis ahangover from the Penman system, it will probably be generalized somewhat
sometime.

...available.
In such cases, the logical form is also, of course, preserved.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (46 von 59) [11.12.2004 14:23:41]



Footnotes

...multilingual).
There are some exceptionsin the structure slots that are merged: information that is purely
bookkeeping for generation is not merged.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (47 von 59) [11.12.2004 14:23:41]



Footnotes

...model".
For aternative, more flexible, models of relating domain to upper model concepts, see,
e.g., Bateman & Teich ().

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (48 von 59) [11.12.2004 14:23:41]



Footnotes

...generator.
Both the SPL macro and default facilities were written by Bob Kasper for the Penman system.
Thisistaken on virtually unchanged in kpmL.

e (o)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (49 von 59) [11.12.2004 14:23:41]



Footnotes

These are mostly maintained in lists internal to kpmL so customization would also be
straightforward if they are not to be defined in the upper model adopted.

...argument
Aninquiry defined as taking a parameter of type Funct i on provides such objects
appropriately (see Section 12.2.7).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (50 von 59) [11.12.2004 14:23:41]



Footnotes

...aCCess,
In fact, for the very lazy, | exi cal - f eat ur e- present -i n-associ ati on- p assumes

asdefault for its: yes case, asymbol identical to the feature sought (given as second
parameter), and for its: no case, asymbol constructed by prefixing either the yes case, or if
thisis also missing, the second parameter, with the string held in the variable * def aul t -
negat i on- prefi x* (whichisinturn by default the string " "NON").

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (51 von 59) [11.12.2004 14:23:41]



Footnotes

...author.
The relevant KPML/Penman internal function for thisisr eal i ze- cl assi fy. Thisfunction
Is called whenever a constituent has had lexical constraints specified for it in terms of
“classifications, i.e., preselections of lexical features. It returns information specifying alexical
item that is appropriate for the constraints specified. If, however, alexical item has already

been selected on semantic grounds (by use of thet er m r esol ve-i d inquiry), then that is
accepted without further investigation.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (52 von 59) [11.12.2004 14:23:41]



Footnotes

Note, thisis a generalization of the Penman functionssay and expr ess. It takes severd
additional keyword parameters and returns results that are not available from the corresponding
Penman functions. Code relying on these featuresis not interchangeabl e with the Penman

system.

...HREF="node351.html#mouseabl estructureeg">14.1.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (53 von 59) [11.12.2004 14:23:41]



Footnotes

Each printable constituent object also has a unique identifier (under theslot : i d); these have
been ommited from the figure to save space.

..are
The knowledge-base package reduction methods, as well as severa internal speed-ups, were
worked out by John Wilkinson (University of Waterloo, Canada).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (54 von 59) [11.12.2004 14:23:41]



Footnotes

..fime
Thisisthe time excluding, for example, any swapping, garbage collection, kPmL once-only set
up activities (such as establishing network connectivity), and Loom classifications.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (55 von 59) [11.12.2004 14:23:41]



Footnotes

...to:
Franz strongly recommend that saf et y never be set to zero for their Allegro Common Lisp.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (56 von 59) [11.12.2004 14:23:41]



Footnotes

..individually.
A CORBA-compliant protocol is being considered.

..itself.
The reader might wonder as to why there is an inconsistency in the naming; some of the flags
have names of thefrom*. . . *, most do not. Thisisarelic of the old Penman code still
underlying much of kpmL. The flags with stars are in areas that have been reworked more
recently.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (57 von 59) [11.12.2004 14:23:41]



Footnotes

...redefined.
There are two additional functions used in the old Penman experimental nominal phrase
planner; this code is not normally used. The functions are: kb-r el at i ons and kb-
i dentifier.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (58 von 59) [11.12.2004 14:23:41]



Footnotes

John Bateman - GMD/IPS - Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (59 von 59) [11.12.2004 14:23:41]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The KPML root interface windows

next |jup ||previous ||contents []index

Next: Introduction Up: No Title Previous. Notational conventionsin this

The KPML root interface windows

. Introduction
. The new-style root window: starting up
. Theroot commands: overview
. General System Behaviour
o Environment Directories
n Flags
. Genera Multilingual Operations and Modes
. Focusing Operations
o Linguistic object focusing
o Language focusing
o Region focusing
. Loading existent linquistic resources
o Simple resource set loading
o General commands for loading linguistic resources
« Loading particular kinds of linguistic objects
« Loading modes: overwriting and merging
« Overwriting mode
« Merging mode
« Loading and the multilingual modes
« Monolingual loading
» Contrastive loading
« Multilingual loading
. Resource clearing
. Saving and Creating linguistic resources
o Simple resource set saving
o General commands for saving linguistic resources
« Monolingual saving
« Contrastive saving
« Multilingual saving

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node37.html (1 von 2) [11.12.2004 14:24:04]



The KPML root interface windows

o Inheriting language definitions

o Automatic lexical item acquisition and saving

o Creating unconditionalized linguistic resources

o Changing the Lisp package of inquiry implementations
. Interface suspension, exiting, etc.

o Quiting the interface

o Suspending the interface

o (Re-)Activating the interface

o Clearing the interface windows

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node37.html (2 von 2) [11.12.2004 14:24:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next |jup ||previous ||contents []index

Next: The new-style' root window: Up: The KPML root interface Previous: The KPML root
interface

Introduction

It is assumed that most interaction between the user of the develoment environment and the kpvL
system will be viathe window interface. If thisisnot so, or if cLim isnot available, see Chapter 14 for

information about interacting with the system without the interface.

Two styles of window interface are provided: the "'new' and the “old'. The old-style isthat familiar to
users of the Penman system or kpmL 0.8 and before; it is described in Chapter 8. Selection of style

(when available) can only be done during the kemL load up and configuration phase. The rationale for
the new-style interface is to provide both the quickest access to the information necessary for
debugging and maintenance and the ability to maintain that information on screen at al timesand in
combination with other necessary information. Also provided are more graphical tools for inspecting
the results and process of generation. The new-style interface uses color-differentiation extensively
for presenting various kinds of information in combination; use of kpmL is therefore recommended on

color screens, although, of course, the differentiation will still be visible in monochrome gif

The recommended way of using kpvL is as a subprocess to GNU Emacs; Emacs should be entered in
the normal way, and kpvL started in an external process Common Lisp buffer. Instructions for starting

such abuffer can probably be found in the documentation of the Lisp system being used gif Using
some of the extensions to Emacs--such as the GNU Mule system--offers here a variety of further
possibilities (cf. Section 12.2.2.3). However, it isaso, of course, possible to use kpmL directly without

Emacs being present.

The kpmL system uses the original calling Lisp window for outputting results of commands that are
not intended for interactive use. Error conditions that arise and which are not caught by kemL may also
occasionally result in control being thrown back to the calling Lisp process. In this event, arestart of
the kpvL interface (usually one of the presented options for continuing from the error) will suffice for
continuing work. For these reasons, it is recommended that the user sets up the screen so that the
calling Lisp listener (either an Emacs buffer or an interaction shell) can al'so be seen somewhere in the
background while working with kemL. Such error conditions will generally only ariseif the user is
developing resources and the definitions are seriously incomplete, or if the window system is
disturbed in some way extrinsic to kpvL (e.g., by network problems, color palette problems, etc.).

Note: if Emacsand Allegro Common Lisp are not being used, then error conditions can cause
mor e than one processto usetheoriginating Lisp listener smultaneously! The user must ensure

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node38.html (1 von 2) [11.12.2004 14:25:46)



Introduction

that therequired input makesit way to the appropriate process (e.g., by repeating it until
accepted).

Commands are given either by selecting from menus or by being typed within interaction panes.
Generally, all typed input is terminated by typing a carriage return. Partially typed in or executed
commands can be aborted by typing a control-Z.

The new-style interface also provides argument completion. Control-? produces alist of possible
completions of the string aready given; control-/ produces alist of al possible completions where the
string given occurs as a substring. Commands and arguments being input can be edited using the
normal input line editing commands (control-f: forwards a character, control-b: backwards a
character, control-e to end of line, control-ato beginning of line, etc.).

The remainder of this chapter describes the "'new' style root interface window. Chapters 6 and 7 then

describe the other two main windows of the new style interface: the Inspector window window and
the Devel opment window respectively.

next |[up [lprevious [Jcontents ||index

Next: The new-style root window: Up: The KPML root interface Previous: The KPML root
interface

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node38.html (2 von 2) [11.12.2004 14:25:46)


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The "new-style' root window: starting up

next Jlup [lprevious []contents []index

Next: The root commands:. overview Up: The KPML root interface Previous. Introduction

The new-style' root window: starting up

Once the kPmL system has been loaded, and as long as it has been configured so as to include the new-
style window interface (see Chapter 3), the interface can be started by calling the Lisp function kpni -
I ::startup fromtheseected Lisp listener (i.e., either an Emacs Common Lisp buffer or a shell).
The function takes several optional keyword arguments as indicated by the following.

Epml-i::startup &key :reset :demo [fynction

When non-nil : r eset indicates that any existing instances of akpmL window interface are to be
replaced. : deno, when non-nil, brings up the window interface in demonstration mode: here the size
of fonts in windows are made very much larger so that they can be easily seen at some distance from
the screen or during overhead projection--many of the window and screen images shown in this
documentation were made using the kpmL demonstration window mode in order to make them more

readable 9

The straightforward call to:
(kpm -i::startup)
isequivalent to the call:
(kpm -i::startup :reset T :deno nil)

Images made with the make- kpml - i mage function (cf. Section 3.1) will automatically bring up the
window interface with default parameters when executed.

Thefirst action of the startup function is to ask the user whether the interface is to be brought up in
monochrome or in colour. Restarts of the window interface can change their selection here as the user
requires. For example, many of the screendumps reproduced in this document were made in
monochrome mode since these can look better when printed in black-and-white.

If no linguistic resources are present on startup, the root window alone will be brought up. If linguistic
resources have been loaded, then the Inspector and Development windows described in Chapters 6

and 7 respectively will also be started automatically.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node39.html (1 von 2) [11.12.2004 14:26:05]



The “new-style' root window: starting up

next Jlup [lprevious []contents []index

Next: The root commands:. overview Up: The KPML root interface Previous. Introduction

John Bateman -- GMD/IPS -- Darmstadt, Germany
s | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node39.html (2 von 2) [11.12.2004 14:26:05]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The root commands: overview

next Jjup [|previous |Jcontents |Jindex

Next: General System Behaviour Up: The KPML root interface Previous. The "new-styl€e' root window:

The root commands: overview

The root window provides commands for those operations that generally precede or follow working with a set of
linguistic resources--such as loading and saving linguistic resources--as well as for selecting between general system
behaviour options. The root interface window is shown in Figure 5.1.

T ] KPML (version: KPML—0.9)
Store Linguistic Resource Load Lexicon Files
Gruit Clear Systemic Metworks
Flags Focusing Gperations
Environment Directories Multilinqual Behaviour Modes
Create Mew Language set Default Language

Load Linguistic Resource

ENGLISH:KPML> Focusing Operations
ENGLISH:KPML> Load Lingulistic Resource
ENGLISH:KPML> Flags

ENGLISH:KPML> Set Default Language
FENGLISH:: KPML> I

Loading resources for: ENGLISH

; Loading /usr/local/publish/komet/kKpml/R3-beta/ENGL |
ISH/Patches/Grammar/ADJECTIVAL-GROUP . inquiries.

Launch Development Windows

R: Menu of completions.
I

Figure: The KPML root interface
The root window consists of 5 panes stacked vertically. From top to bottom these are: the root command menu, the
root interaction pane, the root messages pane, the <Launch Devel opment Windows> command button, and the

documentation line.

Most, but not all, available commands are shown in the command menu. There are also several additional commands
that can be typed directly in the middle interaction pane or selected by mouse-click from the completion menu when

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node40.html (1 von 2) [11.12.2004 14:26:18]



The root commands: overview

available (as shown in the documentation line). These latter are less frequently required commands. The prompt
shown in the interaction pane includes an indication of the current language; in the example in the figure, this can be
seen to be English.

Once resources have been loaded and the system flags have been set as desired, the development and inspection
windows can be started by clicking on the <Launch Development Windows> button. This brings up the two windows
described in the following two chapters.

Finally, the documentation line shows at all times the options available by clicking the mouse buttons. Options are
shown when applicable for the left (L) button, the middle (M) button, and the right (R) button. In the figure, thereis
only one option available: clicking right would bring up the complete list of commands possible for input at the
interaction pane. Clicking on one of these would then insert it asif typed. To activate it, the user must then type a
return.

The root commands group into the following categories. Both those commands available directly viathe menu and
those that need to be entered at the interaction pane are listed here, differentiated according to the notational
conventions given in Chapter 4.

. Genera system behaviour (<Flags> and < Environment Directories>).

. System behaviour particularly concerned with the multilinguality of loaded or stored linguistic resources
(<Multilingual Behaviour Modes> and <Set Default Language> ).

. System behaviour during loading or saving particularly concerned with which types of linguistic object are to
be affected (<Focusing Operations> ).

. Resource input/output: including linguistic resource sets as awhole (<Load Linguistic Resource>, <Store
Linguistic Resource>, <Create New Language>), lexicons (<Load Lexicon Files>, <:Write Lexicon Files>,
<:Clear Lexicons>), and clearing of any loaded systemic linguistic resources (<Clear Systemic Networks>).

. Exit, suspension/activation and clearing of window interface panes (<Quit>, <: Suspend>, <:Activate>, and
<:Clear Windows>).

The following sections describe these command groups in detail.

next Jjup |lprevious |Jcontents |Jindex

Next: General System Behaviour Up: The KPML root interface Previous. The "new-style' root window:

John Bateman -- GMD/IPS -- Darmstadt, Germany
! | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node40.html (2 von 2) [11.12.2004 14:26:18]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Genera System Behaviour

next |jup ||previous ||contents []index

Next: Environment Directories Up: The KPML root interface Previous: The root commands:

overview

General System Behaviour

. Environment Directories
. Flags

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node41.html [11.12.2004 14:26:29]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Environment Directories

next |jup ||previous ||contents []index

Next: Flags Up: General System Behaviour Previous: General System Behaviour

Environment Directories

The <Environment Directories> command brings up a menu for setting/inspecting the environmental
file directories that the kpmL system uses for various kinds of information access and display. The
directories currently maintained here are:

. Root of resources: the directory under which all linguistic resources hang (cf. Section 12.1).

. Hardcopy directory: the directory where postscript versions of graphed information are written
when called for--for example, when graphing systemic networks (Section 6.2.1.2), structures
(Section 7.9 and 10.2.5), or choosers (Section 6.3.2.2).

. Merging results directory: the directory that records the actions taken when resources are being
merged during loading rather than overwritten when the most verbose tracing flags are set (see
Section 5.7.2.2).

. Example runner results directory: the directory where the results of attempting to generate
selected sets of 1oaded examples (see Chapter 9) are recorded.

Changing the root directory, for example, is one ssmple way of creating resources in a new user-
specific location--this would be of particular use if different users or developing different resources
but using the same installation of kpmL.

The starting value for the root directory isthat given in the kemL configuration phase. The starting
values for the other directoriesis/ t np.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node42.html [11.12.2004 14:26:36]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Flags

next

up |lprevious [Jcontents ||index

Next: General Multilingual Operations and Up: General System Behaviour Previous: Environment
Directories

Flags

The command <Flags> brings up a menu containing flags that control general display characteristics
of the kpmL system. These flags activate or disable:

display of generated constituency structure: when thisflag is set successful generation
processes display not only a generated string but also a representation of the grammatical
structure underlying that string. The structure is mouse sensitive and can be used for seeking
information concerning the generation process. Figure 7.2 shows an example (cf.

Section 10.3.2).

schematic constituency display in generated strings. when set, generated strings are displayed
with internal syntactic bracketting enabling selective mouse selection of grammatical
constituents (cf. Section 10.3.1). The first output string in Figure 7.1 is an example of the use
of this mode.

restriction of examples offered for generation according to language: when set, the menus of
pre-stored examples for generation are restricted only to show those examples defined for the
current language (cf. Section 7.4.2).

automatic acquisition of new lexical items. when set, any new lexical items generated on-the-
fly during generation are added to alist of "new lexemes. These can then be written out to
lexicon files following a session (cf. Section 5.9.4).

example running results recording to various levels of detail: resource maintenance is generally
performed by running test suites. This flag sets the degree of detail in the logs of such test suite
runs (cf. Section 10.2.9).

use of various pop-up windows for showing generation results or for inspecting linguistic
objects. In particular, generated strings, selection expressions (i.e., paths of features selected
while traversing the systemic networks), and choosers can either be presented in the relevant
development or inspector window information panes, or separately in their own pop-up
windows. The default behaviour is that selection expressions and choosers are shown in their
own windows and generated strings are shown in the devel opment window.

next

up |lprevious [Jcontents ||index

Next: General Multilingual Operations and Up: General System Behaviour Previous: Environment
Directories

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node43.html (1 von 2) [11.12.2004 14:26:42]



John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node43.html (2 von 2) [11.12.2004 14:26:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Genera Multilingual Operations and Modes

next [Jup [lprevious ||contents []index

Next: Focusing Operations Up: The KPML root interface Previous: Flags

General Multilingual Operations and
Modes

The firsi-time user can safely return to this section once familiarity with
the default mode operations hazs been gained.

This section describes the options and effects available under the commands <Multilingual Behaviour
Modes> and <Set Default Language> .

KpvL provides some general modes and settings for multilingual operations that apply in some form to
amost all operations that the system offers--i.e., to loading, saving, graphing, printing, and generating.
These modes extend the flexibility and ease of use of the system particularly when multilingual
operations are being performed with any frequency.

All types of multilingual operations on resources can be carried out in three modes:

. monolingual mode, where a single monolingual view of a, possibly multilingual, resourceis
taken,

. contrastive mode, where several, usually monolingual, views of a multilingual resource are
taken "side by side, or in parallél,

. multilingual mode, where a single multilingual view istaken of some selection of languages
(possibly all) drawn from a multilingual resource.

Here, amonolingual resource is understood as one which contains information only about one language
variety (whether or not thisisindicated by singlei n- | anguage declarations (Section 12.2.1) or by

appropriate conditionalization within linguistic unit definitions (Section 12.3)), and a multilingual
resource is understood as one which contains information about at least two language varieties.

The modes can be set by selecting the command <Multilingual Behavior Modes> ; thisbringsup a
menu of possibilities. The precise consequences of each of the three modes when combined with agiven
multilingual operation typeis set out in the individual sections below. The default behavior on starting
up a newly installed instance of kpmL is aways "monolingual’ in all cases.

In addition, the multilingual modes menu includes options for setting whether linguistic resources are

merged during loading (see Section 5.7.2.2.2) or not, and for setting whether linguistic resources are by
default cleared before the loading of a new resource set begins. The defaults are that no merging occurs

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node44.html (1 von 2) [11.12.2004 14:26:51]



Genera Multilingual Operations and Modes

and that resources are cleared.

As described in the chapter concerning definition formats (Chapter 12), definitions of linguistic objects

for loading can contain explicit language conditionalizations. They need not do so, however, in which
case the language specification for alinguistic object is taken either from a declaration at the beginning
of the file containing the definition or, if no such declaration is present, from the currently known set of
languages for which kpmL is configured. This behaviour is sometimes not what is required--for example,
If adefinitions from some resource file are being edited and the changes are being immediately
evaluated as typically the case when using kpmL combined with Emacs, then these definitions will often
not contain language conditionalizations because they are relying on the declaration at the beginning of
the file. Evaluating the definitions could then place the definition in the wrong language partitions. The
<Set Default Language> provides a solution to this problem by setting up a default set of languages for
al evaluation contexts where no explicit language conditionalization is given. Thisis described in more
detail in the chapter on resource patching (Chapter 11).

next [Jup [lprevious ||contents []index

Next: Focusing Operations Up: The KPML root interface Previous: Flags

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node44.html (2 von 2) [11.12.2004 14:26:51]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Focusing Operations

next [Jup [lprevious ||contents []index

Next: Linguistic object focusing Up: The KPML root interface Previous. General Multilingual
Operations and

Focusing Operations

The first-time user can safely return to this section once fanuliarity with
the default mode operations has been gained.

This section describes the options and effects available under the command <Focusing Operations> .

. Linquistic object focusing
. Lanquage focusing
. Region focusing

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node45.html [11.12.2004 14:27:08]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Linguistic object focusing

next |jup ||previous ||contents []index

Next: Language focusing Up: Focusing Operations Previous: Focusing Operations

Linguistic object focusing

Whereas the default behaviour of the loading and saving operations <Load Linguistic Resource>
and <Store Linguistic Resource> isthat all linguistic resources of a given language or languages be
loaded or saved, this can be more finely controlled by focusing on the types of linguistic object that
are of interest.

The command <Focusing Operations. Focus on selected linguistic objects> brings up a menu of the
kinds of linguistic objects known to the system. Thislist contains the following items:

. . systens

. :choosers

. sinquiries

. . default-orderings

« . punctuation

. .l exenes

. . exanpl es

« sinquiry-inplenentations
« sinquiry-defaults

. :domai ns

. . properties

. . resource-patches

« kpm -1g-specific-patches

All or any of these items may be selected. Subsequent loading or saving operations will then concern
only the linguistic objects of the types selected.

The command <Focusing Operations. Release linguistic object focus> undoes the effect of object
focusing, by setting the default list of object considered back to the full set. The full set consists of all

the linguistic objects except the two patch options gif

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node46.html [11.12.2004 14:27:14]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Language focusing

next |jup ||previous ||contents []index

Next: Region focusing Up: Focusing Operations Previous: Linguistic object focusing

Language focusing

When one is working with some subset of the languages for which resources are available, it is
possible to fix attention to that subset so as to avoid repetitive queries (during, for example,
contrastive saving, graphing, generation, etc.) as to which languages are required.

The command <Focusing Operations. Focus on selected languages> brings up a menu of the
languages that are known to the system. The user should then select some subset (or all) of the
languages offered. These then become the languages that are used in any contrastive or multilingual
operations without further user queries.

The effect of language focusing is removed by the command < Focusing Operations. Release
language focus>. Giving this command when no languages are focused has no effect.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node47.html [11.12.2004 14:27:18]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Region focusing

next |jup ||previous ||contents []index

Next: Loading existent linguistic resources Up: Focusing Operations Previous. Language focusing

Region focusing

Region focusing provides a finer selection of particular functional regions (cf. Section 2.1.1.3)
within languages. When a set of regions is focused, then only these regions will be effected by loading
and saving operations. Region focusing works entirely analogously to language focusing.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node48.html [11.12.2004 14:27:22]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading existent linguistic resources

next |jup ||previous ||contents []index

Next: Simple resource set loading Up: The KPML root interface Previous. Region focusing

Loading existent linguistic resources

L oading refers to the reading of resource definitions (according to the specifications set out in
Chapter 12) maintained in files into the kemL system. The assumed directory organization of these
resource filesis as described in Section 12.1. Normally, the first operation that will be done when

starting up kPmL will be to load some set of resources. The default startup loading behavior is
monolingual behavior.

. Simple resource set loading
. General commands for loading linguistic resources
o Loading particular kinds of linguistic objects
o Loading modes: overwriting and merging
« Overwriting mode
« Merging mode
o Loading and the multilingual modes
« Monolingual loading
« Contrastive loading
« Multilingual loading

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node49.html [11.12.2004 14:27:26]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Simple resource set loading

next |jup ||previous ||contents []index

Next: General commands for loading Up: Loading existent linguistic resources Previous: Loading
existent linguistic resources

Simple resource set loading

Once kpmL isinstalled, loaded, and running, the first operation that typically needs to be performed is
to load some already existing set of linguistic resources.

The resources desired need also to have been installed and made accessible to kpmL. KPmL can access
resources when the directory in which the resources are kept has been placed in the global variable
*r oot - of - resour ces*. Thiscan either be done during installation of kpmL (see Section 3.3), or

at any time by issuing the command <Environment Directories> (see Section 5.4.1).

Following this, the simplest way to load a set of linguistic resources is with the command:

<Load Linguistic Resources>

The languages offered will be those for which kpvL has been configured gif . This command will
then cause all available resources for the designated resource set to be loaded. This includes the
grammar definition (systems, choosers, and inquiries), any lexicathat are defined for the resource set,
any examples that are defined for the resource set, punctuation rules, and SPL-defaults/macros for the
language variety; for descriptions of all these resource types, see Chapter 12.

Note that explicit language conditionalization given in an input specification always takes
precedence over any default assumptions or options. That is, if aresource setiscaled: engl i sh,
but contains explicit conditionalizations for : ger man, then it is these explicit conditionalizations that
prevail.

Resource set loading relies on the resources having the organization and internal form also described
in Chapter 12. This organization is automatically created and conformed to by any of the kpmL

commands for saving linguistic resources (Section 5.9.1).

If the resource set is complete (as any of the standardly released resource sets will be), it isthen
possible to generate with the loaded resources--either from the provided examples or from new
semantic specifications given by the user. Generation of an example sentence provided in the resource
set is started by the command peveLorPMENT: <Generate Sentence EG-n> where EG-n is an example
name selected from an offered menu. The first time that a sentence is generated, it will probably be
the case that some internal bookkeeping is triggered; this does not then occur again until new
resources are loaded. For the details of the generation process see Section 7.4, and for test suite

mai ntenance Chapter 10.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node50.html (1 von 2) [11.12.2004 14:27:42]



Simple resource set loading

next |jup ||previous ||contents []index

Next: General commands for loading Up: Loading existent linguistic resources Previous: Loading
existent linguistic resources

* | John Bateman -- GMD/IPS -- Darmstadt, Germany

i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node50.html (2 von 2) [11.12.2004 14:27:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General commands for loading linguistic resources

next |jup ||previous ||contents []index

Next: Loading particular kinds of Up: Loading existent linguistic resources Previous: Simple
resource set loading

General commands for loading linguistic
resources

While the above loading command usage is often sufficient for using kemL, the system provides
considerably more functionality for loading linguistic resource sets.

. Loading particular kinds of linguistic objects
. Loading modes. overwriting and merging

o Overwriting mode

o Merging mode
. Loading and the multilingual modes

o Monolingua loading

o Contrastive loading

o Multilingual loading

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node51.html [11.12.2004 14:27:52]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading particular kinds of linguistic objects

next |jup ||previous ||contents []index

Next: Loading modes. overwriting and Up: General commands for |oading Previous. General
commands for loading

Loading particular kinds of linguistic objects

It is possible to indicate exactly what kinds of linguistic objects are to be loaded from any resource
set by issuing the command < Multilingual Behaviour Modes. Focus on selected linguistic objects>
(Section 5.6.1). When some subset of linguistic objects are focused, any load operation initiated
before the focused object set isreleased is automatically restricted to just those objects that are
focused.

Therefore, if agrammar, for example, that of French, was to be kept intact, and it was simply required
to load an updated version of, for example, the punctuation rules for that |anguage, then this could be
achieved with the following command sequence (making use aso of the language focusing commands
mentioned in Sections 5.6.2) issued from the rooT kPML Window interface.

<Multilingual Behaviour Modes: Focus on selected language French>
<...: Focus on selected linguistic objects punctuation>

<Load linguistic resources>

<Multilingual Behaviour Modes: Release Object Focusing>

Note that the command peveLoPmENT:<Operations on examples: Load examples> isalso available for
loading examples (Section 10.2.1). This allows the user to select a given example set from the
Example directory of the current language, should not all the available example sets be required.
Example sets offered in the menu consist of those files with extension . spl or . ex inthe appropriate
language directory.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node52.html [11.12.2004 14:27:57]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading modes: overwriting and merging

next |jup ||previous ||contents []index

Next: Overwriting mode Up: Genera commands for loading Previous: Loading particular kinds of

Loading modes: overwriting and merging

Two loading modes are provided: overwriting and merging.

. Overwriting mode
. Merging mode

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node53.html [11.12.2004 14:28:01]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overwriting mode

next |jup ||previous ||contents []index

Next: Merging mode Up: Loading modes. overwriting and Previous. Loading modes: overwriting
and

Overwriting mode

When systems, choosers, inquiries, examples and lexical items are loaded for which definitions of
identically named entities already exist, these previous definitions are fully replaced by the new ones.
No trace of the older ones will survive. When a newly defined entity has a smaller language scope
than the entity replaced, then awarning to this effect is given since it means that the previous
language resources relying on the old definition may no longer be compl ete.

Similarly, for punctuation rules, nonsystemic dependencies, and inquiry implementations, the newly
loaded resources for alanguage will replace all existing definitions for any language.

Although potentially deleterious for the loaded versions of existing resources, this option can be
sensibly used for working on new language development without regard for previous resources.
Subsequently, merging can be undertaken using the merging mode for reimporting the debugged
resources into the general multilingual potential.

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node54.html [11.12.2004 14:28:05]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Merging mode

next |jup ||previous ||contents []index

Next: Loading and the multilingual Up: Loading modes. overwriting and Previous: Overwriting
mode

Merging mode

When systems, choosers, inquires, examples and lexical items are loaded for which definitions of
identically named entities already exist, these previous definitions are merged with the new
definitions. The result isamultilingual entity which is equivalent to a set of monolingual definitions.
The entity can then be used or inspected from the perspective of any of the languages for which kpmL
is configured.

Similarly, for punctuation rules, nonsystemic dependencies, and inquiry implementations, the new
definitions are added to existing definitions (replacing only any such definitions already existing for
the newly loaded language), and definitions of other languages are not affected.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node55.html [11.12.2004 14:28:09]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading and the multilingual modes

next |jup ||previous ||contents []index

Next: Monolingual loading Up: General commands for loading Previous: Merging mode

Loading and the multilingual modes

The multilingual modes (Section 5.5) intersect with loading to produce the following behaviors.

. Monolingual loading
. Contrastive loading
. Multilingual loading

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node56.html [11.12.2004 14:28:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual loading

next |jup ||previous ||contents []index

Next: Contrastive loading Up: Loading and the multilingual Previous: Loading and the multilingual

Monolingual loading

When the monolingual mode for loading is activated, a resource set from a single identified language
variety isloaded. For example, issuing a<Load linguistic resources> command prompts for asingle
language and the resources found under the corresponding directory will be loaded. Monolingual
loading takes place in overwriting mode; that is, any new definitions possessing the same name as
existing definitions cause the existing definitions to be overwritten--regardless of whether this causes
information to be lost by removing definitions relevant for other languages! That is, if thereisan
existing definition of agrammatical system Process-Type that is relevant for the languages English,
German and Japanese, and a new system of the same name is loaded monolingually for German, then
the previously accessible views of English and Japanese will belost. If a new system of the same
name is loaded monolingually for, for example, Dutch, then the previous views of English, German
and Japanese will all be lost. This behavior comes closest to that of the Penman system when loading
new definitions.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node57.html [11.12.2004 14:28:16]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive loading

next |jup ||previous ||contents []index

Next: Multilingual loading Up: Loading and the multilingual Previous. Monolingual loading

Contrastive loading

When the contrastive mode for loading is activated, resource sets from several identified language
varieties are loaded. For example, issuing a<Load linguistic resources> command in this case
prompts not for one but for several languages: resources found under each of the corresponding
directories will then be loaded. The order of loading is not specified and should not be significant.
Also, although it will generally be the case that the individual resource sets are monolingual, this need
not be the case and is not enforced. Contrastive |oading provides a convenient way of loading an
entire set of distinct resources in one go.

Although resources are cleared before loading commences--as in the case with monolingual 1oading--
contrastive loading takes place in mer ging mode. Here, for any of the selected languages, definitions
sharing names with existing definitions will be merged with the views of the existing definitions that
correspond to languages distinct to the one currently being loaded. Indeed, with this option, overwrite
mode would make little sense since it would usually make it the case that information would be lost
when each additional resource set were loaded. Thus, asking for contrastive loading of, for example,
English, German and French results in a single three-language multilingual resource consisting of the
merged monolingual descriptions of each of those languages.

Note that, since the resources loaded are cleared prior to a contrastive load, asking for the contrastive
loading of asingle language is equivaent to monolingual loading. In order to load a single language
into the kPmL system in merging mode, this mode has to be selected explicitly. This can be done under
the <Multilingual Behaviour Modes> command described in Section 5.5. Then, using the example for
monolingual loading outlined above: in the first case the definitions for English and Japanese will be
maintained and only that for German will be replaced; in the second case, all of the information is
maintained, the incoming definition for Dutch is ssmply merged with the existing definitions for
English, German and Japanese resulting in a definition for Process-TyPE that allows four distinct
language views. This could be of use in successive testing of resources.

Note also that when a system has been disabled for some language during previous loading, then that

status remains unchanged unless the system is explicitly reloaded for that language gif

Similarly, if alinguistic object belongs to a patch, then that patch status remains unchanged when
linguistic objects of the same name but from other languages and possibly of different patch status are
loaded.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node58.html (1 von 2) [11.12.2004 14:28:21]



Contrastive loading

next |jup ||previous ||contents []index

Next: Multilingual loading Up: Loading and the multilingual Previous. Monolingual loading

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node58.html (2 von 2) [11.12.2004 14:28:21]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual loading

next |jup ||previous ||contents []index

Next: Resource clearing Up: Loading and the multilingual Previous. Contrastive |oading

Multilingual loading

When the multilingual mode for loading is activated, a single multilingual resource set from a
specified directory isloaded into the kpmL system. The normal behavior during multilingual loading is
that loading proceeds in mer ge mode; i.e., new definitions replace old definitions just for those
languages which are common between the new and the existing resources. If potential “interference’
with existing resources is to be ruled out, then those resources should first be cleared. The directory
used for loading multilingual resources can be inspected and set using the < Environment Directories>
command (Section 5.4.1).

The multilingual loading option is quite powerful. It makes it possible for a multilingual grammar for,
for example, English, German and Dutch developed by one research group to be merged directly with
another multilingual grammar for, say, Japanese, Chinese and Thal developed by a distinct research
group. Theresult isthen in this case a single six-language multilingual resource from which
contrastive views can be extracted as required--for example by inspecting (Chapter 6) or saving

(Section 5.9.1) operations. An alternative way of producing the same result would be for each group

to extract three monolingual resource sets (contrastive saving, see below) and then to load the
resulting six descriptions contrastively. The multilingual option is, however, much faster since the
necessary merging operations have already been carried out in the multilingually written files.

Note: thereisno guaranteethat an “optimal’, or even a "canonical’, merged form iscreated in
any of the optionsinvolving merges. All that is guaranteed isfunctional equivalence of the
I esour ces cr eated.

The language varieties used as conditionalizations in a multilingual resource set should all be made
known to the system before loading; that is, if the resource set uses conditionalizationsfor : f r ench,
. j apanese, and : dut ch, then these values must be declared as expected language varieties to

KPML gif Multilingual resources created with kpmL will standardly include a declaration of the
languages they include (cf. Section 12.2.3).

next |jup ||previous |[|contents ||index

Next: Resource clearing Up: Loading and the multilingual Previous: Contrastive |oading

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node59.html [11.12.2004 14:28:26]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource clearing

next |jup ||previous ||contents []index

Next: Saving and Creating linguistic Up: The KPML root interface Previous: Multilingual 1oading

Resource clearing

If it is necessary to clear already |oaded resources before loading new resource sets, this can be
carried out by the <Clear Systemic Network> command. This clears all systemic networks and their
corresponding choosers and inquiries. Language and region focusing have no effect here.

The command <:Clear Lexicons> similarly clears all lexical items defined; while the command
DEVELOPMENT:<Example Operations: Clear Examples> clears all example definitions.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node60.html [11.12.2004 14:28:30]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Saving and Creating linguistic resources

next |jup ||previous ||contents []index

Next: Simple resource set saving Up: The KPML root interface Previous. Resource clearing

Saving and Creating linguistic
resources

. Simple resource set saving
. General commands for saving linguistic resources
o Monolingual saving
o Contrastive saving
o Multilingual saving
. Inheriting language definitions
. Automatic lexical item acquisition and saving
. Creating unconditionalized linguistic resources
. Changing the Lisp package of inquiry implementations

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node61.html [11.12.2004 14:28:34]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Simple resource set saving

next |jup ||previous ||contents []index

Next: General commands for saving Up: Saving and Creating linguistic Previous. Saving and
Creating linquistic

Simple resource set saving

Saving is the operation of exporting the resource definitions held at any time in the kepmL system to
sets of external files. Saving is the normal operation to be performed after working on the resources or
after creating new resources. Saving can be carried out in any of the three multilingual operation
modes (Section 5.5). The default startup saving behavior is monolingual saving.

All information concerning systems, choosers and inquiries that is known to the system will be saved
to their respective regions, regardless of any originating file structure used in loading that information.
In contrast, lexicons and examples are saved back into a directory structure isomorphic to their
originating definitions although not necessary in the same directory.

All requests for saving linguistic resources initiated with the <Store linguistic resources> command
obey any constraints that may have been set under language, region, and linguistic object focusing as
described above.

The following additional commands provide specialized saving commands:

. RrooT:<:Write Lexicon File> - thiswill pick out the lexical items defined in an identified file
and write these and these only back to that file.

. DEVELOPMENT:<Example Operations. Write Examples> - thiswill write out the current
examples as defined (cf. Section 10.2.2).

Note that the saving commands never clear their target directories before saving: the user should
therefore exercise care that old and new definitions are not mixed involuntarily. To aid this, the save
menu contains an additional flag asking whether a new directory isto be created (regardless of the
existence of a previous directory for the language variety at issue) or not. When a new directory isto
be created and there is aready an existing directory of the same name for that language variety, then
the existing directory is copied into a backup directory. The name of the backup directory is the same
as the original with the date of creation of the new directory appended.

next |fup |lprevious [Jcontents |]index

Next: General commands for saving Up: Saving and Creating linguistic Previous: Saving and
Creating linguistic

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node62.html (1 von 2) [11.12.2004 14:28:38]



Simple resource set saving

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node62.html (2 von 2) [11.12.2004 14:28:38]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General commands for saving linguistic resources

next |jup ||previous ||contents []index

Next: Monolingual saving Up: Saving and Creating linguistic Previous. Simple resource set saving

General commands for saving linguistic
resources

. Monolingual saving
. Contrastive saving
. Multilingual saving

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node63.html [11.12.2004 14:28:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual saving

next |jup ||previous ||contents []index

Next: Contrastive saving Up: General commands for saving Previous. General commands for saving

Monolingual saving

In monolingual saving mode, the user is prompted for a single language selected from those for which
kPML is currently configured. A single set of monolingual resources for that language will then be
written to filesin adirectory corresponding to the name of the language variety. The directory will be
located underneath the * r oot - of - r esour ces* directory as specified during kpmL initialization
(Chapter 3) or as subsequently modified by the <Environment Directories> command (Section 5.4.1).

For example, if kevmL isworking with aloaded multilingual resource including views for English and
German, issuing a monolingual Sore linguistic resources command for German will write out a set of
files (three for each functional region, providing the systems, choosers, and inquiries, plus ordering
and punctuation information: see Chapter 12) under adirectory called GERMAN. All of the resource

fileswill be conditionalized exclusively for the single language German.

Resource sets of this kind can then naturally be reloaded separately at any time using the monolingual
<Load linguistic resources> command, or as a contributor to a multilingual set using the contrastive
load option.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node64.html [11.12.2004 14:28:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive saving

next |jup ||previous ||contents []index

Next: Multilingual saving Up: General commands for saving Previous: Monolingual saving

Contrastive saving

In contrastive saving mode, the user is prompted for a set of languages selected from those for which
KPML IS currently configured. The system then performs a monolingual save for each of these
languages.

For example, issuing a contrastive <Sore linguistic resources> command for English and German
results in two directories (called ENGLI SH and GERMAN respectively) being written, each containing
a complete monolingual conditionalized set of resource definitions.

Resource sets of this kind can then naturally be reloaded in their entirety at any time using the
contrastive <Load linguistic resources> command, or as single languages using the monolingual load
option.

Note that monolingual conditionalized resource sets are explicitly marked as being relevant for a
given language. This contrasts with monolingual resource sets which have no language affiliation: see
Section 5.9.5.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node65.html [11.12.2004 14:28:52]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual saving

next Jjup |lprevious [Jcontents |]index

Next: Inheriting language definitions Up: General commands for saving Previous. Contrastive saving

Multilingual saving

When the multilingual mode for loading is activated, a single multilingual resource set iswrittento a
specified directory. The user is prompted for the languages (which can be any subset of the set of
languages for which kpvL is configured at that time) to be included in that resource set. The resource
set contains the appropriate language specific conditionalizations to enable the individual language
views to be recovered when required.

For example, if kpvL is configured for English, German, Dutch, French and Japanese, then issuing a
multilingual <Sore linguistic resources> for English, Dutch and Japanese will result in asingle three-
way multilingual resource set being written to the specified directory. The directory used for saving
multilingual resources can be inspected and set using the <Environment Directories> command
(Section 5.4.1).

Multilingual resource sets of this kind can be reloaded at any time using the multilingual <Load
linguistic resources> command.

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node66.html [11.12.2004 14:28:56]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inheriting language definitions

next |jup ||previous ||contents []index

Next: Automatic lexical item acquisition Up: Saving and Creating linguistic Previous. Multilingual
saving

Inheriting language definitions

KpmL provides one way of creating linguistic resources: aresource set is constructed that is the exact
copy of some existing linguistic resources apart from the language conditionalization being altered to
refer to some new language. Thisistriggered by the <Create New Language> command.

This command brings up a menu dial ogue which asks the name of the new language variety to be
created and the existing language variety from which it isto be created. Following the operation a
complete new set of resources for the new language variety based on the definitions of the selected
old language is written under the current root of resources, and this language is added to the list of
available languages. If the original resource set was complete, then it should be possible to issue a
load linguistic resource command on the new language and obtain the same generation results as were
obtained with the originating language.

This command can be used as the first stage of creating resources for a new language.
The command is fully sensitive to region and linguistic object focusing.

Note that, as always, only systemic resour ces areincluded in this saving operation: i.e., only
systems, choosers, inquiries, punctuation, and default orderings. Other definitions (domains,
etc.) haveto be prepared separately.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node67.html [11.12.2004 14:29:01]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Automatic lexical item acquisition and saving

next |jup ||previous ||contents []index

Next: Creating unconditionalized linguistic resources Up: Saving and Creating linguistic Previous:
| nheriting language definitions

Automatic lexical item acquisition and saving

When the rooT:<Flags> option "automatic acquisition of new lexical items is set, any undefined
lexical items mentioned in: | ex or : nanme slotsin spL expressions are created with lexical features
appropriate for their place of occurence in the realized sentence and with a spelling drawn from the
label appearing in the seL. All such lexical items are placed onthelist * new- | exi cal -1 tens*
which can then be output to afile of new lexical definitions (presumably after running through a
complete batch of examples with the example runner, for example) using the function make- new-
| exical -itens-file.

™ John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node68.html [11.12.2004 14:29:05]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Creating unconditionalized linguistic resources

next |jup ||previous ||contents []index

Next: Changing the Lisp package Up: Saving and Creating linguistic Previous. Automatic lexical
item acquisition

Creating unconditionalized linguistic resources

From timeto time, it may be required to create sets of linguistic resources that are not conditionalized
in any way--such as, for example, the resources under GeNeraL in the kML resource releases. Such
resources can then be used as seeds for growing further multilingual resources for different languages.

In order to create a set of unconditionalized resources the following steps are necessary.

1. Establish aloaded set of linguistic resources that has the desired behavior when some
particular language variety is current.

That is, we need to specify some language variety that isto serve as the basis for the
unconditionalized resources. Since these resources will not specify any language variety, they
are equivalent to the resources for one particular language. The first task, therefore, isto create
some language variety that has the desired effect.

2. Load this established language variety as the only loaded language and with

al | | anguages set to only that language (as a singleton list).

Specify that the resource saving modeis: nmul ti | i ngual .

Issuein a Lisp listener the following save command:

> w

(save-unconditionalized-linguistic-resources mew-
TESGUICES

:root—directory root-directory
ringuiry-package new-inquiry-package )

Only the first parameter is obligatory; this defines the name of the directory under which the
new, unconditionalized resources will appear. The remaining keyword parameters are optional
and asfor thesave- | i ngui sti c-resour ces function (Section 14.4.4).

Following this sequence of operations, a new unconditionalized resource set that has the behavior of
the originally selected language variety will have been left under the directory NEW RESOURCES,
which itself will be under either the default root of resources directory or the directory given in the
call tosave-uncondi ti onal i zed-1i ngui sti c-resources.

Note: currently the creation of unconditionalized default orderings, punctuation, etc. is not done
correctly. For the present, smply edit the values found ther e to remove the conditionalization
(which will befor the original language variety specified).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node69.html (1 von 2) [11.12.2004 14:29:09]



Creating unconditionalized linguistic resources

Thus, the lists following the language condition should replace the values given asawhole; i.e., al
lists of the form:

(:multilingual
(:englizh I

should be replaced simply by X. More elegant support for unconditionalized information of this kind
will be provided at some stage. The pr operti es. | i sp fileshould also be treated with caution; the
file of the same name to be found in the GeNerAL resources can be taken as a mode!.

Finally, asis usually the case with resource creation, all definitions not covered by the automatic
resource saving operations (e.g., spL default definitions, domain models, etc.) should be copied as
required.

L oading such general unconditionalized resources should, of course, be carried out in multilingual
loading mode, since the resource is not restricted to any single language but takes on the scope of
applicability defined by the range of languages for which kpmL is configured at the time of resource
loading or the current defaults as created by <Set Default Language> .

next |[up [lprevious [Jcontents ||index

Next: Changing the Lisp package Up: Saving and Creating linguistic Previous. Automatic lexical
item acquisition

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node69.html (2 von 2) [11.12.2004 14:29:09]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Changing the Lisp package of inquiry implementations

next [Jup [lprevious ||contents []index

Next: Interface suspensionexiting, etc. Up: Saving and Creating linguistic Previous: Creating
unconditionalized linguistic resources

Changing the Lisp package of inquiry
Implementations

Thiz subsection iz only relevant for users who intend to be writing ex-
tensive inquiry implementations of their own.

For increased modularity of resource development, it may occasionally be appropriate that different
bodies of inquiry implementations are maintained in different Lisp packages. Thisis caused by the fact
that such implementations, as simple Lisp functions, lie outside the comprehensive language
conditionalization facilities offered by kpPmL.

Writing of resources is thus extended so that it is possible to set the package from which inquiry
implementation codes will be expected. To do this, the variable
*package-for-inquiry-inpl enentati ons* must be set to either a string denoting the
package or a (dotted pair) association list of languages (as specifiedinal | _| anguages) and such
strings. An example of the latter would be:

((:englisgh . "ENGLISH-INQUIRIES")(:german . "GI")(: japanese . "I"))
If asymbol representing an inquiry implementation in an inquiry definition (see Section 12.2.7) is
aready from a package that isnot the kpm package, then thisinformation is preserved unless the flag

*force-inquiry-inplenmentation-package?* isadditionally set true. This package setting
behavior can by summarized as follows:

I f a new package for inquiry inplenentations (target) is given
t hen
if the old package was kpni

then the new target is taken

el se the package stays as it is, unless forced.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (1 von 5) [11.12.2004 14:29:29]



Changing the Lisp package of inquiry implementations

el se

package stays as it was.

Use of distinct packages for inquiry implementations is further supported by a new package, called
kpm - kb, which already includes the normal Penman/kpmL-defined spL, knowledge representation
system, and lexicon interface functions as external symbols. It istherefore sufficient for an inquiry
implementation file to begin with the declaration:

1. for CLtL1:
(in-package "INQS" :use *("LISP" “"KPFML-KB"))
2. for CLtL2 (e.g., Allegro 4.2 and later):

(defpackage "INQS" (:uze "COMMON-LISP" "KPML-KB"))
(in-package “"INQS")

in order to use both Lisp and the Penman/kpmL functions without package specifiers.

Care should be exercised if these inquiries refer to symbols that are maintained in the kpm package. In
KPML, there is no support for systemic resources (including lexical item definitions) being in distinct
packages. Therefore al lexical features, system name, system features, etc. will beinthe kpm package
and so must be referenced appropriately. Use of the functions defined in Section 13.2 whenever
reference is to be made to lexical information guarantees that the appropriate package is enforced.
Further, all responses to inquiries returned from inquiry implementations will be automatically interned

inthe kpm package regardless of their package of origin gif

An example of these package definitions and mechanismsis given by the following inquiry
implementation (assuming CLtL 2):

(da‘.fpac.kaga "INQS" (:use “"COMMON-LISP" “"KPML-EKB"))
(in-package "INQ5")
(defun Accompaniment-Modification-Q-Code (process)
"Look for an accompaniment feature."
(if (fetch-subc-feature ’accompaniment process)
*accompanying))

Here, the function definition is, of course, for the function

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (2 von 5) [11.12.2004 14:29:29]



Changing the Lisp package of inquiry implementations

konet - i ngs: : acconpani nent - nodi fi cati on- g- code. However, the symbol
f et ch- subc- f eat ur e refersto the spL interface function of the same name described in
Appendix B. All of these interface functions are usable in thisway. In kpvL, these functions operate on

their arguments so that regardless of package of origin, symbols are searched for in the appropriate place
(e.g., inthe upper model package penman- kb, or in the package used for spL specifications--which
isnormally kpml ). Finally, the symbol returned by the function is automatically converted to one

bel onging to the appropriate package for the inquiry response--since thisis the symbol that occursin the
inquiry definitioninthe: answer set dot and in the use of the inquiry in any choosers and so must be
made accessible in the package for those definitions.

Thefull list of Penman/kpmL functions and variables (all inthe kpm  package) which are accessible on
use of the kpml - kb package are as follows.

. Thefollowing functions are used by inquiry implementations to access components of SPL
expressions and to interrogate the subsumption relations of the knowledge base. Most of them
are described in Appendix B and C.

FETCH-FEATURE
FETCH-FEATURE-SYMBOL
FETCH-MINTMAL-RELATION
FETCH-NON-MINTIMAL-RETFTED-RELAT ION
FETCH-REIFIED-RELATION
FETCH-RELATION
FETCH-RELATION-RANGE
FETCH-RELATION-SPEC
FETCH-SUBC-FEATURE
FETCH-SUBC-FEATURE-HAME
GET-GLOBAL-TERMS
GET-SYMBOL-TERM
GET-TOP-LEVEL-TERMS
GLOBAL-FETCH-FEATURE
INVERT-REIFIED-RELATION-SPEC
KB-ENTITY?

KB-SUPERP
MAKE-TERM-GRAPH-ID
TERM-EQ-P
TERM-GRAPH-FEATURES
TERM-GRAPH-ID
TERM-GRAPH-PARENT
TERM-GRAPH-SYMBOL,
TERM-GRAPH-TYPE
TERM-ROLE-P
TERM-TO-GRAPH
TERM-TYPE-P
TERM-TYPE

. In addition, some of the spL functions are actually macros and expand to involve other symbols,
which, of course, must also be accessible.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (3 von 5) [11.12.2004 14:29:29]



Changing the Lisp package of inquiry implementations

TERM-GRAFPH
ONUS

. Thefollowing functions are provided by kpmL for accessing lexical information during
generation. This can be done from inquiry implementations, although this should be understood
as standing in for a more appropriate way of transporting features internally to the
lexicogrammar. It should also be borne in mind that the lexical features will normally bein the
kpm package, and so thiswill need to be explicitly specified for lexical/morphological inquiries
residing in adifferent package, unless the built-in kpmL access functions are used (e.g.,
| exi cal - f eat ur e- present - p, etc.. Section 13.2); these latter functions ensure that

symbols of the appropriate package are used regardless of their originating package.

FIRD-ASSOCTATION
FUNCTIONAL-ROLE-F
ACCESS-LEXTCAL-INFORMATION

LEXTCAL-FEATURE-FRESENT -F
LEXTCAL-CLASS-ASCERTATHER
LEXTCAL-FEATURE-FRESENT-TN-ASSOCTATION-F
LEXTCAL-CLASS-0F-ASSOCTATION-ASCERTAT RER
LEXTCAL-ITEM-FEATURES
LEXTCAL-ITEM-SPELLING
LEXTCAL-TERM-RESOLUTTON

. Thefollowing functions are former Penman functions that are also used occasionaly in inquiry
implementations.

NP-SPECTFY

OFERATOR-EUN
FLEDGEDL-F

EXFRESSED-F
VARNTHG

. Thefollowing former Penman variables hold necessary information for making internal
information accessible concerning the history of the generation process for supporting textual
inquiries.

*CONSUMED-TERMS *
*PLAN*
*PLAN-GRAFHS %

. Thefollowing kpvL variable conditionalizes some of the morphology inquiry implementations.
*¥ACTIVATE-VORD-RARK-AND -BELOW*
. Thefollowing is needed for lexicalized information.

LEXTCON

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (4 von 5) [11.12.2004 14:29:29]



Changing the Lisp package of inquiry implementations

. Thefollowing book-keeping inquiries should always be accessible.

VHEREAMT TR CODE
TRIVIALDEFAULT CODE

next Jlup [lprevious |Jcontents |lindex

Next: Interface suspensionexiting, etc. Up: Saving and Creating linguistic Previous. Creating
unconditionalized linguistic resources

John Bateman -- GMD/IPS -- Darmstadt, Germany
u | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (5 von 5) [11.12.2004 14:29:29]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Interface suspension, exiting, etc.

next |jup ||previous ||contents []index

Next: Quiting the interface Up: The KPML root interface Previous. Changing the Lisp package

Interface suspension, exiting, etc.

« Quiting the interface

. Suspending the interface

. (Re-)Activating the interface

. Clearing the interface windows

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node71.html [11.12.2004 14:29:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Quiting the interface

next |jup ||previous ||contents []index

Next: Suspending the interface Up: Interface suspensionexiting, etc. Previous: Interface
suspensionexiting, etc.

Quiting the interface

The command <Quit> causes all open kpmL windows to be destroyed and then exits the interface.
Interaction with the system is then still possiblein the calling Lisp listener. There a new interface
instance can be started or Lisp can be exited in the standard manner (e.g., for Allegro : exi t, or for
Lucid (quit)).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node72.html [11.12.2004 14:29:38]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Suspending the interface

next |fup [|previous [Jcontents [Jindex

Next: (Re-)Activating the interface Up: Interface suspensionexiting, etc. Previous: Quiting the interface

Suspending the interface

When the kpvL interface is running it normally intercepts all output and messages from the generation
process in order to present thisinformation in an appropriate form (e.g., in a particular window pane, in
some pop-up window, or as adialogue menu). Very occasionally, it might be desired to have this
information sent to the calling Lisp listener as if the interface were not running. This might be one way, for
example, of obtaining atrace of generation that can be edited or printed in hardcopy and studied at length.
The command <: Suspend> has the effect of disabling the interface's interception of messages. These
messages are then presented as if the interface were not present--i.e., in a pretty printed teletype form.

Note that suspending the interface does not disable the interface: it is still possible to issue commandsin
the normal way. All that is suspended is the presentation of information.

Thus, selecting to trace the system and chooser activity during generation (with the command
DEVELOPMENT:<Generation Display Modes> ), suspending the interface, and then generating an example
would result in output of the form shown in Figure 5.2 being sent to the Lisp listener. From there it can be

printed, edited, etc. more readily than its appearance in the kpmL interface.

»> Entering Syetem DEPENLDEKCE
Entering Chooeer DEPENLENCE-CHODSER
ENTIRENES5-Q: Doee LDEFAULT-AS5FERT-35632% repreeent the entire
epeech act or ie it part of a larger one?

Environment 'e anewer to the pyeptem network ie ENTIRE
Chooeper DEPENLENCE-CHODSER chooeer feature INDEPENLDENT-CLAUSE.

#» Tripgpering Gate INDEPENLENT-CLAUSE-SIMPLEX
Chooeper INDEPENDENT-CLATSE-SIMPLEX-CHOOSFR choopee feature

INDEPERLENT -CLAUSE-S5IMPLEX.
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node73.html (1 von 2) [11.12.2004 14:29:47]



Suspending the interface
ArllfrEND IO ODALGA L LW D AN Lo b JI U LGP L oL lll'e

INDEPENLENRT -CLAUSE-S5IHPLEX.

#» Entering Syetem INTERNAL-SUBIJECT-MATTER
Entering Chooeer INTERNAL-MATTER-CHDDSFR
THEME-MATTFR-Q: In addition to ppecification of a eet of
proceeeei, A Bet of participante, and a et of circumetancee, doee
5-36B63B contain a dieptinct epecification of pome conceptu=al
context or topic with reepect to which theepe proceepes,
participante, and circumetancee are to be interpreted?

Environment 'e anewer to the pyeptem network ie NOTHEMEMATTER
Chooeper INTERNAL-MATTER-CHOOSER chooereer featurse
NONIRTERNAL-SUBJECT-MATTER.

»> Entering Syetem MDOD-TYPE
Entering Chooeer MDOD-TYPE-CHODSER

COMMANL-Q: Iep the illocuticonary point of the purface level epeech

act repreesented by DEFAULT-ASSERT-3565%2% a command, i.e. a requeet
of an action by the hearer?

Environment 'e anewer to the pyeptem network ie NOCOMMAND
Chooeer MOOD-TYPE-CHODSER chooeeer feature INDICATIVE.

»» Triggering Gate FINITE-INSERT
Chooeper FINITE-INSERT-CHOOSER choopee feature FINITE-INSERTEL.

Figure: Example non-interface trace of generation

John Bateman -- GMD/IPS -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node73.html (2 von 2) [11.12.2004 14:29:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

(Re-)Activating the interface

next |jup ||previous ||contents []index

Next: Clearing the interface windows Up: Interface suspensionexiting, etc. Previous: Suspending the

interface

(Re-)Activating the interface

| ssuing the command rooT:<:Activate> undoes the effect of a <:Suspend> command, and
information returns to being presented in the interface.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node74.html [11.12.2004 14:29:51]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clearing the interface windows

next |jup ||previous ||contents []index

Next: The KPML Inspector Window Up: Interface suspensionexiting, etc. Previous: (Re-)Activating

the interface

Clearing the interface windows

The command rooT:<:Clear windows> clears the kpmL development, inspection, and any dependent
display windows.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node75.html [11.12.2004 14:29:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The KPML Inspector Window

next Jjup [|previous |Jcontents |Jindex

Next: Overview of Commands Up: No Title Previous: Clearing the interface windows

The KPML Inspector Window

KpuL offersawide variety of modes for inspecting the contents of loaded linguistic resources. The most effective way
to inspect resources is by a mixture of graphical and textual displays. Larger-scale views are usually obtained
graphically, allowing the user to quickly focus in on particular details that are presented textually. The kpmL inspector
window provides convenient overall access to these inspection methods.

Information inspection within kemL generally involves following information chains: that is, one might know that a
particular grammatical system exists, but wants also to know how the grammatical features of that system are actually
chosen and under what conditions. This involves following the information chain from system name to corresponding
chooser, and from corresponding chooser to corresponding inquiries and their definitions. This might then be followed
further to particular knowledge base concepts, which might lead back to lexical items and other points in the grammar.
An overview of the information chains possible when examining linguistic resources--particularly the linguistic
potential--is given in Figure 6.12 below.

The graphical presentation modes can also be used in conjunction with the generation modes described in the
following chapter in order to graphically display generation paths: i.e., traversal paths through the systemic networks
or choosers, and associations of grammatical and semantic units. These additional capabilities are described under
generation tracing (Section 7.5.2). This means that some of the menus reached by clicking as described in this chapter
will contain additional options to those described here.

An example of the inspector window is shown in Figure 6.1. There are four panes, from top to bottom: the Inspector
Command menu, the Interaction pane, the Information pane, and the mouse documentation line. As usual, for the
commands that are entered in the interaction pane, input is terminated by a carriage return. Partially typed in or
executed commands can be aborted by typing a control-Z; argument completion is provided by control-? (for string
completion) and by control-/ (for completion where the string given occurs as a substring). Commands and arguments
being input can be edited using the normal input line editing commands (control-f: forwards a character, control-b:
backwards a character, control-e to end of line, control-a to beginning of line, etc.).

I 7] Inspector (KFML)
Who Can ... Print Concept
Print System Print Relation
Print Chooser Print Feature
Print Inquiry Examples Using Featurgs
Print Implementation Graph Grammar
Print Lexical ltem Graph Region
Print Sentence Plan Grapher Display Modes
Print Expanded Plan
Print Spl Term

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node76.html (1 von 4) [11.12.2004 14:30:06]




The KPML Inspector Window

Frint 2pl lerm

ENGLISH:KPML> Pr:nz Chcoser RANK-CHOOSER
ENGLISH:KPML> Pront System RANK
FNGLISH: KPML> []

(SYSTEM
: HLME RANK
: INFUTS START
: OUTPUTS ((0.2 CLAUSES |)
(0.2 GROUPS-PHEASES )
(0.2
WORDS
(INSERT STEM )
(PRESELECT
STEM
MORPHENES ) )
(0.2
MORPHEMES
(INSERT HEAD )))
: CHOOSER RANE-CHOOSER
: RECION RANKING
: HETAFUNCTION LOGICAL

)
Systems with CLAUSES as input: CLAUSE-CLASS

systems with CLAUSES as output: RANK

L: Translator KFML-1::PRESEMT-FEATURE; R: Menu.

Figure: The KPML inspector window

. Overview of Commands
. Graphing systemic networks

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node76.html (2 von 4) [11.12.2004 14:30:06]



The KPML Inspector Window

o Basic graphing options and commands
« Quit Resource Grapher
« Printgraph
« Show examples with collected features
« Clear Collected Features
« Display Modes
« Content-oriented resource graph options
« Layout and hardcopy oriented resource graph options
« Continuation options
« Malil Intention to Work
o Producing graphs for inclusion as figures in documents
o Mouse activated resource graph options
« Showing afull system definition
« Showing the realization statements of afeature
« Showing the chooser associated with a system
« Collecting/Discollecting features
= Pruning the displayed graph
« Redisplaying a graph
« Spawning further graphs
o Graphing regions
o Contrastive and multilingual graphing
« Monolingua graphing
« Contrastive graphing
« Multilingual graphing
. Inspecting individual object definitions
o Introduction
o Display commands
« Print System
« Print Chooser
« Print Inquiry
« Print Inquiry Implementation
« Print Lexical Item
« Print Concept
« Print Relation
o Definition displaying and the multilingual modes
« Monolingual definition printing
« Contrastive definition printing
« Multilingual definition printing
. Object selection according to specified criteria
o _Who has selections
« Who has asinput
« Who has as output
o _Who can' selections
« Who can lexify
« Who can inflectify
« Who can classify
« Who can insert
« Who can order

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node76.html (3 von 4) [11.12.2004 14:30:06]



The KPML Inspector Window

« Who can partition
« Who can preselect
« Who can ask
« Who can identify
« Who can pose identifying inquiry
o Examples Using Features
. Direct inspection and information chains
o Introduction
o Inspection operations on grammatical systems
« Printing system definition
« Print associated chooser
« Graph Grammar starting from system
o Inspection operations on grammatical features
« Displaying usage of grammatical features
« Who has asinput
« Who has as output
« Show path to
« Show chooser of feature
« Graph from feature
« Collect feature
« Uncollect feature
« Clear collected features
o Inspection operations on choosers
« Print chooser
« Show inquiries of chooser
« Systems of chooser
o Inspection operations on inquiries
« Printinquiry
« Print implementation
« Who can ask
« Who can pose identifying inquiry
o Inspection operations on lexical items
o Inspection operations on SPL terms
o Inspection operations on examples
. Overview of information inspection chains

next Jjup |lprevious |Jcontents |Jindex

Next: Overview of Commands Up: No Title Previous: Clearing the interface windows

" John Bateman -- GMD/IPS -- Darmstadt, Germany
A ! | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node76.html (4 von 4) [11.12.2004 14:30:06]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of Commands

next |jup ||previous ||contents []index

Next: Graphing systemic networks Up: The KPML Inspector Window Previous. The KPML
| nspector Window

Overview of Commands

There are four main groups of commands available under the Inspector window. These concern:

. networks and graphical overviews of resources,

. presentations of individual object definitions,

. linguistic object selection according to specific criteria,
. direct ingpection of linguistic objects.

Thefirst three groups provideinitial steps in information chains where the starting point for the chain
is given explicitly by the user by typing in linguistic object names or by selecting from a menu of
possible objects. While this mode of information seeking enables all components of the loaded
resources to be examined, it is more usually the case during resource maintenance or debugging that
very particular information is being sought--for example, information concerned with particular
decisions made during the generation process at some point in the grammar. The fourth group of
commands therefore provides ready access to information on the basis of descriptions that have
already been presented. Here information chains are followed by mouse clicks rather than giving the
name of some linguistic object explicitly. It is possible, in thisway, to obtain most information
necessary for resource debugging ssmply by clicking along information chains. This, combined with
KPML'S extensive options for selecting which information starting points are to be presented, speeds up
such resource debugging considerably.

The remaining sections of this chapter describe the individual commands under these groups in detail.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node77.html [11.12.2004 14:30:11]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graphing systemic networks

next |Jup |J|previous ||contents ||index

Next: Basic graphing options and Up: The KPML Inspector Window Previous: Overview of Commands

Graphing systemic networks

Numerous options are provided for browsing the linguistic resources in graphical form. Thisis probably the best way of
navigating the large-scale resources available. In order to ease that navigation, graphing is strongly oriented towards functional
regions. As described in Section 2.1.1.3, afunctional region is a subset of the resources that are concerned with asingle
“semantic/functional’ area. KemL offers commmands for graphing regionsin their entirety (<Graph Region>) and for graphing
network portions starting from any specified grammatical system (<Graph Grammar> ). The default graphing behaviour in the
latter case is still, however, that only systems from a single grammatical region are selected for graphing. This avoids overly
large graphs and maintains some functional coherence in the area of systemic network examined. This default behaviour can,
of course, be overriden if desired.

An example of an extract from aregion is shown graphed in Figure 6.2. Here we can see part of the region bEPENDENCY,
which is partially responsible in the grammars of several languages for determining what kind of linguistic unit isto be
generated/described. In the graphed representation, boxed elements denote “systems' of the systemic network and unboxed
elements denote the “features' of those systems. “Gates--i.e., systems with only one output feature-can be recognized in that
there is only one dependent feature. These are often terminal and are used for grouping together realization statements; an
option explained below allows these to be filtered out of the graph.

Figure 6.2 therefore represents two grammatical systems proper (DEPENDENCE and RANKSHIFTED-FINITENESS) and two gates

(NonFINITE-cLAUSE and FINITE-CLAUSE). Thefirst system has three grammatical features ("rankshifted-clause', “dependent-clause,
and “independent-clause’); the second has two (“nonfinite-rankshift' and “finite-rankshift’). With respect to the region shown,
the system RANKSHIFTED-FINITENESS can only be entered if the feature “rankshifted-clause' is selected in the system DEPENDENCE.

The default options for graphing combine several different kinds of information over and above that given in Figure 6.2. In the

examples given in this section, we start with this simplest case and move towards and beyond the default setting showing the
additional information that may be presented.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node78.html (1 von 3) [11.12.2004 14:30:18]



Graphing systemic networks

systemic—resource-graph: DEPENCENCE

[Reglon: DEPENDENTY; Language: FRENCH

: ARESHIFTED-CLATSE, NONEINTTE-RENESHET- [NONE INTTE -CLAVSE |- NUNFINLTE- L AISE
]]EPHIDHIEEH—HEPEI\]]E]\T-[[HEE RS - PRI
: DRI LALSE ‘FINTTE-RENESHI F T—— FINTTE-CLAMSE —— FINITE-CLATISE
_| R R R R R R R R T R R T R R R N TR ]
Quit Resource Grapher Display Modes
Printgraph Clear Collected Features
Show Examples With Collected Features Hail Intention To Work

Figure: Dependency region (extract)

Systemic network graph windows have their own set of commands and options and remain available until explicitly quit by the
user. The immediately following subsections describe the command and mouse-activated options available. These apply to all
network graphs.

The command insPecTOR:<Grapher Display Modes> can aso be issued from the graph windows. The optionsit provides are
therefore described below under the crarH:<Display Modes> option.

. Basic graphing options and commands
o Quit Resource Grapher
o Printgraph
o Show examples with collected features
o Clear Collected Features
o Display Modes
« Content-oriented resource graph options
« Layout and hardcopy oriented resource graph options
« Continuation options
o Mail Intention to Work
. Producing graphs for inclusion as figures in documents
. Mouse activated resource graph options
o Showing afull system definition
o Showing the realization statements of afeature
o Showing the chooser associated with a system
o Collecting/Discollecting features
o Pruning the displayed graph

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node78.html (2 von 3) [11.12.2004 14:30:18]



Graphing systemic networks

o Redisplaying agraph
o Spawning further graphs
. Graphing regions
. Contrastive and multilingual graphing
o Monolingual graphing
o Contrastive graphing
o Multilingual graphing

next |Jup ||previous [Jcontents |Jindex

Next: Basic graphing options and Up: The KPML Inspector Window Previous: Overview of Commands

* - | John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node78.html (3 von 3) [11.12.2004 14:30:18]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Basic graphing options and commands

next |jup ||previous ||contents []index

Next: Quit Resource Grapher Up: Graphing systemic networks Previous: Graphing systemic

networks

Basic graphing options and commands

This section describes the commands available from the crarH window.

« Quit Resource Grapher

. Printgraph

. Show examples with collected features

« Clear Collected Features

. Display Modes
o Content-oriented resource graph options
o Layout and hardcopy oriented resource graph options
o Continuation options

. Malil Intention to Work

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node79.html [11.12.2004 14:30:22]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Quit Resource Grapher

next |jup ||previous ||contents []index

Next: Printgraph Up: Basic graphing options and Previous. Basic graphing options and

Quit Resource Grapher

The command crarH:<Quit Resource Grapher> exits from, and removes, the associated resource
grapher window.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node80.html [11.12.2004 14:30:27]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Printgraph

next |jup ||previous ||contents []index

Next: Show examples with collected Up: Basic graphing options and Previous: Quit Resource
Grapher

Printgraph

The command craprH:<Print Graph> places a postscript file of the contents of the graph (as
produced under effect of the various display modes: see below) in the default “hardcopy directory'.
The present hardcopy directory can be inspected and changed with the rooT:<Environment
Directories> command (Section 5.4.1) and with the craprH:<Display Modes> or iNsPECTOR: <Grapher

Display Modes> commands described below.

Note: the user isstill responsible for sending the created postscript fileto an appropriate

printer; thisisnot done automatically gif

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node81.html [11.12.2004 14:30:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show examples with collected features

next |jup ||previous ||contents []index

Next: Clear Collected Features Up: Basic graphing options and Previous. Printgraph

Show examples with collected features

It ispossible to “collect' lists of grammatical features. The ssimplest way to collect afeatureisto click
right on afeature shown in a graph and to select the appropriate subcommand as described in
Section 6.2.3. The grapher command <Show examples with collected features> then printsin the
Inspector information pane alist of stored examples where the complete set of features on the
collected list occur. Thisisaquick way of finding examples representing the distinctions drawn in the
grammar.

The examples using any single selected feature can also be shown by right-mouse clicking on any
grammatical feature shown in the graph and selecting the appropriate command presented.

Note, thiswill only select from examples wher e the selection expression isalready present in the
examplerecord: see Section 10.1 for a description of how and when this occurs.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node82.html [11.12.2004 14:30:37]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear Collected Features

next |jup ||previous ||contents []index

Next: Display Modes Up: Basic graphing options and Previous. Show examples with collected

Clear Collected Features

This command clearsthe list of collected features. Note that it is possible to collect features from
several graphs, from the textual displays, and from feature lists produced during generation (e.g.,
selection expressions) simultaneoudly; clearing is therefore necessary before collecting when
collecting isintended to begin afresh.

It is also possible to clear the collected features by right-clicking on any empty space in the graph and
selecting the appropriate command from the menu that appears.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node83.html [11.12.2004 14:30:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Display Modes

next |jup ||previous ||contents []index

Next: Content-oriented resource graph options Up: Basic graphing options and Previous. Clear
Collected Features

Display Modes

Giving the command GrarH:<Display Modes> (or, aimost equivalently, from the Inspector main
command menu directly with iNnsPEcTOR:<Grapher Display Modes> ) allows the user to change the
view of the graph in various ways, both in terms of layout and content. The options provided differ
slightly depending on whether the user is aready graphing an area of the linguistic resources or is
setting the grapher display options from the inspector window.

. Content-oriented resource graph options
. Layout and hardcopy oriented resource graph options
. Continuation options

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node84.html [11.12.2004 14:30:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Content-oriented resource graph options

next

up |lprevious [Jcontents ||index

Next: Layout and hardcopy oriented Up: Display Modes Previous: Display Modes

Content-oriented resource graph options

The content-oriented options are as follows.

bounded by region: thisis the normal way of delimiting the amount of network that is shown. Only systems and features that are reachable from the given start system without
passing outside the functional region of that start system will be displayed.

maximal depth: thisis another way of delimiting the amount of information shown. Here the restriction isin terms of depth reached. This option can be combined with the
previous one in the case of large functional regions.

show previous generation path: thisfoldsin network traversal information from generation (described in Section 7.7).

terminal gates visible: this determines whether terminal gates, which make no contribution to the connectivity of the network, will be shown in the graph. If realizations are being
sought, then terminal gates will be useful; otherwise, they may merely clutter the network display. Thus, if the apparent end of the network has been reached but, curioudly,
realization statements appear to be missing, then it is probably due to this flag being turned off.

region external links visible: this determines the display behaviour at the boundaries of functional regions. Since information about inter-region connectivity can be very useful,
and gives a sense of the incompleteness of any information shown, thisis the default graphing behaviour. With this flag set al systems lying on the boundary of a functional
region also display the region-external systems, i.e., systems of other regions, into which they feed. These region-external systems are shown in asmaller, bold typeface with the
name of their region of origin attached.

The consequence of using this option for the segment of the bePENDENCY region graphed in Figure 6.2 above is shown in Figure 6.3. Here we can see not only that, for example,
feature [independent-clause] lies on the boundary of the berENDENCY region (since no further features or systemsissue from it), but also that it leads onto the systems INDEPENDENT-
CLAUSE-SIMPLEX and INDEPENDENT-PARATACTICS in the functional region cLAusecompLEX--hence we know that it is non-terminal in the network as awhole.

In addition, systems which are part of the region but whose entry conditions include features from outside of the region are shown in italics. Systems whose entry conditions are
drawn entirely from within the region are shown in anormal typeface. Thisis also useful for getting a sense of the connectivity of the network, since only those paths from within
the region will actually be shown in the graph. Thus, in the example of Figure 6.3, we can see that both FiniTE-cLAUSE and NoNFINITE-cLAUSE have input conditions additiona to

those of the region lying outside of the graphed region, whereas RANK SHIFTED-FINITENESS dOes not.

Clicking on aregion-external system brings up a further graph starting from that system and obeying the active graph settings.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node85.html (1 von 3) [11.12.2004 14:31:03]



Content-oriented resource graph options

{Lﬂ syst2mic-resource—qraph: DEPENDENCE
(wit Resomrce Grapher Clear Collected Festures
hsplay Modes Hail Imterition Io Tiork
Print Eraph Show Exavples With Collecked Features
capian ;. PEPEMOINGT; Looguoye: ENILISH ]
[ ; | 7 Y ﬁ_lm'r.'mm
_ | SECONEATY TENSE FENSE]
FANKSHIFIE) qummsﬂHﬂ}rmmﬁﬂ |" T Ty #mmm;\
" I|. f:  NOWANT!FEXNNCE RNNEFINGGATES ]
'-\_l T
+—POLARTY POLARTI (A +~KOREIATE-RANISHIFT 4300 Moo} L AORENTIYE-TERPO1 FiRE
“NINF INITE-EFfMESHTFT
£ ] WWE IV ITE-CLANSE A HENITE =S ECOMEAITT TENTE]
PP EDEVCE|-DEP EADENT-CLAUS . I L T
3 _BIFENCENT -PARITACTIC! O MUSTCOMELEY] -, /= SUBMEST ATEET MCOD)
", A LAPMARENT -REALITY NOURELEIEWAL
_DIRENOENT -CLALST-SIRLEY KLAWSECONPEEY] IMTE‘M"%\MHMM I8 Wo00} ITE-EL % :_F_u'm SUBVECT -EP1RSION NO0D]
THD EP ESDERT L ~=dWDEFENDENT -PARAT ICTICS B0 AUSECOMPLESS “x\‘ K\a_.lmjr”;_m_p;ﬂ'm Mooar
; FINTTE-CLAUSE Lil POSTIFE-FIITE 00D]
\ L
_JWDEFEADEWT - LALE ! - Sl EX 0L NSECOMTL EX] ' \‘*.FME—MMMJ
¥
[~ ] =

Figure: Extract from Dependency region with links to other regions shown

current language: this determines the language whose resources are being displayed. Picking a functional region and varying the value of the current language is thus one (very
awkward!) way of setting up contrastive views of the multilingual resources; this behavior is provided properly by contrastive graphing (Section 6.2.5).

Systemic notation: this flag, when set, causes the graphed network to be displayed using standard systemic notation rather than a form more reminiscent of the definition format
described in Section 12.2.5. Thisis particularly intended for use in combination with the show realization statements flag described next.

Show realization statements: this flag, when set, causes the graphed network to display the realization statements that are associated with particular grammatical features.
Realization statements can be shown either in their definitional format (Section 12.2.5) or in standard systemic notation if the previously flag is aso set. Since it isusual for
systemic networks to contain their realization statements, this option is the default when kpvL is newly configured. Examples of how this appears can be seen in Figures 6.4

and 6.6.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node85.html (2 von 3) [11.12.2004 14:31:03]




Content-oriented resource graph options

next [jup |lprevious J|contents |Jindex

Next: Layout and hardcopy oriented Up: Display Modes Previous: Display Modes

John Bateman -- GMD/IPS -- Darmstadt, Germany
mail to bateman@gmad.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node85.html (3 von 3) [11.12.2004 14:31:03]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Layout and hardcopy oriented resource graph options

next

up |lprevious [Jcontents ||index

Next: Continuation options Up: Display Modes Previous. Content-oriented resource graph options

Layout and hardcopy oriented resource graph options

The layout-oriented options are:

vertical scaling: the distance between elements vertically.

hardcopy vertical scaling: the distance between elements that will be used in postscript files
for hardcopying.

hardcopy directory: the directory where postscript files for hardcopying will be stored (when
the Print Graph menu option is used).

header present: this flag determines whether header information (containing the region name,
the current language, and, if hardcopy, the date of production of the graph) is shown in the
graph or not.

suitable for figures: when set, this flag causes hardcopy versions of graphsto be produced in
“single page’ mode. Postscript files for inclusion in text documents should normally be
produced with this flag set, otherwise extended postscript will not produce the right results (cf.
Section 6.2.2).

John Bateman -- GMD/IPS -- Darmstadt, Germany

; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node86.html [11.12.2004 14:31:09]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Continuation options

next |jup ||previous ||contents []index

Next: Mail Intention to Work Up: Display Modes Previous. Layout and hardcopy oriented

Continuation options

When called from a grapher window, the grapher modes menu also contains options for specifying
whether the current graph isto be replaced by a similar graph respecting the newly set options,
whether a new graph is to be produced in addition to the old graph, whether a hardcopy version isto
be produced, or whether no action isto follow.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node87.html [11.12.2004 14:31:14]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Mail Intention to Work

next |jup ||previous ||contents []index

Next: Producing graphs for inclusion Up: Basic graphing options and Previous. Continuation options

Mail Intention to Work

Sends an e-mail message describing the Region that is being graphed expressing the intention to work
on that region. Thisisto provide an improved flow of information between distributed devel opers of
linguistic resources; those who wish to receive such messages should send a note to

bat eman@nd. de gif

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node88.html [11.12.2004 14:31:18]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Producing graphs for inclusion as figures in documents

next |fup ||previous []contents index

Next: Mouse activated resource graph Up: Graphing systemic networks Previous: Mail Intention to Work

Producing graphs for inclusion as figures in documents

The options described in the previous section can be used straightforwardly to produce encapsulated postscript files
suitable for inclusion as figuresin text documents. The steps are as follows:

1. produce a postscript file by issuing a<Print Graph> or equivalent command with the crarH:<Display Modes
flags “suitable for figures and “header present set and unset respectively. (Unless there is some particular
reason, the “show previous generation path' flag should probably also left unset.)

adjust the bounding box size in the produced file to include only the actual contents of the figure gif
3. include the generated postscript file in the document in the normal way recommended for encapsul ated
postscript (e.g., for LaTeX with a “psfig' style, etc.).

Note that for resource diagrams, better results are often achieved if the hardcopy vertical scaling is also reduced.

An example of afigure produced in thisway is shown in Figure 6.4. Note that the figure makes use of several of the
further layouting options described below (particularly those of Section 6.2.3.5). The figure shows the first few steps
in delicacy of the grammar of English.

ek AVERB.CLASS G GRS
Morphemes —_— yrmouEkL1A95 GO FGRY

e L VERRLLISS WOA AN
Yerh
. PRERG ST NAL PHRASE- CONPLESITY PRC PTERITY
T 08 Frepositional - Fhrdse
- " ; . PHBASAL-WGOD-TYPE PHRAGL RGO
nords Hima mprocess,
— /| 15ten St : wphenes, Hlini range.  NNGE-PRG RS TYPE BRGTHES
11114 . s ! !
Ninarprooess #{ini mme
— NINIBAVSE.TYPE TG i
// CROUE- P 3R- CLafS
roups- Fhrases Croups———— e (Lage

Clauset te——————— yronIFss TiPE MOoD]
o LATSR-CLal <
lauses

(lauge——————|CLaTeE- BLLIFATS

Figure: Example of EPS figure showing systemic resources

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node89.html (1 von 2) [11.12.2004 14:31:30]



Producing graphs for inclusion as figures in documents

- | John Bateman -- GMD/IPS -- Darmstadt, Germany
k ﬁ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node89.html (2 von 2) [11.12.2004 14:31:30]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Mouse activated resource graph options

next |jup ||previous ||contents []index

Next: Showing afull system Up: Graphing systemic networks Previous: Producing graphs for
inclusion

Mouse activated resource graph options

In addition to the explicitly shown graphing commands and options described above, the systemic
resource graphs also offer an extensive range of operations by mouse clicking on various parts of the
displayed graph. These mouse activated options are described here.

. Showing afull system definition

. Showing the realization statements of afeature
. Showing the chooser associated with a system
. Collecting/Discollecting features

. Pruning the displayed graph

. Redisplaying agraph

. Spawning further graphs

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node90.html [11.12.2004 14:31:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Showing afull system definition

next |jup ||previous ||contents []index

Next: Showing the realization statements Up: Mouse activated resource graph Previous. Mouse
activated resource graph

Showing a full system definition

L eft-mouse clicking on aregion-internal system node in aresource graph (e.g., 0N DEPENDENCE in
Figures 6.2 or 6.3) causes the full textual display of the system's definition to be printed in the
Inspector window. Thisis therefore equivalent to issuing the command insPECTOR: <Print System> and
typing in the name of the clicked upon system.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node91.html [11.12.2004 14:31:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Showing the realization statements of a feature

next |jup ||previous ||contents []index

Next: Showing the chooser associated Up: Mouse activated resource graph Previous. Showing afull
System

Showing the realization statements of a feature

If realization statements (i.e., the structural contraints associated with any grammatical feature: see
Section 12.2.5) are not being shown in the graph automatically (by selecting the appropriate flag as

described in Section 6.2.1.5 above), then left-clicking on a grammatical feature will pop-up a window
containing the realization statements for that feature.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node92.html [11.12.2004 14:31:54]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Showing the chooser associated with a system

next |jup ||previous ||contents []index

Next: Collecting/Discollecting features Up: Mouse activated resource graph Previous. Showing the
realization statements

Showing the chooser associated with a system

Right-clicking on any node also brings up a menu including show associated chooser as an option.
This has the same effect as issuing the command insPecTOR:<Print Chooser> for the chooser
associated with the grammatical system of which the clicked upon grammatical feature is an output. In
other words, the chooser responsible for choosing the feature clicked upon to be chosen is presented.
The mode of chooser display (i.e., textually in the Inspector window or in graphical form) is as
selected for the <Print Chooser> command.

In addition, if realization statements are being shown in the graph (as caused by setting the
appropriate content-oriented flag described in Section 6.2.1.5 above), then left-mouse-clicking on a

grammatical feature is a short-cut for the above.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node93.html [11.12.2004 14:31:57]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Collecting/Discollecting features

next |jup ||previous ||contents []index

Next: Pruning the displayed graph Up: Mouse activated resource graph Previous: Showing the
chooser associated

Collecting/Discollecting features

It is possible to “collect' lists of grammatical features. These collected features can then beused in a
variety of further operations.

Grammatical features can be either added to, or removed from, the current collection by the
corresponding menu options reached by right-clicking on any node in the resource graph. The right-
click menu also includes a command for showing the examples which use the selected grammatical
feature and for clearing the features collected so far.

Once features have been collected, resource graphs split into two panes, the lower of which shows
the list of features currently collected. Clicking on any feature on thislist will remove it from the

collected feature list 19/

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node94.html [11.12.2004 14:32:02]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pruning the displayed graph

next Jlup Jlprevious J]contents |Jindex

Next: Redisplaying agraph Up: Mouse activated resource graph Previous: Collecting/Discollecting features

Pruning the displayed graph

It is possible to select particular portions of the systemic network graph that are not to be shown. The stop graph here command under the right-mouse click
menu causes subsequent graphing to stop at the clicked upon node. When grammatical features are removed from a graph, their absenceis marked by "...".
When agrammatical systemisremoved, however, there is no indication of thisin the graphed network at all. Care should therefore be exercised with this
facility in order not to obtain a false view of the resources that are in fact defined. Graph pruning can probably be used to best effect for preparing teaching
materials; for grammar maintenance it may be misleading and so should be used with care.

The pruning option can also be used, for example, to remove confusing detail from cluttered graphs. Figure 6.5 shows again the extract from the bePENDENCY
region shown in Figure 6.3 but focusing this time on the connectivity leading to the AsserTion system in the moop region.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node95.html (1 von 2) [11.12.2004 14:32:12]



Pruning the displayed graph

Figure: Pruned extract from the Dependency region

John Bateman -- GMD/IPS -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node95.html (2 von 2) [11.12.2004 14:32:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Redisplaying a graph

next |jup ||previous ||contents []index

Next: Spawning further graphs Up: Mouse activated resource graph Previous. Pruning the displayed

graph
Redisplaying a graph

In order to make new layout or content options for network graphing take effect, it is necessary to
regraph the graph. This can be most easily achieved by left-clicking on any portion of the graph that
isnot occupied. This brings up a menu of general options, one of which is redislaying the graph.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node96.html [11.12.2004 14:32:16]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Spawning further graphs

next |jup ||previous ||contents []index

Next: Graphing regions Up: Mouse activated resource graph Previous. Redisplaying a graph

Spawning further graphs

L eft-clicking on aregion-external grammatical system (for example, the systems INDEPENDENT-CLAUSE-
COMPLEX, POLARITY, DEPENDENT-CLAUSE-COMPLEX, €fC. in Figure 6.3) brings up a further graph rooted in
the clicked upon system and concerning the region of that system. The subgraph is only produced
when the system selected is shown as being outside of the region with which the graph is currently
concerned. This provides a means of growing a graph interactively when it is necessary to follow
paths through more than one region.

e John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node97.html [11.12.2004 14:32:21]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graphing regions

next Jlup [lprevious ||contents |Jindex

Next: Contrastive and multilingual graphing Up: Graphing systemic networks Previous. Spawning further graphs

Graphing regions

The command insPEcTOR:<Graph region> brings up a menu of defined functional regions from which one must be selected, and graphs all the
systems that fall within this region. Thiswill be more or less effective depending on the integrity of the region. If aregion is poorly defined with many
points of contact with other regions, then the graph will ook correspondingly complex. "Holes' in the region--that is, paths through the network that lead
out of aregion only to lead back into it further downstream--create extra, usually spurious, “starting' points that are collected together at the left of the
graph. Region starting points are defined as those systems for which all of their entry conditions lie outside of the region. It is still possible that systems
shown within aregion have additional entry conditions from outside of the region; thisisindicated by printing their names in italics as described above.

Figure 6.6 displays avery small functional region in the normal default style that is active when kpwvL is freshly configured. Here we can see that
realization statements in systemic notation are present (the notation is explained in Table 12.1) and that the region has two “points of entry'.

The options for changing the appearance and content of a region graph are identical to those described above for resource graphsin general.

rj Systemic Resource Graph
Duit Besource Grapher Glear Gollected Features
Display Modes Mail Intention To Uork
Print Graph Shov Examples With Collected Features

L

Region: TAG: Language: ENGLISH

Imperative-Tagyged .
L:Munﬂtag_ Heutf_:r— Tagsubj ect
oodbag™H. /[Fag=ubject 1 Tt_|

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node98.html (1 von 2) [11.12.2004 14:32:32]




Graphing regions

TMPERATIVE-TAG

\PECLARATIVE- TAC

sragfinite Tagsubject.
oodtag (Tagfinite Tagsubhject)._
agf inite*Tagsubject.

NOVPEURATL - TAGSUBJELT-GENDER

Imperative-Untagged

Declarative-Tagged

+Moodtay.

oodtan™H.

agfinite -: wverh.

+Tagfinite Tagsubject.

oodtag (Tagfinite Tagsubject).
agf inite Tagsubject.

DAL -TACFINITE

Untagged

Male-Tagsubject

[Taysubject ! He_|

Female-Tagsubj ect
]Tagsuhjecl: 1 S'hE.I

Modal-T ag‘finite
agfinite :- modal-sux |

Figure: Example of region graphing: the region TAG

John Bateman -- GMD/IPS -- Darmstadt, Germany

ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node98.html (2 von 2) [11.12.2004 14:32:32]



http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive and multilingual graphing

next |jup ||previous ||contents []index

Next: Monolingual graphing Up: Graphing systemic networks Previous. Graphing regions

Contrastive and multilingual graphing

The three modes of multilingual operations on resources (Section 5.5) apply also to graphing and have
the consequences described here.

. Monolingual graphing
. Contrastive graphing
. Multilingual graphing

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node99.html [11.12.2004 14:33:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual graphing

next |jup ||previous ||contents []index

Next: Contrastive graphing Up: Contrastive and multilingual graphing Previous. Contrastive and

multilingual graphing

Monolingual graphing

The monolingual graphing option corresponds to the behavior for resource graphing commands
described above, i.e., single graphs for the currently selected language are produced.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node100.html [11.12.2004 14:33:54]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive graphing

next |jup ||previous ||contents []index

Next: Multilingual graphing Up: Contrastive and multilingual graphing Previous. Monolingual
graphing

Contrastive graphing

In contrastive graphing mode, the user is additionally prompted for a selection of languages of
interest. Then individual graphs are produced in parallel for each language specified alowing the
languages to be compared. An example can be seen in Figure 12.7.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node101.html [11.12.2004 14:34:11]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual graphing

next Jlup [lprevious []contents |]index

Next: Inspecting individual object definitions Up: Contrastive and multilingual graphing Previous: Contrastive graphing

Multilingual graphing

In multilingual graphing mode, the user is prompted for a selection of languages of interest (currently limited to two). Then asingle graph is produced that contains the multilingual view of
the resources of those languages. This option can be used to best effect when kpmL is configured for color monitors since one of the languages is presented in red, the other in blue, and their
common overlap in black. An example of such multilingual graphing is shown in Figure 6.7a.

rﬂ systemic-resource—graph {contrastive): RANK

Print Graph Show Examples With Collected Features
Quit Resource Grapher Display Modes
Clear Collected Features Mail Intention To Work

Beqions: RAMETNG RANK ; Langquages: ENGLISH GERMAN

- |cLAUSE-ELLIPSIS| FULL —ct
CLAUSE-CLASS CLAUSE - \\
CLAUSES FLLIPTICAL _DEl
_WOODLESS TYPE MOOD]
/ NOMINAL -L IKE-GROUPS EL,
MOTFNEME-CLASS INORD-FORMS] CLAUSETTE ADVEREIAL —CROUP \I:
MORPHEMES NRASAL-MOOD-TYFE PR i
NOMINAL —GROUP
INIRANGE -TYFE FPFOTNER] _AD|
/|BRDIIP—PI-[IH|.5E—BI..ESS|| GROUPS INOR-PROCES S TYPE FROTHER} YERBAL - GROUP
GROUPS-PHRASES _PREFOSTTIONAL PRRASE-COMPLEXTY FPCOMPLE ADJECTIVAL -
— PREPOSITIONAL-PHRASEE—~—FP-HODIRICATION FPOTNER] QUANTITY-GROUP
_FREPOSITIONAL -PRRASE-DEICTICITY FPOTHER] MINTRANGE—F
WORDS |[=Ebmm—ur—mmmms” MINTRANGE-NEUTER
_CLAUSE-COMPLEXTY CLAUSE '
|InENTIF1nBuITY—uF—m1mNGE|| MINIRANGE-MASCUL INE
' TDENTIFIAEL E-MINIRANGE
CLAUSE _DEPENDENCE REPENDENCI] ADJERB _NERB-CLASS JWORD-FORMS]

ADJERE-CLASS [WORD-FORMST NONIDENTIFTABL E-MINIRANGE

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (1 von 5) [11.12.2004 14:34:31]



Multilingual graphing

Figure: Example of multilingual (color) graphing

IS

If color is not available, the divergent resources are marked explicitly according to language and congruences are highlighted. An example is shown in Figure 6.7b. Here we can see that
systems are shown double-boxed if they only hold for a single language, and multiply boxed if they hold for both languages. Features of systems are prefixed by the language they hold for
when they do not hold for both languages. Thus in the example we can see that only the systems RANK, GROUP-PHRASE-CLASS, and GROUP-CLASS are common to both English and German among

the systems shown.

A further graphed exampleisgiven in Figure 12.8.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (2 von 5) [11.12.2004 14:34:31]



Multilingual graphing

rﬂ systemic—resource—graph {contrastive): RANK

Print Graph Show Examples With Collected Features
Quit Resource Grapher Display Modes
Clear Collected Features  Mail Intention To Work

Regions: RANEING RAMK ; Languages: ENGLISH GERMAN

ENGLISH: CLAUSE-ELLIPSIS ENGLISH: FULL
ENGLISH: ungEs___-||En"ELI.S}&':€LMSE—€LMS|| ENGLTSH: BI.BUSE/’H| ||-<

/_Hmms.ﬁ_rrp; AooD] ENGLISH: ELL IPTIBHL-____%___H
ENGLISH: CLAUSETTE

GERMAN : VEREAL - GROUE \

GERMAN : ADJECTIVAL

/.HGHPHEHE -CLASS IWORD-FORMS]

ENGL ISH : MORPHEMES
KRASAL -MO0D-TIFE FRRASA

INIRANGE TYFE FPOTNER]

INOR-FROCESS -TYFE FPOTHERT
FREFOSITIONAL -FRASE-COMFPLEXITY FPFCOMFLEXTY,
PREPOSTITIONAL -PHRASEE—_pp-MODIFICATION FROTRER] GERMAN : QUANTITY-GROUP

|H¢GI.ISI-[:WDR]]—[:IJ|.SS||
- _PREPOSITIONAL -PRRASE-DEICTICITY PPOTRER] GERMAN : MINIRANGE—F
WORDS

GROUP-PHRASE-CLASS | GROUPS

GROUPS-PHRASES

ENGL TSH: NERB =E GH{DER—DF—FDNIR.&NGE” GERMAN : MINTRANGE-NEUTER
_CLAUSE-COMPLEXITY ICLAUSECOMPL g _
[GERMAN : IDENTIFIABIL ITY—OF-MINIRANGE||, 0 onrin : MINIRANGE-MASCUL INE
GERMAN : TDENTTFIABL E-MINIRAN
GERMAN : CLAUSE _DEPENDENCE DEPENDENCY] ENGI.ISH:H]]JERB\\JEHB‘—CMH WORD-FORMS] ‘\
GERMAN : NONTDENT TF TABL E-MINT

AMERE-CLASS [WORD-FORME]

Figure: Example of multilingual (monochrome) graphing

When graphing networks in this mode, an additional option appears under the Grapher Display Modes (Section 6.2.1.5). This asks whether the “integrity' of grammatical systemsisto be
preserved in the multilingual graphs: that is, since in amultilingual set of resources a single feature may belong to more than one system (one for each language), it can be meaningful to

graph features with more than one parent. This cannot occur in monolingual graphs, since features are uniquely assigned to wstems. When the integrity of systemsisto be maintained

during graphing, then each feature only has one parent system--even if this means duplicating features. The duplicated features will in any case belong to different language varieties. When
integrity is not maintained, then the graph may combine similarly named features from different languages. The default display style on newly configuring kpmL is that integrity should not be
preserved. This allows distinct portions of amultilingual grammar to be merged wherever it is possible to do so; preserving integrity guarantees that language graphs diverge as soon as a

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (3 von 5) [11.12.2004 14:34:31]



Multilingual graphing
feature diverges.

rEMNSL 1SH UL AN e || = T T T T | Tttt Tttt

OO

/{.Hﬂﬂf‘ﬂil’! -CLASE JNORD-FONMST ENGL TSH [:LMI'EETTE/
rENMGL ISH : MORPHEMES

CROUP -PHRASE-CLASS | |- CROUPS

1 “PEFPOSTTIONAL -PHRASE

| ENGL ISH: WDRD-CLASS||—=
_ms/

—CLAUSE-COMPLEXITY KLAUSECOMFLEX]

—EMGLISH :MERB

“GERMAN : CLAUSE

DEFENDENCE DEFENDENG ] ~ENGLISH: ADY ERB\\

i Req ons : Lavwages: EMGLISH GERMAN

f/.a.umm;ss-
ENGLISH: CL AUSES— - [ENGLISH: CLMISE-CLASS|—a| - O 1SH: CLAUSETTE ENBL IS
CLAUSE I
| ENGL TSH : MORPHEMES—=——MORPNEME-CLASS WORD-FORMST [GROUP—C
NRASAL-i
:f-; GROUPS

[ — [ | MINIRANCE-

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (4 von 5) [11.12.2004 14:34:31]



Multilingual graphing

+mmi4|mm‘ﬂ

PREPOSTTIONAL -PHRASE

LU L UL U LA L

'WDHDS—————_qEMGLIgﬂ : WORD-CLASS)

ENGL I5H : NERB

ENGLISH: ADJERB
“-\,\ _NERE-CLAS

Figure: Multilingual graphs with and without preservation of grammatical system integrity

The consequences of this graph display choice is shown in the two graphs of Figure 6.8. In the upper graph, system integrity has been maintained; in the lower graph, it has not. The
difference in the display modes can be seen by examining the position of the grammatical feature “clause' in the two graphs. For German, this feature is a output feature of the grammatical
system rank; for English, however, the feature is an output feature of the grammatical system cLAuse-cLAss, which isitself reached viathe “clauses feature of the English rRank system. The
lower graph, preserving system integrity, therefore shows two “clause' features, one for each system. In contrast, the upper graph shows only one “clause' feature, belonging both to the
English system cLause-cLAss and the German system rank. Which view is more appropriate depends on the particular resources and purposes of inspection.

next |Jup |{previous |[Jcontents ||index

Next: Inspecting individual object definitions Up: Contrastive and multilingual graphing Previous. Contrastive graphing

: John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (5 von 5) [11.12.2004 14:34:31]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index

IN

>

Abort (KPML command)
Pausing and restarting generation

Aborting commands
Notational conventions in this document

:Activate (KPML command)
(Re-)Activating the interface

Activating the interface
(Re-)Activating the interface

Allegro Common Lisp
Prerequisites, Availability of the system, Troubleshooting, |nstallation and Startup, Installing

the KPML system, Installing the Emacs/M ul e-interface, M aking an executable image
I ntroduction, Introduction, Quiting the interface, Modifying linguistic resources, Establishing
and using a generation server, Creating a KPML client

Associate new chooser
Boundary conditions

Associations
o function association table (FAT) entries. Show Associations

o inquiries: Choosers, Choosers

o tracing: Show Associations, Modes and internal flags

o association types. Inquiries

n associations:Accessing semantic information, Associations, Inquiries

John Bateman -- GMD/IPS -- Darmstadt, Germany
' ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-A.html [11.12.2004 14:34:52]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html#44
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: C

..C.D..E..F..

Ia
|T
t
| <
|
Iz
=
Is
IO
10
|70

N

O

Cautions

Run-time cautions
Chooser-inquiry semantics

| nter-stratal organization: interfaces
Choosers

o definition: Choosers
o printing: Showing the chooser associated , Print Chooser
o editing: Modifying linguistic resources
:Clear history (KPML command)
Clear history

:Clear Lexicon (KPML command)
L exicons, Resource clearing

:Clear systemic network
Resource clearing

:Clear tracing option (KPML command)
Clearing tracing selections

:Clear windows (KPML command)
Clearing the interface windows

Clearing collected features
Clear Collected Features
Clearing examples
Clear Examples

Clearing generation history
Clear history

Clearing lexicons
L exicons
Clearing language focus
L anguage focusing
Clearing linguistic object focus
Linguistic object focusing
Clearing resources

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (1 von 6) [11.12.2004 14:35:10]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

General Multilingual Operations and , Resource clearing, Linguistic Resource Loading

Operations
Clearing tracing options
Clearing tracing selections

Clearing display windows
Clearing the interface windows

CLIM 1

Prerequisites, Availability of the system, Known bugs/problems, The "old-style KPML

interface
Collected features

O

0

removal: Collecting/Discollecting features
clearing:

Clear Collected Features
definition:

Collecting/Discollecting features

example uses:
Dynamic traversal tracing, Show examples with collected

Commands (KPML interface type-in and menus)

Abort: Pausing and restarting generation
Activate: (Re-)Activating the interface
Chooser display-modes: Print Chooser, Traversal and resource graphs
Clear history: Clear history
Clear Lexicon: Lexicons, Resource clearing
Clear systemic network: Resource clearing
Clear tracing option: Clearing tracing selections
Clear windows:. Clearing the interface windows
Create new language: Inheriting language definitions
Disable system: Show Disabled Candidate Systems, Disabling and enabling systems
Display generated string: Starting generation, Display generated string
Display modes. Graphing systemic networks, Printgraph, Traversal and resource graphs
Display modes. Display Modes
Display options: Display options, Individual chooser tracing
Editing: Modifying linguistic resources
Enable system: Disabling and enabling systems, Disabling and enabling systems, Static
tests during resource
Environment directories. Environment Directories, Simple resource set |oading,
Monolingual saving, Multilingual saving, Printgraph, Starting the example runner,
Directory structure and contents
Examples using features. Show examples with features, definition: Examples Using
Features
Example operations: The example operations
Clear examples. Resource clearing, Clear Examples

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (2 von 6) [11.12.2004 14:35:10]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html#46

Index: A

= Copy examples with new names. Copy examples with new
= delete some examples. Delete some examples
« Example runner: Monolingual generation, Starting the example runner
« Feature survey: Features used in examples
= Generate from example SPL: Generate from example SPL
« Graph example structure: Graph example structure
« Load examples: Loading particular kinds of , Load Examples
= Show examples with features. Show examples with features
= Write examples: Simple resource set saving, Write Examples
Flags: Flags, The root commands: overview, Automatic |exical item acquisition , Print

Chooser, Starting generation, Starting generation, Starting generation, Inspecting the
results of , Levels of detail while , Operations on displayed strings, Inspect selection
expression, Operations on displayed structures, Show selection expression, Acquiring
lexical items
Focusing operations:

= genera: Theroot commands. overview, Introduction

= definition: Focusing Operations

= examples: Loading particular kinds of

« language focusing: Language focusing

= linguistic object focusing: Linguistic object focusing

= releasing object focusing: Linguistic object focusing
Generate again: Pause, Starting gener ation, example: Copy examples with new
Generate from example SPL: Graph example structure
Generate sentence: Simple resour ce set loading, Starting gener ation, Overview of
commands, Monolingual generation, Contrastive generation, Running modes, Pause,
Generate from example SPL, Graph example structure, example: Copy examples with
new.
Generation display modes. Suspending the interface
Generation modes: Introduction to generation debugging , Introduction to generation
debugging , Single Step, Traversal and resource graphs, Structure Grapher Options,
Example sets and test , Operations on example strings , Example record versioning
Grammar consistency tests: Static tests on whole
Graph grammar: Graphing systemic networks, Graph Grammar starting from,
Traversal and resource graphs, Graph Grammar
Graph region: Graphing regions, Graphing systemic networks
Graph structure: Introduction to structure graphs, How to debug resources.
Grapher display modes: Display M odes, Graphing systemic networks, Printgraph,
Traversal and resource graphs, Graph Grammar
Hardcopy: Print Chooser
Launch development windows:. The root commands: overview, The root commands.
overview

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (3 von 6) [11.12.2004 14:35:10]



Index: A

L oad examples: Directory structure and contents

Load lexicon files: Lexicons

Load linguistic resources. Simple resour ce set loading, Linguistic object focusing,
Notational conventionsin this, Monolingual loading, Contrastive loading, Monolingual

saving, Contrastive saving, Multilingual saving, Semantic defaults and macros,
Patching and loading linguistic , Patching and loading linquistic , Directory structure
and contents, Directory structure and contents

Load linguistic resources (patching): Patching and loading linguistic

Multilingual behaviour modes. General M ultilingual Oper ations, Contrastive |oading,
General Multilingual Operations, The root commands. overview

Multilingual behaviour modes and language focusing: Loading particular kinds of
Options: Structure Grapher Options

Partial regeneration: Partial re-generation

Pause: Pausing and restarting generation, Resume

Pause on inquiry: Pausing on inquiries

Print: Introduction

Print graph: Producing graphs for inclusion

Print chooser: Showing the chooser associated , Print associated chooser, Show chooser

of feature, Print chooser, Individual chooser tracing, Choosers

Print chooser (in popup window): Print Chooser

Print graph: Printgraph, Print Chooser, Introduction to structure graphs

Print inquiry: Print inquiry

Print system: Showing afull system , Printing system definition

Quit: Quiting the interface, Quit, Introduction to structure graphs

Quit resource grapher: Quit Resource Grapher

Redisplay: Redisplay

Reset generation modes: | ntroduction to gener ation debugging , Generation Display
Modes

Resume: Pausing and restarting generation

Set default language: General M ultilingual Operationsand , General Multilingual
Operations, The root commands: overview, Creating unconditionalized linguistic
resources, Patching and loading linguistic

Set language: Switching L anguages, L anguage-font associations, Switching languages
Show cumulative history: Viewing focused results, Activation of tracing, Individual
chooser tracing

Show examples with collected features. Show examples with collected , Traversal and
resource graphs, Display generated string

Show path to: Show path to, Basic realization constraints

Stop pausing on inquiry: Pausing on inquiries

Store linguistic resources: Linguistic object focusing, Simple resource set saving,
Directory structure and contents, Resource definition files

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (4 von 6) [11.12.2004 14:35:10]



Index: A

o Store linguistic resources (example of use): Contrastive saving, Multilingual saving
o Store linguistic resources (patching): Patching and saving linguistic

o Suspend: Suspending the interface, (Re-)Activating the interface

o Traceinquiries of chooser: Individual chooser tracing

o Traceinquiry: Individual inquiry tracing

o Trace system: Individual system tracing

o Traversa graph: Dynamic traversal tracing

o Untrace inquiries of chooser: Individual chooser tracing

o Untrace inquiry: Individual inquiry tracing

o Untrace system: Individual system tracing

o Who can' commands
» ... ask: Who can ask, Who can ask

= ... Classify: Who can classify

= ... iIdentify: Who can identify

= ... inflectify: Who can inflectify

= ... 1nsert: Who can insert

= ... lexify: Who can lexify

= ... Order: Who can order

= ... partition: Who can partition

= ... pose: Who can pose identifying

= ... pose-identifying-inquiry: Who can pose identifying
= ... preselect: Who can preselect

o Who has as commands
= ... Input: Who has as input

= ... Output: Who has as output
o Writelexicon file: Simple resource set saving

Command completion
The root commands: overview

Completion

| ntroduction, The KPML Inspector Window
Concept printing

Print Concept
Conflation alias

Show Ordering Constraints

Contrastive multilingual mode:
o definition:General Multilingual Operations and

o generation: Contrastive generation

o graphing: Contrastive graphing

o loading: Contrastive loading

o printing: Contrastive definition printing
o saving: Contrastive saving

Copyhub

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (5 von 6) [11.12.2004 14:35:10]



Index: A

Choosers, Show Associations

:Create new language (KPML command)
|nheriting language definitions

N

.C.D.E.F.G.H.l.J.K.L.M.N.O..P.Q.R..

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (6 von 6) [11.12.2004 14:35:10]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspecting individual object definitions

next |jup ||previous ||contents []index

Next: Introduction Up: The KPML Inspector Window Previous: Multilingual graphing

Inspecting individual object definitions

. Introduction
. Display commands
o Print S/Stem
o Print Chooser
o Print Inquiry
o Print Inquiry Implementation
o Print Lexical Item
o Print Concept
o Print Relation
. Definition displaying and the multilingual modes
o Monolingual definition printing
o Contrastive definition printing
o Multilingual definition printing

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node103.html [11.12.2004 18:25:39]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next |jup ||previous ||contents []index

Next: Display commands Up: Inspecting individual object definitions Previous: Inspecting
individual object definitions

Introduction

The definitions of any linguistic object can be displayed directly. The commands for displaying
objects are found at the top level in the Inspection window command menu. The linguistic objects
addressed include: systems, choosers, inquiries, inquiry implementations, grammatical features,
lexical items, spL-terms, sentence plans (both prior to, and following, expansion of macros), and Loowm
concepts and relations. Each of these can be typed directly at the Interaction window using the
command <:Print ...>; i.e, clicking on "Print Lexical Item' has the same effect as typing "Print
Lexical Item' in directly at the Interaction window. Similarly, each of the options under the menu
option "Who can ..." can be obtained also by typing in the equivalent command at the Interaction
window.

Thefull list of these commands, and the description of their function whether reached by typing in or
by selecting menu options, is asfollows. All commands are described asif the multilingual mode
setting were "monolingual’, which is the default (see Sections 5.5 and 6.3.3); examples of different

settings are also given in Section 6.3.3.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node104.html [11.12.2004 18:25:44]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Display commands

next |jup ||previous ||contents []index

Next: Print System Up: Inspecting individual object definitions Previous: Introduction

Display commands

. Print System

« Print Chooser

« Print Inquiry

« Print Inquiry Implementation
« Print Lexical Item

« Print Concept

. Print Relation

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node105.html [11.12.2004 18:25:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print System

next |jup ||previous ||contents []index

Next: Print Chooser Up: Display commands Previous. Display commands

Print System

Requires that a grammatical system name be entered in the interaction window and prints the
definition of the system (see Section 12.2.4) in the interaction results window. The definition shown is
that which holds for the currently active language. For example, this was the last command performed
in the interaction pane shown in Figure 6.1, producing the rank system definition shown there.

'- John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node106.html [11.12.2004 18:25:53]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Chooser

next Jjup |lprevious |Jcontents [Jindex

Next: Print Inquiry Up: Display commands Previous: Print System

Print Chooser

Requires that a chooser name be entered in the interaction window and prints the definition of the chooser (see
Section 12.2.6) in the interaction results window. The definition shown is that which holds for the currently active

language.

If : chooser s areon thelist of activated pop-up displays (settable from the rooT:<Flags> command), then the
command <Print Chooser> produces a graphical representation of the specified chooser instead of atextual form.

Figure 6.9, for example, shows the corresponding graph of the chooser definition given in Section 12.2.6. The layout-

oriented grapher options described for system network graphing also apply for chooser graphs and may be set with the
command cHooserR-GRAPH:<Chooser Display Modes> . The linguistic objects present in the graph are, as with the textually

presented version, mouse-sensitive, providing links back to grammatical features and inquiries (cf. Section 6.5).

rrl cliopser—definition: IWPE-D—EEIAG—CHU DS ER (ERLLISHE

ouck dlezslav| lacdecoy| Choossr 2levlay Fodes

(FXTRTRHTTAL.-0

] FROCEYS )
AXISTRAFIAL HOMMLI T BRI AL
[TRRHT TRV [\ TORETTTV ) PROCRRS |
B L FLENT - — = __
(EXLYTENT- LD FIRNTTTY HONTIRHTTTY
FROCESS 17 |
[ IDENTITY { CIMOSE
[Py HUE TORHTTFTRT TFT.ATTOHAT—OTHER )
EXLETENT (TORHTTFTRE-—TR
CUOJECT ) FRICESS 1)
(CULYHUE | THEHTTFY
ERLSTELT TTEHTIFTRN
DIRCCTCOMPLOHENT (IPENTLYLEK-LL
TRICESD 1)

[CHOUYE EXLSTEMTLAL )

[ TRRHT TR
PN
[HYMOOL IO

PROEFRE 1)

[LLEHTLEY
VALTE
{ F¥FHRNT, TRRR-TH
TIMICRER ) )

[ COPYIIUD
TIRHT TFTFTh
KTTRIEAT )

1
{ COE¥IUD

TOEWTIFTER
TTNECTCONTLEWERT )

[COSE IDEMTIFYING )

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node107.html (1 von 3) [11.12.2004 18:26:03]



Print Chooser

Figure: Graphical display of a chooser

As with the REsoURCE-GRAPH:<Print Graph> command (Section 6.2.1.2), the
CHOOSER-GRAPH:< Hardcopy> command produces a postscript file in the current hardcopy directory. This can then be sent
to aprinter, or given the appropriate flag settings and modifications (cf. Section 6.2.2) included in text documents. An
example of an included encapsulated postscript version of a chooser (that for PRIMARY TENSE in English) is shown in

Figure 6.1019

( ITRITTIFL
TRIRG]
(TIME- I¥- BRLET IO -0 EPREEING T INE 1D
TRHEO]
SPRECHECT 1)

J
(OAMTELFRCTUA LI -
CHIrs
TRIFOL |

CONTERPACTUAL
|

(CHODER PaBT )

NN OUNIFRPACTML

FROCRES )

(BAPEIETCHELITE )

EXTENGIMNAL
I

( LOGTICD - TRHPORS L - (TOWDIT IO -
O

Lie OO HALCORD TN

| PECEE 1)
TRIPOL
TRIPO)

_:—'_'_'_'_\_\_\_‘—\_

IRECEDER
|

NOTIAEEDES
|

(CHOOSE PagT |

(CHDOSE PREGEAT )

NYTL S COTR R RALCIND TN

!

(PRECRDE ()
TRIEO]
TRIEON |

NOTERECEDF  MFCEDER
|

(CHOOSE PafT )

N'THECEDES

!

TRLEON
TRIEO]L

(FRBCRIE ()

—_— T

HECEIRS
/

NTERECEIES
|

NIRRT AL,
|

(CHOCER PRRSEAT |

[OOSR FUTIER |

(CHOOER PERSENT

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node107.html (2 von 3) [11.12.2004 18:26:03]



Print Chooser

Figure: Graphical chooser display included in this document as an EPSfile

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node107.html (3 von 3) [11.12.2004 18:26:03]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Inquiry

next |jup ||previous ||contents []index

Next: Print Inquiry Implementation Up: Display commands Previous: Print Chooser

Print Inquiry

Requires that an inquiry name be entered in the interaction window and prints the definition of the
inquiry (see Section 12.2.7) in the interaction results window. The definition shown is that which

holds for the currently active language.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node108.html [11.12.2004 18:26:07]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Inquiry Implementation

next |jup ||previous ||contents []index

Next: Print Lexical Item Up: Display commands Previous: Print Inquiry

Print Inquiry Implementation

Requires that an inquiry name be entered in the interaction window and prints the definition of the
implementation of that inquiry if it exists and is accessible in uncompiled form. This definition will
normally be aLisp function.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node109.html [11.12.2004 18:26:21]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Lexical Item

next |jup ||previous ||contents []index

Next: Print Concept Up: Display commands Previous. Print Inquiry |mplementation

Print Lexical Item

Requires that alexical item name be entered in the interaction window and prints the definition of
the lexical item (see Section 12.2.8) in the interaction results window. The definition shown is that

which holds for the currently active language.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node110.html [11.12.2004 18:26:38]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Concept

next |jup ||previous ||contents []index

Next: Print Relation Up: Display commands Previous: Print Lexical ltem

Print Concept

Requires that a Loom concept name be entered in the interaction window and prints the definition of
that concept in the interaction results window.

Note: thisis currently specific to Loom, and will need updating when a different knowledge
representation language isused. The changeis straightforward.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node111.html [11.12.2004 18:26:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Relation

next |jup ||previous ||contents []index

Next: Definition displaying and the Up: Display commands Previous: Print Concept

Print Relation

Requires that aLoom relation name be entered in the interaction window and prints the definition of
that concept in the interaction results window.

Note: thisis currently specific to Loom, and will need updating when a different knowledge
representation language isused. The changeis straightforward.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node112.html [11.12.2004 18:26:46]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Definition displaying and the multilingual modes

next |jup ||previous ||contents []index

Next: Monolingual definition printing Up: Inspecting individual object definitions Previous: Print
Relation

Definition displaying and the multilingual modes

All the display commands described above are also further parameterized by the monolingual,
contrastive, and multilingual modes. The effects are described as follows. The default, startup modeis
monolingual definition printing. The description of the definition form is given in Section 12.2.4.

. Monolingual definition printing
. Contrastive definition printing
. Multilingual definition printing

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node113.html [11.12.2004 18:26:51]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual definition printing

next |jup ||previous ||contents []index

Next: Contrastive definition printing Up: Definition displaying and the Previous. Definition
displaying and the

Monolingual definition printing

In monolingual definition printing mode, the definition corresponding to that for the currently selected
language is displayed in one of the kpmL windows.

(SYSTEM
:HAWE RANK
:THFUTS START
: OUTFUTS ((0.353 CLAUSE) (0.333 GROUPS-PHRASES)
(0.333 WORDS))
: CHODSER EANK-CHOOSER
:REGTON RANK
:METAFUNCTION LOGICAL
)

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node114.html [11.12.2004 18:26:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive definition printing

next |jup ||previous ||contents

index

Next: Multilingual definition printing Up: Definition displaying and the Previous: Monolingual

definition printing

Contrastive definition printing

In contrastive definition printing mode, displays are given of the individual definitions
corresponding to views from either all of the known language varieties or, alternatively, if a set of
languages has been “focused' (Section 5.6.2), from this focused set. For example, if German and
English have been focused (or, if kPmL has only been configured to expect German and English), then
< Print System Rank> produces the following.

Language: GERMAN
(SYSTE

: NAME

: INFUTS

: OUTFUTS

: CHDOSER
:REGIDN
:HETAFUNCTION
)
Language: ENGLISH
(SYSTEM
: NAME
: INPUTS
: OUTPUTS

: CHOOSER
:REGTIDN
:METAFUNCTION

)

RANK

START

((0.535 CLAUSE) (0.333 GROUPS-PHRASES)
(0.333 WORDS))

RANK-CHOOSER

RANK

LOGICAL

RANK

START

((0.2 CLAUSES) (0.2 GROUPS-PHRASES)
(0.2 YORDS (INSERT STEM)
(PRESELECT STEM MORPHEFES))
(0.2 MORPAEMES (INSERT HEAD)))

RANE-CHOOSER

RANETHG

LOGTCAL

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node115.html [11.12.2004 18:27:08]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual definition printing

next |lup [|previous [Jcontents |[index

Next: Object selection according to Up: Definition displaying and the Previous. Contrastive definition
printing

Multilingual definition printing

In multilingual definition printing mode, a combined view of al of known or focused languagesis
presented. For example, in the same situation as the the previous example, multilingual mode printing would
produce the following.

(SYSTEM

:NAME (:GERMAN :ENGLISH RANK)

:INFUTS (:GERMAN :ENGLISH START)

:OUTRUTS ((:ENGLISH 0.2 :GERMAN 0.333 :ENGLISH CLAUSES
: GERMAN CLAUSE)
(:ENGLISH 0.2 :GERMAN 0.333 :GERWAN :ENGLISH
GROUPS-PHRASES)
(:ENGLISH 0.2 :GERMAN 0.333 :GERMAN :ENGLISH
VORDS :ENGLISH (INSERT STEM) :ENGLISH
(PRESELECT STEW MORPHEWES))
:ENGLISH (0.2 MORPHEMES (INSERT HEAD)))

: CHODSER (:GERMAN :ENGLISH RANK-CHODSER)

:REGIDN (:ENGLISH RANKTING :GERWAN RANK)

:METAFUNCTION (:GERMAN :ENGLISH LOGICAL)

)

John Bateman -- GMD/IPS -- Darmstadt, Germany
@' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node116.html [11.12.2004 18:27:20]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Object selection according to specified criteria

next |jup ||previous ||contents []index

Next: "Who has' selections Up: The KPML Inspector Window Previous: Multilingual definition
printing

Object selection according to specified
criteria

The kpmL inspector window includes commands for accessing linguistic objects on the basis of
specific resource-centred properties. The full list of commandsis as follows.

. _Who has selections
o Who has asinput
o Who has as output
. Who can' selections
o Who can lexify
o Who can inflectify
o Who can classify
o Who can insert
o Who can order
o Who can partition
o Who can preselect
o Who can ask
o Who can identify
o Who can pose identifying inquiry
. Examples Using Features

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node117.html [11.12.2004 18:27:25]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

"Who has' selections

next |jup |lprevious |Jcontents ||index

Next: Who has asinput Up: Object selection according to Previous: Object selection according to

"Who has' selections

. Who has asinput
. Who has as output

- | John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node118.html [11.12.2004 18:27:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who has as input

next |jup ||previous ||contents []index

Next: Who has as output Up: "Who has' selections Previous. "Who has selections

Who has as input

The command <:Who has as input> requires that a grammatical feature be entered in the interaction
window and printsalist of those grammatical systems that have the feature as input in the interaction
results window. The connectivity shown is that relevant for the currently active language.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node119.html [11.12.2004 18:27:46]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who has as output

next |jup ||previous ||contents []index

Next: "Who can' selections Up: "Who has' selections Previous: Who has as input

Who has as output

The command <:Who has as output> requires that a grammatical feature be entered in the interaction
window and printsalist of those grammatical systems that have the feature as output in the interaction
results window. The connectivity shown is that relevant for the currently active language.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node120.html [11.12.2004 18:27:52]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

"Who can' selections

next |jup ||previous ||contents []index

Next: Who can lexify Up: Object selection according to Previous. Who has as output

"Who can' selections

The INnsPECcTOR:<Who Can...> command brings up awide range of “who-can' type queries described as
follows. All of them can also be given directly as type-in commands at the Inspector interaction pane.

. Who can lexify

. Who can inflectify

. Who can classify

. Who can insert

. Who can order

. Who can partition

. Who can presdlect

. Who can ask

« Who can identify

. Who can pose identifying inquiry

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node121.html [11.12.2004 18:27:59]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can lexify

next |jup ||previous ||contents []index

Next: Who can inflectify Up: "Who can' selections Previous. “Who can' selections

Who can lexify

Requires that either a grammatical function or alexical item name be entered in the interaction
window and prints in the interaction results window alist of those grammatical systems that lexify the
grammatical function to have the lexical item as realization. The unspecified argument (i.e., either the
grammatical function or the lexical item) isfilled by any such unit in the loaded resources where the
specified kind of realization statement holds. This option is reached from the menu option <Who can
...>, followed by the selection <... lexify>. The systems selected are those relevant for the currently
active language.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node122.html [11.12.2004 18:28:03]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can inflectify

next |jup ||previous ||contents []index

Next: Who can classify Up: "Who can' selections Previous: Who can lexify

Who can inflectify

Requires that either a grammatical function or amorphological lexical feature name be entered in the
interaction window and printsin the interaction results window alist of those grammatical systems
where the grammatical function isinflectified to have the morphological feature. The unspecified
argument (i.e., either the grammatical function or the morphological feature) isfilled by any such unit
in the loaded resources where the specified kind of realization statement holds. This option is reached
from the menu option <Who can ...>, followed by the selection <... lexify>. The systems selected are
those relevant for the currently active language.

et John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node123.html [11.12.2004 18:28:07]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can classify

next |jup ||previous ||contents []index

Next: Who caninsert Up: "Who can' selections Previous. Who can inflectify

Who can classify

Requires that either a grammatical function or alexical feature name be entered in the interaction
window and prints in the interaction results window alist of those grammatical systems where the
grammatical function is classified to have the lexical feature. The unspecified argument (i.e., either
the grammatical function or the lexical feature) isfilled by any such unit in the |oaded resources
where the specified kind of realization statement holds. This option is reached from the menu option
<Who can ...>, followed by the selection <... classify>. The systems selected are those relevant for the
currently active language.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node124.html [11.12.2004 18:28:11]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can insert

next |jup ||previous ||contents []index

Next: Who can order Up: "Who can’ selections Previous. Who can classify

Who can insert

Requires that a grammatical function be given in the interaction window and prints in the interaction
results window alist of those systems where the specified function is inserted. This option is reached
from the menu option <Who can ...>, followed by the selection <... insert>. The systems selected are
those relevant for the currently active language.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node125.html [11.12.2004 18:28:16]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can order

next |jup ||previous ||contents []index

Next: Who can partition Up: "Who can' selections Previous. Who can insert

Who can order

Requires that a grammatical function be given in the interaction window and prints in the interaction
results window alist of those systems where the specified function is ordered with respect to some
other function. This option is reached from the menu option <Who can ...>, followed by the selection
<... order>. The systems selected are those relevant for the currently active language.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node126.html [11.12.2004 18:28:20]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can partition

next |jup ||previous ||contents []index

Next: Who can preselect Up: "Who can' selections Previous. Who can order

Who can partition

Requires that a grammatical function be given in the interaction window and prints in the interaction
results window alist of those systems where the specified function is partitioned with respect to some
other function. This option is reached from the menu option <Who can ...>, followed by the selection
<... partition>. The systems selected are those relevant for the currently active language.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node127.html [11.12.2004 18:28:24]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can preselect

next |jup ||previous ||contents []index

Next: Who can ask Up: "Who can' selections Previous: Who can partition

Who can preselect

Requires that either a grammatical function or a grammatical feature name be entered in the
interaction window and printsin the interaction results window alist of those grammatical systems
where the grammatical function is preselected to have the grammatical feature. The unspecified
argument (i.e., either the grammatical function or the grammatical feature) isfilled by any such unit in
the loaded resources where the specified kind of realization statement holds. This option is reached
from the menu option <Who can ...>, followed by the selection <... preselect>. The systems selected
are those relevant for the currently active language.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node128.html [11.12.2004 18:28:28]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can ask

next |jup ||previous ||contents []index

Next: Who can identify Up: "Who can' selections Previous. Who can preselect

Who can ask

Requires that a branching inquiry be given in the interaction window and prints alist of those
choosers where the inquiry is asked in the interaction results window. This option is reached from the
menu option <Who can ...>, followed by the selection <... ask>. The choosers thus shown are those
relevant for the currently active language.

et John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node129.html [11.12.2004 18:28:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can identify

next |jup ||previous ||contents []index

Next: Who can pose identifying Up: "Who can' selections Previous: Who can ask

Who can identify

Requires that a grammatical function be given in the interaction window and prints in the interaction
results window the identifying inquiries that can provide a value for thisfunction. Thisoptionis
reached from the menu option <Who can ...>, followed by the selection <... identify>. The inquiries
selected are those relevant for the currently active language.

et John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node130.html [11.12.2004 18:29:03]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can pose identifying inquiry

next |jup ||previous ||contents []index

Next: Examples Using Features Up: "Who can' selections Previous: Who can identify

Who can pose identifying inquiry

Requiresthat an identifying inquiry be given in the interaction window and prints alist of those
choosers where the inquiry is asked in the interaction results window. This option is reached from the
menu option <Who can ...>, followed by the selection <... pose identifying inquiry>. The choosers
thus shown are those relevant for the currently active language.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node131.html [11.12.2004 18:29:07]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Examples Using Features

next |jup ||previous ||contents []index

Next: Direct inspection and information Up: Object selection according to Previous: Who can pose
identifying

Examples Using Features

The command insPecTOR: <Examples Using Features> is similar to the command that is available
from the resource graph window described above. However, if there are no collected features, it
prompts the user for afeature that is to be sought in the stored example records. A list of examples
that have the feature specified somewhere in one of their selection expressionsis given in the
Inspector window

Asaways, thiswill only select from examples where the selection expression is already present in the
example record: see Section 10.1 for a description of how and when this occurs.

Features are normally collected directly from graph of the systemic networks (Section 6.2.3.4) or from
selection expressions produced during generation (Section 7.4).

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node132.html [11.12.2004 18:29:11]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Direct inspection and information chains

next |jup ||previous ||contents []index

Next: Introduction Up: The KPML Inspector Window Previous. Examples Using Features

Direct inspection and information
chains

. Introduction
. Inspection operations on grammatical systems
o Printing system definition
o Print associated chooser
o Graph Grammar starting from system
. Inspection operations on grammatical features
o Displaying usage of grammatical features
o Who has asinput
o Who has as output
o Show path to
o Show chooser of feature
o Graph from feature
o Collect feature
o Uncollect feature
o Clear collected features
. Inspection operations on choosers
o Print chooser
o Show inquiries of chooser
o Systems of chooser
. Inspection operations on inquiries
o Print inquiry
o Print implementation
o Who can ask
o Who can pose identifying inquiry
. Inspection operations on lexical items
. Inspection operations on SPL terms
. Inspection operations on examples

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node133.html (1 von 2) [11.12.2004 18:29:16]



Direct inspection and information chains

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node133.html (2 von 2) [11.12.2004 18:29:16]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next [jup ||previous |[|contents [Jindex

Next: Inspection operations on grammeatical Up: Direct inspection and information Previous: Direct inspection and

information

Introduction

In addition to the kinds of commands given above where explicit names of linguistic units must be entered, it is
also possible (and more usual) to use direct mouse driven commands that operate on particular linguistic objects
visible in the kpmL display windows--such as the network graphs or the inspection window. The mouse-sensitivity
of the nodes in systemic graphs was described above (Section 6.2.3); this section discusses the possibilities that

textual representations offer for supporting the direct following of information chains also.

Asin the descriptions above, it should be noted that there are also options for supporting various tracing operations
during generation. These are not described here, but will be returned to in Chapter 7.

Normally all objects that are displayed in any kpvL window are to a greater or lesser extent mouse sensitive. The
kinds of operations that can be performed on these objects depends on their type. Thus, different types of linguistic
objects support different kinds of operations. The descriptions given here will be organized according to linguistic
object type.

Linguistic objects are generally referred to by name. In the textual displays, it istherefore the names of various
linguistic objects that occur that are mouse sensitive.

Asan example, Figure 6.11 shows the textual display of agrammatical system with all the mouse sensitive objects
present artificially highlighted. Each highlighted object here also shows the type of the object that is mouse
sensitive. Moving the mouse around a window quickly reveals the mouse sensitive objects in that window; the type
of an object can usually be seen in the mouse documentation line.

(SYSTEM
:HAME RANK |5 5t am
:INPUTS START [0 vtura
:OUTPUTS (0.2 CLLUSESLthu”]

(0.2 |GROUPS-PHRASES |;,qiura)

(0.2 |VORDS |toature (INSERT STEM)

(PRESELECT STEM |MORPHEMES |t,010ra))
(0.2 |MORPHEMES |tsusure (INSERT HEAD)))

: CHDDSER [ RANK-CHOOSER |.7000er
:REGIDN RARKING
:METAFUNCTION LOGICAL

)

Figure: Mouse sensitive objects within atextual display

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node134.html (1 von 2) [11.12.2004 18:29:26]



Introduction

& | John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node134.html (2 von 2) [11.12.2004 18:29:26]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on grammatical systems

next |jup ||previous ||contents []index

Next: Printing system definition Up: Direct inspection and information Previous: Introduction

Inspection operations on grammatical systems

. Printing system definition
. Print associated chooser
. Graph Grammar starting from system

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node135.html [11.12.2004 18:29:30]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Printing system definition

next |jup ||previous ||contents []index

Next: Print associated chooser Up: Inspection operations on grammatical Previous. Inspection
operations on grammatical

Printing system definition

Clicking left on a system name will print adefinition of that system in the Inspection information
pane. Thisis also the first option on the menu produced by clicking right on a system name. In both
cases thisisfully equivalent to the command <Print System> , but saves typing in the desired system
name.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node136.html [11.12.2004 18:29:37]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print associated chooser

next |jup ||previous ||contents []index

Next: Graph Grammar starting from Up: Inspection operations on grammatical Previous: Printing
system definition

Print associated chooser

Right-clicking on a system name brings up a menu including show associated chooser as an option.
This has the same effect as issuing the command inspecToRrR:<Print Chooser> and typing in the
clicked upon name.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node137.html [11.12.2004 18:29:41]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph Grammar starting from system

next |jup ||previous ||contents []index

Next: Inspection operations on grammatical Up: Inspection operations on grammatical Previous.
Print associated chooser

Graph Grammar starting from system

Right-clicking on a system name brings up a menu including Graph Grammar as an option. This has
the same effect as issuing the command inspecTOR:<Graph Grammar> and typing in the clicked upon
name.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node138.html [11.12.2004 18:29:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on grammatical features

next |jup ||previous ||contents []index

Next: Displaying usage of grammatical Up: Direct inspection and information Previous: Graph
Grammar starting from

Inspection operations on grammatical features

The first command described in this section is that reached by left-clicking on a grammatical feature.
The remainder are all reached by selecting the corresponding command from the menu produced by
right-clicking on agrammatical feature.

Note that all the commands here can aso be typed in full in the INsPECTOR interactor pane; in this case,
the arguments required must be typed directly as with all such commands.

All information given isfor the current language only.

. Displaying usage of grammatical features
. Who has asinput

. Who has as output

. Show path to

. Show chooser of feature

« Graph from feature

. Collect feature

. Uncollect feature

« Clear collected features

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node139.html [11.12.2004 18:29:49]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Displaying usage of grammatical features

next |jup ||previous ||contents []index

Next: Who has as input Up: Inspection operations on grammatical Previous: Inspection operations
on grammeatical

Displaying usage of grammatical features

Clicking left on agrammatical feature presentslists of all those systems that use that feature in their
inputs and their outputs. This has the same effect as issuing the command iNsPECTOR: < Print Feature>
and typing in the clicked upon name. The same command can be reached under the right-click menu.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node140.html [11.12.2004 18:29:54]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who has as input

next |jup ||previous ||contents []index

Next: Who has as output Up: Inspection operations on grammeatical Previous. Displaying usage of
grammatical

Who has as input

Selecting this option from the right-click menu for grammatical features prints a mouse-sensitive list
of the systems which have the clicked upon feature in their entry conditions.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node141.html [11.12.2004 18:29:57]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who has as output

next |jup ||previous ||contents []index

Next: Show path to Up: Inspection operations on grammatical Previous. Who has as input

Who has as output

Selecting this option from the right-click menu for grammatical features prints a mouse-sensitive list
of the systems which have the clicked upon feature as one of their output features. Note that a well-
formed systemic network can only have one such system: however, it is quite possible to have
multiple definitions that share an output condition known to kpvL at the same time. All but one of
these will, however, be disabled--i.e., will not be used in generation (cf. Section 7.5.2.4).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node142.html [11.12.2004 18:30:02]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show path to

next [jup ||previous |[|contents [Jindex

Next: Show chooser of feature Up: Inspection operations on grammatical Previous: Who has as output

Show path to

Selecting this option from the right-click menu for grammatical features prints a mouse-sensitive list of the
features which lie on the traversal path leading to the clicked upon system. For example, selecting this option for
the feature “finite-rankshift' (cf. Figure 6.3) produces the following for English:

(SYSTEM
:HANME RANK ayratam
: THPUTS START |¢ucturs
: OUTPUTS ((0.2 |CLAUSES [fastura)

(0.2 [GROUPS-PHRASES |; 4 qyur )

(0.2 |VORDS |taqture (INSERT STEM)

(PRESELECT STEM | MORPHEMES |oqiura))
(0.2 |MORPHEYES |toasure (INSERT HEAD)))

: CHDDSER [RANK ~CHOOSER | 700 s0r
:REGTDN RARKTNG
:METAFUNCTI ON LOGTCAT,

)

The paths given are calculated starting from the selected feature and working leftwards in the network along all
connections that do not participate in disunctions. Giving afull path description including digunctionsis naturally
somewhat more expensive and so is avoided.

£ John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node143.html [11.12.2004 18:30:06]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show chooser of feature

next |jup ||previous ||contents []index

Next: Graph from feature Up: Inspection operations on grammatical Previous. Show path to

Show chooser of feature

Selecting this option from the right-click menu for grammatical featuresis equivalent to issuing a
<Print Chooser> command for the systems who have the clicked upon feature as an output. That is,
all choosers that could be responsible for the clicked upon feature are displayed.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node144.html [11.12.2004 18:30:10]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph from feature

next |jup ||previous ||contents []index

Next: Collect feature Up: Inspection operations on grammatical Previous. Show chooser of feature

Graph from feature

Selecting this option from the right-click menu for grammatical features brings up a systemic
network graph with the clicked upon feature as root. All layout and content options are as described in
Section 6.2.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node145.html [11.12.2004 18:30:26]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Collect feature

next |jup ||previous ||contents []index

Next: Uncollect feature Up: Inspection operations on grammatical Previous. Graph from feature

Collect feature

As described in Section 6.2.1.3, features can be “collected' for various purposes. Selecting this option
allows the collection of any feature that is displayed in the interaction result pane.

John Bateman -- GMD/IPS -- Darmstadt, Germany
™ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node146.html [11.12.2004 18:30:30]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Uncollect feature

next |jup ||previous ||contents []index

Next: Clear collected features Up: Inspection operations on grammatical Previous: Collect feature

Uncollect feature

As described in Section 6.2.1.3, features can be “collected' for various purposes. Selecting this option

removes the clicked upon feature from the current list. This alows any feature that is displayed in the
interaction result pane to be removed from the current collection.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node147.html [11.12.2004 18:30:34]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear collected features

next |jup ||previous ||contents []index

Next: Inspection operations on choosers Up: Inspection operations on grammatical Previous:
Uncollect feature

Clear collected features

Selecting this option clears all the collected features (cf. Section 6.2.1.3) regardless of which feature
happened to be clicked upon.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node148.html [11.12.2004 18:30:38]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on choosers

next |jup ||previous ||contents []index

Next: Print chooser Up: Direct inspection and information Previous. Clear collected features

Inspection operations on choosers

All of the following commands can also be typed direction in the iNnsPEcTOR window's interactor pane.
In this case, the arguments required must be typed directly as with all such commands, instead of
being the object clicked upon.

. Print chooser
. Show inquiries of chooser
. Systems of chooser

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node149.html [11.12.2004 18:30:41]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print chooser

next |jup ||previous ||contents []index

Next: Show inquiries of chooser Up: Inspection operations on choosers Previous. Inspection
operations on choosers

Print chooser

Clicking left on a chooser presents presents the definition of that chooser shown according to current
defaults (i.e., atextual view in the iINnspEcTOR Window or as a separate graphical view as determined by
the appropriate flag under the rooT:< Flags> command. This has the same effect as issuing the
command inspecTor:<Print Chooser> and typing in the clicked upon name. The same command can
be reached under the right-click menu.

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node150.html [11.12.2004 18:30:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show inquiries of chooser

next |jup ||previous ||contents []index

Next: Systems of chooser Up: Inspection operations on choosers Previous: Print chooser

Show inquiries of chooser

Selecting this option from the right-click menu for a chooser displays in the INnsPECTOR'S interaction
results pane a mouse-sensitive list of all the inquiries that are used in the clicked upon chooser.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node151.html [11.12.2004 18:30:49]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Systems of chooser

next |jup ||previous ||contents []index

Next: Inspection operations on inquiries Up: Inspection operations on choosers Previous. Show
inquiries of chooser

Systems of chooser

Selecting this option from the right-click menu for a chooser displays in the INnsPECTOR'S interaction
results pane a mouse-sensitive list of all the systems that use a particular chooser. Normally thereis
only one such system, since each system has its own chooser. But if there are multiple versions of
systemsthenit is possible that a single chooser would be used by these distinct versions. The main
rationale of this command isto provide a mouse-driven means of following an information chain from
choosers back to systems.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node152.html [11.12.2004 18:30:53]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on inquiries

next |jup ||previous ||contents []index

Next: Print inquiry Up: Direct inspection and information Previous. Systems of chooser

Inspection operations on inquiries

All of the following commands can also be typed direction in the iNnsPEcTOR window's interactor pane.
In this case, the arguments required must be typed directly as with all such commands, instead of
being the object clicked upon.

« Printinquiry

« Print implementation

. Who can ask

. Who can pose identifying inquiry

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node153.html [11.12.2004 18:30:58]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print inquiry

next |jup ||previous ||contents []index

Next: Print implementation Up: Inspection operations on inquiries Previous. |nspection operations
oninquiries

Print inquiry

Clicking left on an inquiry presents presents the textual definition of that inquiry in the INSPECTOR'S
interaction results pane. This has the same effect as issuing the command iNsPEcTOR:<Print Inquiry>
and typing in the clicked upon name. The same command can be reached under the right-click menu.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
a | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node154.html [11.12.2004 18:31:02]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print implementation

next |jup ||previous ||contents []index

Next: Who can ask Up: Inspection operations on inquiries Previous: Print inquiry

Print implementation

Selecting this option from the right-click menu for an inquiry displaysin the INsPECTOR'S interaction
results pane the inquiry implementation associated with an inquiry: thisis normally a Lisp function.
The implementation can normally only be printed if the corresponding function has not been
compiled.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node155.html [11.12.2004 18:31:06]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can ask

next |jup ||previous ||contents []index

Next: Who can pose identifying Up: Inspection operations on inquiries Previous. Print
mplementation

Who can ask

Selecting this option from the right-click menu for an inquiry displays in the iINsPECTOR'S interaction
results pane a mouse-sensitive list of those choosers that ask the inquiry as a branching inquiry. As
well as being typed directly as insPECTOR:<:Who can ask> , this command can also be reached as
INsPECTOR:<Who can ... © ... ask>.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node156.html [11.12.2004 18:31:10]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can pose identifying inquiry

next |jup ||previous ||contents []index

Next: Inspection operations on lexical Up: Inspection operations on inquiries Previous. Who can ask

Who can pose identifying inquiry

Selecting this option from the right-click menu for an inquiry displaysin the INsPECTOR'S interaction
results pane a mouse-sensitive list of those choosers that pose the inquiry as an identifying inquiry. As
well as being typed directly as iNnspecTOR:<:Who can pose identifying inquiry> , this command can
also be reached as iInsPECTOR:<Who can ... : ... pose identifying inquiry>.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node157.html [11.12.2004 18:31:14]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on lexical items

next |jup ||previous ||contents []index

Next: Inspection operations on SPL Up: Direct inspection and information Previous: Who can pose
identifying

Inspection operations on lexical items

The only inspection operation for alexical item isto print its definition. This may include mouseable
morphological features.

= John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node158.html [11.12.2004 18:31:18]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on SPL terms

next |jup ||previous ||contents []index

Next: Inspection operations on examples Up: Direct inspection and information Previous: Inspection
operations on lexical

Inspection operations on SPL terms

The only inspection operation for an SPL term isto print its definition.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node159.html [11.12.2004 18:31:21]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on examples

next |jup ||previous ||contents []index

Next: Overview of information inspection Up: Direct inspection and information Previous:
| nspection operations on SPL

Inspection operations on examples

A wide range of further inspection operations are supported on the basis of “example records. These
are stored as test suites, or example sets. The role and maintenance of examplesis described in detail

in Chapter 10. The description of inspection (and other) operations on examplesis therefore given
there.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node160.html [11.12.2004 18:31:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of information inspection chains

next |jup ||previous ||contents []index

Next: The KPML Development Window Up: The KPML Inspector Window Previous: Inspection
operations on examples

Overview of information inspection
chains

The possibilities for following information chains for particular types of linguistic objects are
summarized in Figure 6.12. Each box in the diagram represents a particular type of linguistic object
supported by kpmL. An arrow between a pair of boxes indicates that it is possible, by means of a
mouse-click combination, to go from an object of the indicated source type to the associated object of
the target type.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node161.html (1 von 3) [11.12.2004 18:31:55]



Overview of information inspection chains

Semantic

Netwark 1l C oncept

X

lnqilir}'
Implementation

K

Inguiry

Lexeme

C hooser

Grammatical
Feature

Systemic | | Grammatical
Network Sy stem

potential (the resources)

Figure: Summary of information chain possibilities. resources

For example, there are menu commands available which make it possible to go from the textual or
graphical representation of a 'grammatical feature' to:

(i)

the system for which that feature is an output,
(if)

the chooser which is responsible for selecting that feature,
(iii)

agraph of the systemic network having that feature as root.

Right mouse-clicking on an object will generally bring up a menu presenting the indicated options
(plus options for generation tracing as described in Chapter 7).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node161.html (2 von 3) [11.12.2004 18:31:55]



Overview of information inspection chains

Note that the options presented here are considerably extended by the example sets; thisis
summarized in Section 10.4.

“ John Bateman -- GMD/IPS -- Darmstadt, Germany
! | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node161.html (3 von 3) [11.12.2004 18:31:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The KPML Development Window

next |jup ||previous ||contents []index

Next: Introduction Up: No Title Previous. Overview of information inspection

The KPML Development Window

. Introduction
. Window Layout
. Overview of commands
. Generation: basics
o Introduction to generation with kemL
o Starting generation
o Generation and the multilingual modes
« Monolingua generation
« Contrastive generation
o Semantic defaults and macros
o Run-time cautions
o Run-time warnings
o Running modes
o Boundary conditions
. Tracing and debugging during generation
o Introduction to generation debugging under kPmL
o Generation tracing modes
« Show Constituent Starts
« Show System And Inquiry Activity
« Show Why System Is Firing
« Show Disabled Candidate Systems
« Show System Entry Dependencies
= Show Preselections
« Show Immediate Realizations
« Show Lexical Selection
« Show Lexical Features
« Show Ordering Constraints
« Show Ordering Events
= Show Ordering Results

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node162.html (1 von 3) [11.12.2004 18:32:02]



The KPML Development Window

« Show Associations
« Show Inquiry Answer Source
« Show entailed inquiry response
o Generation process control options
« Redize Selectively
« Redlize until constituent number
= Single Step
« Enter Debugger on Warnings
o Generation result focusing modes
« Cumulate System and Inquiry Activity
« Update Example Record Fields
o Viewing focused results
« Thecumulative history window commands
« Redisplay
« Clear history
« Display options
« Quit
« Example of use
Activating result focusing and tracing for particular linguistic objects
o Activation of tracing
« Individua system tracing
« Individua chooser tracing
« Individua inquiry tracing
o Clearing tracing selections
Graphical representation of systemic network traversa
o Traversal and resource graphs
o Dynamic traversal tracing
. Additiona generation process control options
o Disabling and enabling systems
o Pausing on inquiries
o Pausing and restarting generation
« Inspecting the results of generation: Graph Structure
o Introduction to structure graphs
o Structure Grapher Options
o Operations available on structure constituents
« Selection expression
« Presdections
= Orderings
« Lexica constraints
« Associations
« All structural constraints

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node162.html (2 von 3) [11.12.2004 18:32:02]



The KPML Development Window
. Inspecting the results of generation: Operations on the produced strings or textual structure
displays
. Switching Languages
. Summary of generation process information chains
. How to debug resources. a sketch of a method

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node162.html (3 von 3) [11.12.2004 18:32:02]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next |jup ||previous ||contents []index

Next: Window Layout Up: The KPML Development Window Previous. The KPML Development
Window

Introduction

The kpmL development window is used for maintaining and devel oping linguistic resources by means
of generation--either single instances of generation or by running through example sets. The
development window includes commands for controlling the amount of information shown or
gathered during generation and for inspecting the results of generation.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node163.html [11.12.2004 18:32:07]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Window Layout

next |fup ||previous ||contents |[index

Next: Overview of commands Up: The KPML Development Window Previous:. Introduction

Window Layout

An example of the development window is shown in Figure 7.1. It isdivided into 4 panes stacked
vertically:

. the menu commands for resource development,

. the ‘target' sentence pane which shows the intended generation target when working with
examples,

. theinteraction results display pane,

. the mouse documentation line.

r1| Development (KPML)
Graph Structure Pause
Generation Modes Resume
Clear tracing options Reset Generation Modes
Abort Generation Example Operations
Generate Sentence Set Language
Generate Again show Cumulative History

Target: At the end of the century
Behrens gave up palnting and took up
(((Behrens ] )(gave up J({)(painting niat
(the )end jof J(the )century ]H]]]), (and
_]([[Behrens ] J(took up J(()(architecture )
(in ){(Darmstadt ) )

<GENERATING (example: EX-SET-25)>

To whom was the third response sent
?

R: Translator KPML-1::PRESENT-MOUSABLE-KPML-OUTPUT.
I

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node164.html (1 von 2) [11.12.2004 18:32:17]



Window Layout

Figure: KPML development environment window

£ | John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ: mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node164.html (2 von 2) [11.12.2004 18:32:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of commands

next |jup ||previous ||contents []index

Next: Generation: basics Up: The KPML Development Window Previous. Window L ayout

Overview of commands

The development commands can be divided into the following categories:

. commands for starting generation (<Generate Sentence> , <Generate Again>, and <Example
Operations. Example Runner>),

. commands for controlling the information displayed or collected during generation
(<Generation Modes>, <Reset Generation Modes>, and <Clear Tracing Options>),

. commands for interrupting or resuming the generation process (<Pause>, <Abort Generation>,
and < Resume>,

. commands for showing the results of generation (<Graph Sructure> and <Show Cumulative
History>),

. commands for operating on examples and example sets (those under <Example Operations>).

In addition, the single command <Set Language> can be used to explicitly indicate the language for
which generation is to proceed and for which display and graphical information is to be given.

These command groups, with the exception of those for example sets which are described separately
in Chapter 10, are described in detail in the following sections. Since the main function of the
development window is concerned with generation, our discussion of the commands take generation
asits starting point.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node165.html [11.12.2004 18:32:50]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation: basics

next |jup ||previous ||contents []index

Next: Introduction to generation with Up: The KPML Development Window Previous. Overview of

commands

Generation: basics

. Introduction to generation with kpmL

. Starting generation

. Generation and the multilingual modes
o Monolingual generation
o Contrastive generation

. Semantic defaults and macros

. Run-time cautions

. Run-time warnings

« Running modes

. Boundary conditions

9 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node166.html [11.12.2004 18:35:28]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction to generation with KPML

next |jup ||previous ||contents []index

Next: Starting generation Up: Generation: basics Previous: Generation: basics

Introduction to generation with «ew

Generation with kpmL has two main functions. First, generation is motivated externally in that some
application, or user, wishes to automatically create natural language strings expressing some given
semantic content. Second, generation is motivated internally in that a set of linguistic resources can be
demonstrated to be adequate for successfully generating some pre-specified set of test sentences. atest
suite, or example set. In both cases it may be necessary to inspect both the linguistic resources defined
and the generation process in order to ascertain why a particular semantic specification did not
produce an accceptable string, or to discover what kind of semantic specification would have been
appropriate. Because generation plays a crucial role as amode of resource "debugging' or
maintenance, an extensive range of commands are provided for finding out exactly what happened
during generation and why.

The simplest mode of generation in kpvL is that some semantic specification is provided as input
(expressed in the SPL, sentence plan language, notation) and a string is produced that expresses that
semantic specification in the natural language determined by the resources loaded and the language
desired.

Although it is possible to give one-off semantic inputs (cf. Section 14.1), it is more common for work

to proceed on some set of selected examples--these might be atest suite for the resources, or some set
of representative sentences that a particular application needs to have generated. The task is generally
to ensure that the defined resources do the expected thing with the inputs given and, when they do not,
to repair or extend them. For this reason, generation with kpmL is example-driven. Semantic inputs are
loaded as a set of examples and then selected for generation--either singly or as a collection. The
creation and maintenance of example setsis described in detail in Chapter 10.

next |fup |lprevious [Jcontents |]index

Next: Starting generation Up: Generation: basics Previous. Generation: basics

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node167.html [11.12.2004 18:35:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Starting generation

next |Jup [lprevious |[contents |]index

Next: Generation and the multilingual Up: Generation: basics Previous: Introduction to generation with

Starting generation

The command peveELOPMENT:<Generate Sentence> brings up a menu of examples, selection of one of which initiates generation by appeal to
the semantic specification stored in that example (rather than by user interaction or by rote from an example file). Generation is normally
undertaken in “implemented’ mode (Section 7.4.7), which means that inquiry implementations, where they exist, are used to interrogate the

environment (knowledge base, upper model, etc.) rather than having a user intervene in the generation process.
The menu showing available examples can be set to show either:

. al examples,
. the examples relevant for a particular language or set of languages.

In addition, the example selection menu can show examples identifying them either by the target string (i.e., a pre-specified desired result for
reference during debugging), or by the generated string (i.e., the string that was actually produced |ast time the example was generated).
These are controlled by the appropriate flags under the rooT:<Flags> command. Restriction to current language(s) works prior to any further
restriction of example displays. The default settings are for language restricted display of the example targets.

The command <Generate Again> restarts generation for the previous example generated. If no previous example was generated, then this
command is equivalent to <Generate Sentence>.

KpuvL offers avariety of ways of inspecting the results of generation.

The simplest isto display the string produced (or strings, if the input was not specific enough) directly in the interaction results pane. Thisis
what has happened in Figure 7.1 above. Here two options are provided, also shown in the figure: either the string can be printed asis (the

second string shown), or it can be printed with an explicit marking of constituency structure (the first string shown). Explicitly marking the
constituency has the advantage that it is easier to see the underlying structure in order to directly select constituents by mouse for further
information gathering. For this reason, this display is the default when kpmL is newly configured; this can be changed under the rooT:<Flags>

command.

An dternative presentation form isto produce a summary of the structure generated in the Interaction Results pane. The display of this
structure can be activated by setting the appropriate flag by means of the <Flags> command. An example of this structureis shownin

Figure 7.2. The generated string is also displayed along with a summary of any warnings that may have occured during generation.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node168.html (1 von 3) [11.12.2004 18:35:59]



Starting generation

T =] Development (KPML}

Graph Structure Panse
Generation Modes Resmme
Resek Re=zet Gemeratiom Modes
Clear Development Exarple Operabtions
Generate Sentence Set Langquage
Genexrate Fugain Grarmar Gomsistency

Target: Esehrens i= (hoofdzake1lilk) bekend om

21Jn aktiviteiten in ds
industriedesign en in de architektuur.

< GENERATING [exmﬁple: B-CHEATE-D1 AGATM)>
Function Structuare: 1
[ SENTENCE]
[ TOPIGAL#1/CARRTER:1/SUBJECTH#1]
[ THING# 2]
[ STER# 3]
[HEADH4].. = "Behrens"
[ VOICE#1/TEMPODH1/FINITEH#1/LENVEREH 1 /PROCESSH1] .. = "15 bekend "
[ RANGEMAREERH#1].. = "om "
[ RELATIOMAL RANGEH1 /DTREGC TCOMPFLEMENTH1 /ATTRIBUTE#1 ]
[DEICTICHS]
[ THONG#G].. = "zijn "
[ THING#5]
[STEME1S]
[HEADH#16] . .
[ ENDINGH#15]
[HEADH17] ..
[LOCATIVEQUALHSL ]
[MINORFROCESSHF] .. = "in
[ MINIRANGEH 7]
[ INITIATINGH G]
[DEICTIC#9].. = "de "
[ THOINGHO ]
[ STEM#10]
[HERAD#11] .. = "industriedesign”
[EXTEMDER#8] .. = "en "
[ CONTINUINGH 8]
[DEICTIC#12].. = "de "
[ THIMNGE12]
[ STEM#13]
[HEAD#14] .. = "axrchitektmux"

"aktiviteit"

(((Behrens)) ; j(is bekend jjom j(i(zijn j)({aktiviteit))jen)) j((in j(i(de j(((indn I
striedesiga)) ) (en ((de ([(architektur)) ))))) .-

Figure: Example structural result of generation

Both the generated string and the display structure are mouse sensitive and allow for several further resource maintenance and debugging
commands as described in Section 10.3.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node168.html (2 von 3) [11.12.2004 18:35:59]



Starting generation

next |jup |lprevious ||contents ||index

Next: Generation and the multilingual Up: Generation: basics Previous: Introduction to generation with

John Bateman -- GMD/IPS -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node168.html (3 von 3) [11.12.2004 18:35:59]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation and the multilingual modes

next |jup ||previous ||contents []index

Next: Monolingual generation Up: Generation: basics Previous. Starting generation

Generation and the multilingual modes

An appropriate use of the multilingual modes can in many cases remove the need for explicit language
switching. The interaction of these modes with generation is described in this section. It should be
noted, that whenever a language switch is carried out automatically as a consequence of the
multilingual mode settings, the full side-effects of explicit language switching as set out in

Section 7.11 will occur.

. Monolingual generation
. Contrastive generation

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node169.html [11.12.2004 18:36:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual generation

next |jup ||previous ||contents []index

Next: Contrastive generation Up: Generation and the multilingual Previous: Generation and the
multilingual

Monolingual generation

When the monolingual generation mode is selected, sentence generation (aslong asit is started by
<Generate Sentence> or <Example Operations. Example Runner>) proceeds for the currently active

language only. Thisis the behavior closest to that of Penman (with the current language obligatorily
setto: engl i sh).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node170.html [11.12.2004 18:36:08]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive generation

next |jup ||previous ||contents []index

Next: Semantic defaults and macros Up: Generation and the multilingual Previous: Monolingual
generation

Contrastive generation

When the contrastive generation mode is selected, sentence generation (aslong asit is started by
<Generate Sentence> or <Example Operations. Example Runner>) proceeds for all the languages for
which kpmL is currently configured (or the subset of those languages declared to be in focus via
language focusing: Section 5.6.2). A given spL specification is attempted for each language variety for
which it is declared relevant.

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node171.html [11.12.2004 18:36:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Semantic defaults and macros

next |jup ||previous ||contents []index

Next: Run-time cautions Up: Generation: basics Previous. Contrastive generation

Semantic defaults and macros

Various semantic defaults may need to be initialized before using provided linguistic resources for
generation. Moreover, individual language resources may define their own spL macros. Failing to
correctly set up the required default environments can be a cause of completely mystifying generation
failures. It istherefore worthwhile being aware of the default mechanisms, although kpvL attempts to
make the loading and activating of defaults largely transparent to the user.

In any redlistically sized resources there are alarge number of inquiries defined for each language
(typically around 600) and many of these control aspects of generation variation that are not directly
derivable from a barebones "propositional content'--i.e., they do not belong to the ideational
metafunction. To simplify the use of such resources for generation, applications may define sets of
defaults that are to be used for providing the responses to selected inquiries. A set of defaults, called a
default environment, can be defined and then activated and deactivated at will. The default
environment mechanism was implemented for Penman by Bob Kasper in 1988-89 and is inherited and
made partially multilingual in kpmL code. For more information about the possibilities for default
definitions, therefore, see the spL descriptions in the Penman documentation (Penman Project ). Their

definition forms are described in Section 12.2.2.2.

Definitions of sr. macros and default environment definitions are automatically loaded as part of the
default <load linguistic resources> command. The files concerning these definitions are as follows
(see Section 12.2.14):

. afilebasi c-spl - macros. | i sp: which holds the sp. macro definitions,
. afilebasi c-spl -def aul ts. i sp: which holdsthe sp. default environment definitions.

When a set of inquiries are being used for generation, each inquiry may have an active default. The
initial value for the active default comes most straightforwardly fromthet ri vi al def aul t dot of
the inquiry definition (see Section 12.2.7). Subsequent activation of default environments may,

however, alter the active default. Subsequent deactivations of default environments restore the
previously present active default.

When a set of linguistic resources, particularly of inquiries, isfreshly loaded, the active defaults are
undefined. If generation is attempted in this state, it will usually fail since insufficient information is
present in the input semantic specifications. (Of course, if the semantic specification is complete, then
no defaults will be required.) Setting the desired defaults is then atwo step process.

1. the base case defaultspresent ast r i vi al def aul t sare made current (i.e., are copied into

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node172.html (1 von 2) [11.12.2004 18:36:20]



Semantic defaults and macros

theact i vedef aul t dots);

2. further defaults are activated by issuing "begin default environment' commands. A set of
default environments that are to be standardly assumed for aresource set istypically heldina
file: properties.lisp.

If kPmL can establish that defaults have not been activated, then the above two steps will be triggered
automatically when generation is attempted. A message to this effect will be given to the user. This
will only affect the defaults of the current language.

next |fup |lprevious [Jcontents |]index

Next: Run-time cautions Up: Generation: basics Previous. Contrastive generation

i John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node172.html (2 von 2) [11.12.2004 18:36:20]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Run-time cautions

next |jup ||previous ||contents []index

Next: Run-time warnings Up: Generation: basics Previous. Semantic defaults and macros

Run-time cautions

Cautions may be produced during run time. They indicate that, although there is not necessarily
anything wrong yet, a possible problem has been recognized. e.g. if the realization operation
(confl ate Subject Agent) isspecified before one of the operators has been inserted, a
caution to that effect will be given. If, by the end of the pass through the grammar, this function has
still not been inserted, then awarning will be given.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node173.html [11.12.2004 18:36:27]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Run-time warnings

next |jup ||previous ||contents []index

Next: Running modes Up: Generation: basics Previous. Run-time cautions

Run-time warnings

Warnings can often be produced during generation, especially if the resources are not fully
debugged. Some of the most common warnings (and the actions that are taken) are:

. lexical item not known - an appropriate lexical item with the required grammeatical featuresis
created,

. association changed - the new association replaces the old (thisis awarning since it indicates
that a non-monotonic operation isinvolved that would have failed in a purely declarative
rendering of the resources),

The most serious warning is the following:
« no hub specified for grammatical function.

Thisindicates that a pointer to semantic information necessary for continuing generation has not
been made available by means of an appropriate identification in an identifying inquiry (cf.
Section 12.2.7). Without such information the generation process cannot continue and so the user is
asked whether an association is to be provided by hand. Normally, however, resources should not get
themselves into this situation and so the problem should be dealt with in the resource definitions
rather than being worked around. Failing to give an association can easily bring the generation process
to an ungraceful halt, even landing in the calling Lisp process. The option for continuing the process
of the development window should then be taken.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node174.html [11.12.2004 18:36:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Running modes

next |jup ||previous ||contents []index

Next: Boundary conditions Up: Generation: basics Previous. Run-time warnings

Running modes

The inquiries defined by linguistic resources usually include both a “formal' and an “informal’ form.
Asdescribed in Section 12.2.7, the informal form is a predefined natural language question which
represents the semantic characterization presented by the inquiry (for ask operators) or a description
of the type of semantic entity demanded (for identify operators).

The informal form can be used to guide computational implementations of the inquiries, since they
provide a high-level gloss of what each inquiry isintended to do, or they can be treated as questions
that a user can answer directly during generation. Thisisthe basis of the mode of using a grammar
where the user simulates the “environment', that is, everything that lies outside a given set of

resources, manually; this modeis called deimplemented mode gif Deimplemented mode is useful
for gaining familiarity with the linguistic resources themselves, without needing to attend to any
knowledge distinctions or text planning issues. Also available under deimplemented mode is the
possibility of having the inquiry responses taken from a pre-stored example record (see Chapter 10
and Section 12.2.9). Thisfacility, combined with sets of pre-run example records (such as the exercise

set for the Nigel grammar of English, originally compiled by Lynn Poulton for the Penman system),
provides avery useful resource in its own right for coming to understand what the grammar can do
and how it doesiit, as well as assisting in resource maintenance and development. KevL provides a
significantly extended set of operations on such example records compared to those of the Penman
system. These are described separately in Chapter 10.

The formal version of an inquiry generally consists of just the inquiry's name and certain additional
information concerning the inquiry's function; the complete definition specification isillustrated in
Section 12.2.7. Relevant here, however, is the notion of implementing an inquiry. Code for answering

inquiry questions automatically is called the implementation of theinquiry. Eachinquiry that is
implemented includes the name of a Lisp function that is the code that actually runs when the
grammar needs to determine which selection of grammatical feature is appropriate. Accordingly, the
mode of using the linguistic resources where the inquiries operate automatically without user
intervention is termed implemented mode. Thisisthe normal mode of use that is started under the
<Generate Sentence> main command menu option.

next |fup |lprevious [Jcontents |]index

Next: Boundary conditions Up: Generation: basics Previous. Run-time warnings

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node175.html (1 von 2) [11.12.2004 18:36:38]



Running modes

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node175.html (2 von 2) [11.12.2004 18:36:38]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Boundary conditions

next |jup ||previous ||contents []index

Next: Tracing and debugging during Up: Generation: basics Previous. Running modes

Boundary conditions

There are anumber of circumstances that can arise which cause the normal flow of generation to be
interrupted. Thisis, of course, far more likely to happen while linguistic resources are being
developed and debugged. Most foreseeable boundary conditions are caught by the kemL window
interface and are handled by presenting menu options to the user. It is, however, possible that
unforeseen kinds of errors might throw the user back into the Lisp debugger. Thiswill occur in the
calling Lisp process, not the kemL window interface. For thisreason, it is best to maintain access to
the calling Lisp process, so that an appropriate restart can be initiated from the debugger in the normal

way.

Whenever a choice boundary condition is reached, whether genuinely or by virtue of aforcing flag
(see Section 7.5.2 below), the following set of options appears:

1. Force achoice and continue: shows the user the available grammatical features that the system
offers and asks the user to select one. This becomes the feature chosen in that system and any
chooser information isignored.

2. Make no choice and continue: the generation process continues with no choice being made in
that grammatical system. This removes an expected grammatical feature from the selection
expression and so downstream systems depending on any of the features of that system will not
be entered. The final result of the generation will therefore be incomplete to a degree
dependent upon the number of systems whose entry was forbidden.

3. Run chooser again: re-executes the chooser that is associated with the system at that time. This
could lead to adifferent result if

o the example record has been edited, so changing the responses that the inquiries receive
(in deimplemented mode),

o the chooser itself has been edited,

o theinquiries or inquiry implementations have been edited, or

o the environment has altered (in implemented mode).

4. Run chooser again in manual mode: re-executes the chooser that is associated with the system
at that time but insists that the user supply the necessary responses to the inquiries that are
asked.

5. Associate anew chooser with this system: asks the user to supply a new chooser that replaces
the existing one; not recommended for normal grammar use.

6. Enter debugger: simply enters the normal Lisp debugger; not recommended for normal
grammar use, but afairly harmless way of suspending generation for a period while
information on the state of generation is inspected.

next |jup ||previous ||contents []index

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node176.html (1 von 2) [11.12.2004 18:36:43]



Boundary conditions

Next: Tracing and debugging during Up: Generation: basics Previous: Running modes

* John Bateman -- GMD/IPS -- Darmstadt, Ger many
&, | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node176.html (2 von 2) [11.12.2004 18:36:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Tracing and debugging during generation

next |jup ||previous ||contents []index

Next: Introduction to generation debugging Up: The KPML Development Window Previous:
Boundary conditions

Tracing and debugging during
generation

. Introduction to generation debugging under kPmL
. Generation tracing modes
o Show Constituent Starts
o Show System And Inquiry Activity
o Show Why System Is Firing
o Show Disabled Candidate Systems
o Show System Entry Dependencies
o Show Preselections
o Show Immediate Realizations
o Show Lexical Selection
o Show Lexica Features
o Show Ordering Constraints
o Show Ordering Events
o Show Ordering Results
o Show Associations
o Show Inquiry Answer Source
o Show entailed inquiry response
. Generation process control options
o Redlize Selectively
o Realize until constituent number
o S ngl e StQQ
o Enter Debugger on Warnings
. Generation result focusing modes
o Cumulate System and Inquiry Activity
o Update Example Record Fields
. Viewing focused results
o The cumulative history window commands

= Redisplay

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel77.html (1 von 2) [11.12.2004 18:36:48]



Tracing and debugging during generation

« Clear history
= Display options
= Quit

o Example of use

John Bateman -- GMD/IPS -- Darmstadt, Ger many
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/nodel77.html (2 von 2) [11.12.2004 18:36:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction to generation debugging under KPML

next |jup ||previous ||contents []index

Next: Generation tracing modes Up: Tracing and debugging during Previous: Tracing and debugging

during

Introduction to generation debugging under «ew

Whereas the sole mode of generation debugging supported by the Penman system can be described
asone of “tracing', kpmL supports an additional mode best described as “result focusing'.

“Tracing' refersto displaying more or less detail of the generation process as it occurs and attempting
to intervene when things go wrong. This mode of interaction could sometimes be suitable for getting
to know how the system operates. In this mode, the user can, in the extreme case, single step through
the generation operations observing each decision made.

"Result focusing' refers to selectively indicating information that could be relevant for the debugging
process, alowing generation to proceed, and then focusing in on the selected ‘results. Thisisavery
much faster way of debugging resources since it provides (i) pinpoint inspection of the aspects of the
generation process requested rather than lessfine “tracing’, (ii) systematic overviews of some selected
aspect of the resources during generation, and (iii) the ability to check up on selected decisions as and
when they show themselvesin need of checking, rather than during the generation process. The
success of the method in general relies, of course, on how effectively one can determine the
appropriate places to inspect: here also, therefore, kpmL provides a significant set of tools.

It is also possible within kPmL to set the information to be gathered during generation sufficiently
broadly that the result approximates that of tracing. The only difference isthat the "result focusing' is
not available interactively: it is a collection of the information used during generation and not, as with
tracing, a step-by-step report on what the generator is doing.

The two modes can also be mixed, in that generation can be allowed to proceed to particular selected
points and then interrupted so that tracing can be used.

This section describes these options in detail. We start with the tracing options inherited from the
Penman system and then list the process result options specific to kpmL. Both kinds of options are
reached by the command <Generation Modes> . This command brings up a further menu to the user
whereby various levels of information detail can be set during generation.

The command <Reset Generation Modes> then resets the options displayed in the <Generation
Modes> menu so that no tracing or display during generation is activated.

An example of the menu in the state following initial loading of the kPmL system is shown in

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node178.html (1 von 3) [11.12.2004 18:36:55]



Introduction to generation debugging under KPML

Figure 7.3; theinitial value of flagsisni | , meaning "off'

gif

Asindicated above, most of these

modes are for tracing and are directly inherited from the Penman system. The more focused
debugging and development options that kevmL provides are placed under the heading “Result
focusing'. An additional group of commands (some new, some old) includes those options that effect
the generation process itself in some way rather than the information that is to be presented. Each

group is described in detail in the following subsections.

Automatically create nev examples --- T NIL
RESULT FOCUSING OPFTIONS...
none
Cumulate S5ystem and Ingquiry Activity --- traced
all
Update environment record --- T NIL
GENERATION TRACING OFTIONS...

Realize Selectively --- T NIL
Show Constituent Starts ... T NIL
Realize until congtituent number --. NIL

Show System and Inguiry Activity T NIL
Show Vhy System is Firing ... T NIL
Show Dizabled Candidate Systems - -- T NIL
Show System Entry Dependencies --- T NIL
Show Preselections - - T NIL
Shov Immediate Realizations --. T NIL
Show Lexical Features :-- T NIL
Show Lexical Selection :-- T NIL
Show Ordering Constraints --- T NIL
Show Ordering Events - -- T NIL
Show Ordering Results --- T NIL
Show Asgociations ... T NIL
Show Inguiry Answer Source --: T NIL
Show Entailed Inguiry Response --- T NIL
Single Step T NIL
Enter Debugger On Warnings .- T NIL

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node178.html (2 von 3) [11.12.2004 18:36:55]



Introduction to generation debugging under KPML

Figure: Generation tracing and result focusing modes

Note that it may be necessary to scroll this menu to find all the options presented.

next |jup ||previous ||contents []index

Next: Generation tracing modes Up: Tracing and debugging during Previous: Tracing and debugging

during

'Q John Bateman -- GMD/IPS -- Darmstadt, Germany
- ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node178.html (3 von 3) [11.12.2004 18:36:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation tracing modes

next |jup ||previous ||contents []index

Next: Show Constituent Starts Up: Tracing and debugging during Previous:. Introduction to
generation debugging

Generation tracing modes

In this section we describe those tracing modes that allow information to be given concerning
various aspects of the generation process during generation. Some of these might particularly be
useful for the novice gaining familiarity with the workings of the system during generation, or for
very difficult to diagnose problems that arise with user-defined resources.

. Show Constituent Starts

. Show System And Inquiry Activity
. Show Why System Is Firing

. Show Disabled Candidate Systems
. Show System Entry Dependencies
. Show Presdlections

. Show Immediate Realizations

. Show Lexical Selection

. Show Lexical Features

. Show Ordering Constraints

. Show Ordering Events

. Show Ordering Results

. Show Associations

. Show Inquiry Answer Source

. Show entailed inquiry response

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node179.html [11.12.2004 18:37:00]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Constituent Starts

next |jup ||previous ||contents []index

Next: Show System And Inquiry Up: Generation tracing modes Previous. Generation tracing modes

Show Constituent Starts

Each pass through the grammar is responsible for the realization of some particular part of the
structure that is being built. Parts of structure are defined in terms of bundles of grammatical functions
that previous cycles through the grammar have composed and assigned preselectionsto. When
realizing such acycle therefore, it can be relevant to know both the members of the function bundle
that that cycle isto be concerned with and the presel ections that have been established for it.

When thisflag is set, at the beginning of each pass through the grammar the message:

Real i zi ng bundl e: ((FUNCTI ON1 FUNCTI ON2 ... FUNCTI ONn)
((Presel ect FUNCTI ONi FEATURE )
(Presel ect FUNCTION ... )
))

appears. The first sub-list contains the functions that collectively form the function bundle that the
pass will be concerned with. These will be functions that the pass through the grammar responsible
for their higher level of structure had conflated. The second sub-list contains all the preselection
realization statements that that higher level pass performed with respect to any of the members of the
bundle. The pass about to be begun will therefore be committed to selecting all of the grammatical
features mentioned in the preselection list and all the features that these entail.

The special case of the first pass through the grammar produces a similar message, citing the pseudo
function bundle TOP, any preselections that may have been set manually, and the knowledge
representation hub that is to have alinguistic result generated for it.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node180.html [11.12.2004 18:37:05]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show System And Inquiry Activity

next |Jup [lprevious |[contents |]index

Next: Show Why System Is Up: Generation tracing modes Previous: Show Constituent Starts

Show System And Inquiry Activity

Traces the system that is entered, the chooser entered, the inquiry questions asked, their results and the choice that the system makes, in a
convenient form. Thisisall that is necessary to see the traversal of the grammar network in progress and the chooser decisions that were made
to control that traversal. Under the new-style inteface a Generation History window is brought up that shows the successive decisions made
during generation; under the old-style interface, several panes are already present for showing this information.

The successive tracing of the generation process is useful for getting to know a set of resources and how it functionsin generation. Even for
simple sentences, however, this option presents a great deal of information. For serious resource development the more focused tracing aids
provided by kpmL should be used.

An exampl e of the generation history window is given in Figure 7.4. It consists of two main panes, set across the middle of the window: the
system history and the inquiry history. The system history pane shows each system and the feature selected in that system; thus the first line of
this pane informs us that in the system cause-AbiuncT, the feature “noncause’ was selected. The inquiry history pane shows the asked inquiry
and the response that it received; the first complete entry here informs us that the inquiry cer t ai nt y- g was asked and received the reponse
not cert ai n. Above these are displayed on the left the current system that has been reached in network traversal (here: Acency), and on the
right the current inquiry that is being asked in chooser traversal (here: ver bal - pr ocess- q). Below the central panesisasingle long pane
displaying the natural language gloss of the current inquiry. All of the linguistic objects mentioned are mouse-sensitive.

System: AGENCY]]

Inquiry: VERBAL-PROCESS-—(Q

CAUSE-ADJUNCT M A
MNOMCALSE CERTAINTY -G MOTCERTAI |

MANNER-ADJUNGT k
NONVIANNER EVALUATION-G MOTEVAL |

MATTER-ADJUNCT || [UATED

MONMATTER SPEECH-ACT-MANNER-G NOM|
ROLE-ADJUNCT || |SPEECHACTMANNER
NOMROLE HIGH-E IDENCE-Q NOTHIG |

SPATIAL-EXTENT-ADJUNGCT No- || |MEVIDERCE
SPATIAL-EATENT LIMITED-EWIDEMNCE -G NDTLI|

SPATIAL-LOCATIGHN || || MITED
NO—SPATIAL L OCATION ACTION-EVALUATION-G NOT |
TEMPORAL-EXTENT-ADJUNCT ALTIGNEYALUATED
NO-TEMPORAL-ERXTENT WARKEDNESS-0 UNMARK |

TERPORAL —L OCATION ED
Does the process A-124106 represent symbolic
commmication of a kind which could have an addressee?

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node181.html (1 von 2) [11.12.2004 18:37:17]



Show System And Inquiry Activity

Figure: Generation History Window

Since there are very many inquiries and systems that are entered for each grammatical unit generated, it is usual that this option is combined
with the Realize selectively option.

next |Jup [lprevious |[|contents |]index

Next: Show Why System |s Up: Generation tracing modes Previous: Show Constituent Starts

: John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node181.html (2 von 2) [11.12.2004 18:37:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Why System Is Firing

next |jup ||previous ||contents []index

Next: Show Disabled Candidate Systems Up: Generation tracing modes Previous. Show System And

Inquiry
Show Why System Is Firing

Prints the last feature that caused the entry condition of the system being entered to become satisfied.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node182.html [11.12.2004 18:37:24]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Disabled Candidate Systems

next |jup ||previous ||contents []index

Next: Show System Entry Dependencies Up: Generation tracing modes Previous. Show Why System

Is

Show Disabled Candidate Systems

Systems may be disabled. A disabled system can be entered but it has no effect. If thisflagisona
message will be printed whenever a disabled system is entered. The user may disable and enable
systems at will by using the appropriate commands that are obtained by right-clicking on any mouse-
sensitive system name that appears in the window interface (cf. Section 6.5.2). The commands

INSPECTOR: <: Disable system system-name> and iNnsPECTOR: < : Enable system system-name> can also
be given. Disabling a system is sometimes convenient while debugging linguistic resources. Y ou may
load several different versions of a system (aslong as they have distinct names!). By disabling all but
one of the versions you may check out the functionality of the enabled system. Each different version
of a system in turn can be checked out thisway. Thisis easier than reloading a new grammar each
time you want to check out the effect of changing only one system. See also Section 7.8.1.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node183.html [11.12.2004 18:37:29]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show System Entry Dependencies

next |jup ||previous ||contents []index

Next: Show Preselections Up: Generation tracing modes Previous. Show Disabled Candidate
Systems

Show System Entry Dependencies

Shows what systems are ready to be entered, and the system which is actually selected from that list to

be entered aif

e John Bateman -- GMD/IPS -- Darmstadt, Germany
' ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node184.html [11.12.2004 18:37:34]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Preselections

next |jup ||previous ||contents []index

Next: Show Immediate Realizations Up: Generation tracing modes Previous: Show System Entry
Dependencies

Show Preselections

If thisflag is set, at the beginning of each cycle or pass through the grammar, the presel ections that
will be enforced during that cycle are shown. Thisinformation is given in two forms: first, asalist of
the grammatical features that appeared in the presel ection realization statements that called for the
pass, and second as the path augmented list of preselections derived from the first list. This latter
contains all the features that would need to be selected in order to ensure that those of the first set
were aso; i.e. for each feature preselected, all those features on the path that runs from the starting
system (that of rank) to the feature required, need to be selected also - thisis done automatically and

is called path augmentation gif

S John Bateman -- GMD/IPS -- Darmstadt, Germany
' ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node185.html [11.12.2004 18:37:39]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Immediate Readlizations

next |jup ||previous ||contents []index

Next: Show Lexical Selection Up: Generation tracing modes Previous. Show Preselections

Show Immediate Realizations

The grammatical features that form the output of grammar systems may have realizations associated
with them. As described above, these realisations are applications of the functional operators by which
the structural output of the grammar is built up: i.e. during the generation process the operators that
are executed impose constraints upon the structural output. With the Show I|mmediate Realizations
flag on, a message containing the system name and the realization that is being performed is printed as
soon as its associated feature is selected.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node186.html [11.12.2004 18:37:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Lexical Selection

next |jup ||previous ||contents []index

Next: Show Lexical Features Up: Generation tracing modes Previous: Show |mmediate Realizations

Show Lexical Selection

Prints information about the choice of lexical items from the lexicon; i.e. whenever alexify realization
statement is performed, a message of the form The chosen word is. X is produced. In addition, when
certain lexical items are decided on purely grammatical grounds (for example, verbal auxiliaries), an
account of their determination is produced. This account isin terms of the lexical feature list of the
constituent, the classify list, the outclassify list, the list of lexical terms conforming to the classify list,
and the revised list after filtering with respect to the outclassify list.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node187.html [11.12.2004 18:37:53]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Lexical Features

next |jup ||previous ||contents []index

Next: Show Ordering Constraints Up: Generation tracing modes Previous. Show Lexical Selection

Show Lexical Features

Y et more lexical selection tracing.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node188.html [11.12.2004 18:37:58]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Ordering Constraints

next

up |lprevious [Jcontents ||index

Next: Show Ordering Events Up: Generation tracing modes Previous. Show L exical Features

Show Ordering Constraints

Prints information showing the effect that the default order of constituents has on the resulting
ordering. Default orders are specified in afile named or der i ng- const r ai nts. gr am(see
Section 12.2.12).

The information that is produced concerns four phases of ordering:

Potential Default Orderings: shows just those default orders defined by the grammar that might
be relevant to the presently generated structure;

Added Default Orderings: removes any of the possibly relevant default orders that in fact
violate or are inconsistent with the positive statements of ordering made by realization
statements during the traversal of the grammar;

Compiled Precedence Constraints. ordering is defined in terms of two kinds of information -
precedence and adjacency. The partition realization operator provides precedence information
only; the order realization operator provides both precedenced and adjacency information. The
information given hereisalist of pairs showing the combined precedence information taking
into account the filtered default orderings shown previoudly;

Compiled Adjacency Constraints. the information hereisalist of pairs showing the adjacency
information taking into account the filtered default orderings shown previously.

Throughout these displays conflation aliases are used for the function bundles that are ordered rather
than the literal function names that may have been used in actual realization statements. A Conflation
dliasisthefirst function in afunction bundle.

John Bateman -- GMD/IPS -- Darmstadt, Germany

ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node189.html [11.12.2004 18:38:08]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Ordering Events

next |jup ||previous ||contents []index

Next: Show Ordering Results Up: Generation tracing modes Previous: Show Ordering Constraints

Show Ordering Events

When thisflag is set, realizations having to do with ordering, i.e. Order, OrderAtFront, OrderAtEnd,
Partition, are printed as they occur, along with the system responsible for their being performed.

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node190.html [11.12.2004 18:38:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Ordering Results

next |jup ||previous ||contents []index

Next: Show Associations Up: Generation tracing modes Previous: Show Ordering Events

Show Ordering Results

Setting this flag produces information concerning the order that the grammar has decided upon for
each level of structure. At the end of each cycle, i.e. when each level of structure has been completed,
Orderings information for the cycle is shown in two forms:

1. Function structure: thisis an ordered list of the function bundles (i.e. the constituents that have
been constructed by function conflation and insertion for the cycle) showing those bundles
member functions.

2. Redlization: thisisthe result string that can be produced on the basis of the information
accumulated so far; i.e. lexicalisations will appear as actual words but constituents that still
need to be generated by further passes through the grammar are shown in terms of their
function bundles e.g. (FUNCTION1+FUNCTION2+ "is' FUNCTIONG6+FUNCTION7)

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node191.html [11.12.2004 18:38:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Associations

next |jup ||previous ||contents []index

Next: Show Inquiry Answer Source Up: Generation tracing modes Previous. Show Ordering Results

Show Associations

The association between grammatical functions and entities in the knowledge base that permits
inquiries to interrogate the appropriate parts of the knowledge during generation are maintained in the
function association table (Section 12.2.7). The level of indirection that this introduces permits
inquiries always to be expressed in terms of the grammatical functions defined in the grammar; these
functions' case-by-case reference to appropriate knowledge representation entities is thus ensured by
the function association table.

When thisflag is set information concerning the establishment of these grammatical function and
knowledge base hub associations is given during generation. In particular, whenever a hub association
Is created by copying one functions association on to another, the following kind of message appears:

I n system SYSTEM NAME, copyhub FUNCTI ON1 --> FUNCTI ON2.

In addition, at the end of each pass through the grammar--or, if the "Show System and Inquiry
Activity' flag isalso set (Section 7.5.2.2), as they occur in a separate window--the function association

table entries are shown. Each of these entries consists of five fields of information,

. Function: the grammatical function participating in the association;

. Concept: the knowledge base hub participating in the association;

. Presentation-spec: a specification of the particular details of the hub that are to be expressed in
this mention of it;

. Term set: the set of possible lexical items that the grammar has selected as being potentially
appropriate for the expression of the concept in the current mention of it;

. Term: the actual lexical item that came to be used for the concept.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node192.html [11.12.2004 18:38:21]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Inquiry Answer Source

next |jup ||previous ||contents []index

Next: Show entailed inquiry response Up: Generation tracing modes Previous. Show Associations

Show Inquiry Answer Source

When thisflag is set and the resources are being used in “implemented’ mode (the default case: see
Section 7.4.7), the source of each response that an inquiry receivesis displayed. The possible sources

are:

. operator code: the implemented form of the inquiry ran and returned a resullt,
. spL keyword: the response was directly specified in the input SPL,
. default: neither of the previous two options applied and a default response was used.

et John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node193.html [11.12.2004 18:38:25]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show entailed inquiry response

next |jup ||previous ||contents []index

Next: Generation process control options Up: Generation tracing modes Previous. Show Inquiry
Answer Source

Show entailed inquiry response

Prints a message whenever aresponse to an inquiry operator entailed by some preselection is used.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node194.html [11.12.2004 18:38:29]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation process control options

next |jup ||previous ||contents []index

Next: Realize Selectively Up: Tracing and debugging during Previous: Show entailed inquiry

response

Generation process control options

. Redize Sdlectively

. Redlize until constituent number
. Single Step

. Enter Debugger on Warnings

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node195.html [11.12.2004 18:38:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Realize Selectively

next Jjup [|previous |Jcontents |Jindex

Next: Realize until constituent number Up: Generation process control options Previous. Generation process control
options

Realize Selectively

As sketched in Section 2.3.1, generation proceeds in cycles through the grammar network. This flag permits the user,
at the beginning of each pass through the grammar, to decide whether to perform that cycle or not - i.e. whether to
realize the constituent that cycle is responsible for generating or to skip realization of that constituent. Thisis
convenient for debugging when you are trying to examine what happensin certain constituents but do not care about
others. It also provides convenient pre-given points for pausing so that tracing modes can be altered.

The form of the option that is presented to the user is:

System: AGEHCY[]
Ingquiry: VERBAL-PROCESS-—Q
CALSE-ADJUNCT N

MOMCAUSE CERTAIMNTY - NOTCERTA!|

b ANNER-ADJUNCT M
NONMANNER EVALUATION-G MOTEVAL |

MATTER-ADJUNCT UATED

NONMATTER SPEECH-ACT-MANNER-G NON|
ROLE—ADJUNCT || | SPEECHACTMANNER
MOMROLE HIGH-EY IDENCE-& NOTHIG |

SPATIAL-FRXTENT-ADJUNCT No-— || |HEVIDENCE
SPATIAL-EXTENT LIMITED-EVIDENCE-@ MOTLI |

SPATIAL-LOCATION || [[MITED
NO—SPATIAL _LOCATION ACTICN-EVALUATION-G MOT |
TEMPORAL-EXTENT-ADJUNCT ALTIGNEVALUATED
MO -TEMPORAL-ERTENT MARKEDNESS-Q UMM ARK |
TEMPORAL-L OCATION ||/ ED

Does the process A-124106 represent symbolic
commmication of a kind which could have an addressee?

This presents the members of the function bundle defining the constituent that is about to be realized and the
preselections, classifies, lexifies, and inflectifies defined for that constituent via constraints imposed on the member
functions of the bundle during the just completed traversal of the grammar network. An actual example would be:

Real i zi ng Bundl e:
((VA CE FI NI TE TEMPQD)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node196.html (1 von 2) [11.12.2004 18:38:38]



Realize Selectively

((1 NFLECTI FY FI NI TE PAST- FORM)
(I NFLECTI FY FI NI TE SI NGULAR- FORM)
(I NFLECTI FY FI NI TE TH RD- PERSON)
(CLASSI FY FINITE OUTCLASSI FY- NEGATI VE)
( CLASSI FY FI NI TE OUTCLASSI FY- REDUCED)
( CLASSI FY VO CE OUTCLASSI FY- NEGATI VE)
( CLASSI FY VO CE BEAUX)))

This display also shows which grammatical function contributes which constraint in the constraint set as awhole. That
is, the constituent shown here is constrained to possess the lexical features [Past-form], [Singular], [ Third-person], and
[BeAux] and not to have the lexical features [Negative] and [Reduced], and, in addition, we know that it is the
component grammatical function Finite which brought the constraints concerning past form, singular form, third
person, and reduced, while it was the function V oice that brought the constraint ‘BeAux'. Both functions were also
constrained not to be negative.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬁ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node196.html (2 von 2) [11.12.2004 18:38:38]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Realize until constituent number

next |jup ||previous ||contents []index

Next: Single Step Up: Generation process control options Previous. Realize Selectively

Realize until constituent number

Thisflag, another exception to those that taket or ni | asvalue, expects an integer identifying a
particular constituent in the structure of a generated sentence to be given. These numbers can be
directly read off the print form of the grammatical functions as they appear, for example, in their
graphed or textual form (see, e.g., Figure 7.2). They represent the network traversal cycle that
introduced the constituent into the structure. When set to an integer, generation will proceed with
whatever other flag values have been set until the identified constituent is reached. Then generation
will pause and the Generation Modes menu will be presented with the option “realize selectively'
already activated. This can be used for quickly locating and going to a problematic constituent during
debugging of the grammatical resources. It is not necessary, as was the case with Penman, to step

through the previously generated constituents by hand gif

Note: thisoption is now incorporated implicitly in the command optionsfor generated strings
(Section 10.3), which provides a more convenient and quicker way of achieving the same effect

without the user needing to identify the constituent number.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node197.html [11.12.2004 18:38:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Single Step

next |jup ||previous ||contents []index

Next: Enter Debugger on Warnings Up: Generation process control options Previous. Realize until
constituent number

Single Step

Causes the generation process to pause at the end of each inquiry. At this point, various data structures
can be examined. A menu prompts for continued execution. This can best be combined with the
“Show System and Inquiry Activity' flag to step through the generation process inquiry by inquiry: in
fact, since single stepping without at least thisinformation is probably not useful, unlessthe "System
and Inquiry Activity' flag at least isalso set, single stepping will not occur.

The user dialog box that is brought up on single stepping also allows several other operationsin
addition to continuing. In particular, generation may be aborted or the generation modes (cf. the
command pevELOPMENT: <Generation Modes> ) altered.

Notethat in all caseseither "'yes or 'no' must be selected finally in order to exit from the dialog
box.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node198.html [11.12.2004 18:38:46]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Enter Debugger on Warnings

next |jup ||previous ||contents []index

Next: Generation result focusing modes Up: Generation process control options Previous: Single
Step

Enter Debugger on Warnings

Whenever thisflag is set, all warning conditions that are reported to the user are followed by an
immediate entry to the Lisp debugger. Thisis clearly not intended for the normal kind of resource
debugging that users will carry out, but provides one fairly straightforward way of suspending the
generation process temporarily. The “continue' option offered by Lisp will normally continue the
generation process.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node199.html [11.12.2004 18:38:51]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation result focusing modes

next |jup ||previous ||contents []index

Next: Cumulate System and Inquiry Up: Tracing and debugging during Previous: Enter Debugger on
Warnings

Generation result focusing modes

In this section we describe the focusing operations that allow information to be picked out of the final
and interim results of generation. This includes not only the final strings generated, but all partial
results (such as syntactic structures, associations of syntactic and semantic objects, inquiry responses,
chooser decisions) that are reached during generation. Unlike the generation tracing modes described
below, it is normally the case during result focusing that the user actively specifies particular
linguistic events that are to be monitored during generation. Thisis done by selecting the tracing
options offered for objects of particular linguistic types. These options are also described here.

. Cumulate System and Inquiry Activity
. Update Example Record Fields

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node200.html [11.12.2004 18:38:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Cumulate System and Inquiry Activity

next |jup ||previous ||contents []index

Next: Update Example Record Fields Up: Generation result focusing modes Previous. Generation
result focusing modes

Cumulate System and Inquiry Activity
This flag provides the basic option of result focusing. Three levels of cumulation are possible:

. off (nil), where no information is preserved (the default),

. traced, where only information concerning explicitly traced linguistic objects and eventsis
preserved,

. dl, where all information concerning traversal of the systemic network during generation is
preserved--i.e., systems entered, features selected, choosers used, inquiry responses received.

The latter extends on the information available when the flag < Generation Modes>: “Show System
and Inquiry Activity' is set. Examples of use are given in Section 7.5.5.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node201.html [11.12.2004 18:39:00]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Update Example Record Fields

next |jup ||previous ||contents []index

Next: Viewing focused results Up: Generation result focusing modes Previous. Cumulate System
and Inquiry

Update Example Record Fields

Whenever set, this flag causes the generation of examples to update any prestored information
maintained in the records of those examples.

Thisflag must be set if creating afully recorded set of examplesthat support the use of example
selection by features (see Section 6.2.1), retrieval of selection expressions, etc.

When thisflag is not set, then the generation history of an example is not recorded: only the generated
string and associated rich mouseable structure is transfered to the example record.

The use of examples and example records is described fully in Chapter 10.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node202.html [11.12.2004 18:39:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Viewing focused results

next |jup ||previous ||contents []index

Next: The cumulative history window Up: Tracing and debugging during Previous: Update Example
Record Fields

Viewing focused results

Whereas generation tracing (Section 7.5.2) will immediately show any information traced (either in
the Devel opment window itself or in special purpose windows brought up for particular types of
information), cumulated information is maintained in the background and is only displayed when
requested.

Thisis done by issuing the command peveLorPmeNT:<Show Cumulative History> . Thisbringsup a
Cumulative Generation History window that contains the information selected for cumulation:
typically system or inquiry activity. An example of the window is shown in the lower half of
Figure 7.5; this example is discussed bel ow.

. The cumulative history window commands
o Redisplay
o Clear history
o Display options
0 uit
. Example of use

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node203.html [11.12.2004 18:39:08]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The cumulative history window commands

next |jup ||previous ||contents []index

Next: Redisplay Up: Viewing focused results Previous. Viewing focused results

The cumulative history window commands

The cumulative history window has afew specific commands of its own described as follows.

. Redisplay

. Clear history

. Display options
. Quit

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node204.html [11.12.2004 18:39:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Redisplay

next |jup ||previous ||contents []index

Next: Clear history Up: The cumulative history window Previous. The cumulative history window

Redisplay

The command cumuLATIVE-HISTORY :<Redisplay> forcibly causes the contents of the window to be
redisplayed; this might be useful if generation has been continued and a new state of affairsisto be

shown in the history window.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node205.html [11.12.2004 18:39:22]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear history

next |jup ||previous ||contents []index

Next: Display options Up: The cumulative history window Previous: Redisplay

Clear history

The command cumuLATIVE-HISTORY :<Clear history> clears the window.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node206.html [11.12.2004 18:39:27]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Display options

next |jup ||previous ||contents []index

Next: Quit Up: The cumulative history window Previous: Clear history

Display options

The command cumuLATIVE-HISTORY :<Display options> controls what kind of information is given
concerning inquiries. Any number of the following modes can be selected:

. hubs: when this mode is set, then the symbol identifying the semantic hubs (typically SPL
terms) used in the particular inquiry ask or identify are shown in the display.

. 1d: when this mode is set, the unique identifier of the semantic hub (or SPL term) isshownin
the display.

. formal-parameters: when this modeis set, the formal parameters used in the inquiry call as
specified in the particular chooser at issue are shown in the display.

Setting none of these modes gives information equivalent to that shown in the Generation History
window when the tracing flag “Show System and Inquiry Activity' is set.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node207.html [11.12.2004 20:33:16]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Quit

next |jup ||previous ||contents []index

Next: Example of use Up: The cumulative history window Previous: Display options

Quit

The command cumuLATIVE-HISTORY:<QuIit> exits and removes the history window.

_‘ John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node208.html [11.12.2004 20:33:34]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Example of use

next |jup |lprevious ||contents ||index

Next: Activating result focusing and Up: Viewing focused results Previous: Quit

Example of use

Figure 7.5 shows an example of the use of the cumulated generation history window. In this example, the chooser for the system NoMINAL-LIKE-
GRoUP-CLASS (graphed in the top window in the figure) has been traced (see Section 7.6) and a sentence has been generated. I ssuing
DEVELOPMENT:< Show Cumulative History> then brings up the window shown in the bottom of the figure. Since the formal parameters for the
inquiries are shown in the chooser graph, the display options have been set to : hubs only. The cumulative history window shows for each
time the traced chooser was used, the system with which it is associated, the feature selected at that time, the inquiries asked, and their
parameters and response. It is therefore straightforward to recover which path was taken through the chooser during each of its instantiations
during generation and why that path was selected.

| chooser—definition: NOMINAL-LIKE-GROUP-CLASS—CHOOSER (ENGLISH)

cmit diSplaﬂ I—Zardcopﬂ Chooser Display Mode5|

L] [(PEOPERTY-0 0NUS )]

’!/_/_——Aﬁ\-\\

ANOTPROPERTY

| |

|(qm.}rrn"r—q OHUS ) |

L1

AOTANTITY

[(corwuE oxrs THING ) |

(*
IDERTIFY
OALITY H‘
(TERY—SPECIFICATION-ID {CHIOSE

OVALITY HOMIHAL—GROUF |
RDJECTIVE 1))

CHO#SE
{ADJECTIVAL-GROVE )

T Cumulative Generation History {KPML)
Redisplay' Clear hist-:::-}.“yl Quitl
Y
NOMINAL -L IKE-GROUP-GLASS : NOWINAL —GROUP; PROPERTY-(): ONUS[HEAD] = NOTPROPERTY
QUANTITY-: ONUS[HEAD] = NOTQUANTITY
NOMIMAL -L TEE-GROUP-CLASS : NONIMAL -GROUP: PROPERTY-0: ONUS[MAKER] = NOTPROPERTY
OUANTITY-0: ONUS[MAKER] = NOTQUANTITY
NOMIMAL -L IKE-CGROUP-CLASS : NOMIMAL -GROUP: PROPERTY-0: ONUS[EUROPE] = NOTPROPERTY
QUANTITY-(: ONUS[EUROPE] = NOTQUANTITY L
NOMINAL -L IKE-GROUP-GLASS : QUANTITY—GROUP; PROPERTY-0: ONU5[5] = NOTPROPERTY
QUANTITY-: ONUS[5] = QUANTITY
NOMIMAL -L TEE-GROUP-CLASS: ADJECTIVAL -GROUP: PROPERTY-0: ONUS[BIG] = PEI]P]ERTYl

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node209.html (1 von 2) [11.12.2004 20:33:52]



Example of use

UL ML L IR DA L My . MR EL L L WML I o l:'nl.l.l:’ml.l—“: UﬂU:’lDJ.IJ] = rnurleI
NOHINMAL -L TEE-GROUP-CLASS : NOMIMAL -GROTIFP; PROPERTY-[: ONUS[BULL] = NOTPROPERTY
QUANTITY-: ONUS[BULIL] = NOTQUANTITY
NOMIMNAL -L TEE-GROUP-CLASS : NOMIMNAL GROUP: PROPERTY-0): I]NUS[E] = NOTPROPERTY
QUANIITY-Q: ONUS[E] = NOTQUANIITY ;
I~ I 5

| Lk

Figure: Example of using the cumulative generation history

The first box in the Cumulative Generation History window, for example, gives here the following information. In the system NOMINAL-LIKE-
GRoUP-cLASs the feature “nominal-group’ was selected. This was because the inquiries pr oper t y- q and quant i t y- q were both asked of
the semantic term HEAD and received the responses not pr operty and not quant i t y respectively. Comparing this with the chooser
shown in the upper part of the figure, we can see that the first inquiry to be asked, pr oper t y- q hastwo possible responses (pr operty and
not pr operty) and is asked of the grammatical function “Onus'. The function association for *Onus' must therefore have been the semantic
term HEAD. Following the obtained not pr oper t y path in the chooser leads on to the second inquiry posed. The response here,

not quant i t y then resultsin “nominal-group' being selected as seen.

The 7 instances of NOMINAL-LIKE-GROUP-CLASS shown in the Cumulative Generation History include examples of the three possible paths
through the associated chooser.

All of the semantic terms shown in the window are mouse sensitive supporting further information inspection.

next |Jup [lprevious |[contents |[]index

Next: Activating result focusing and Up: Viewing focused results Previous: Quit

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmad.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node209.html (2 von 2) [11.12.2004 20:33:52]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Activating result focusing and tracing for particular linguistic objects

next |jup ||previous ||contents []index

Next: Activation of tracing Up: The KPML Development Window Previous. Example of use

Activating result focusing and tracing
for particular linguistic objects

. Activation of tracing
o Individual system tracing
o Individual chooser tracing
o Individua inquiry tracing
. Clearing tracing selections

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node210.html [11.12.2004 20:34:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Activation of tracing

next |jup ||previous ||contents []index

Next: Individual system tracing Up: Activating result focusing and Previous: Activating result
focusing and

Activation of tracing

Additional linguistic object type-specific commands are provided for activating selective tracing and
information cumulation during generation. These are generally available by direct typing of the
command name in the interaction window, or by right clicking on an appropriately object.

When selected, the use of alinguistic object (system, chooser, or inquiry) can either be reported
during generation tracing or by showing the cumulative generation history following generation. If
the "Cumulate System and Inquiry Activity' flag is not set, then the information will be produced in
tracing mode in a Generation History window (cf. Figure 7.4). If the cumulation flag is set, then no
tracing information is produced until the user explicitly callsfor it with bEvELoPMENT:<Show
Cumulative History> .

The relevant commands are as follows.

. Individua system tracing
. Individua chooser tracing
. Individua inquiry tracing

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node211.html [11.12.2004 20:34:14]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Individual system tracing

next |jup ||previous ||contents []index

Next: Individual chooser tracing Up: Activation of tracing Previous. Activation of tracing

Individual system tracing

The right-click menu command <trace system™> causes the clicked upon system to be added to the
list of currently traced systems. When any system on thislist is entered, the following information is
produced in the Development result pane:

. the preceding system and feature whose selection was responsible for the entry conditions of
the traced system being fully met,
. thefeature selected in the traced system.

In addition, if the "Cumulate System and Inquiry’ flag is set, the information that the traced system has
been entered and which feature was selected is added to the cumulative history.

Individual systems can be removed from the tracing list by selecting the matching <untrace system>
command.

= John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node212.html [11.12.2004 20:34:23]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Individual chooser tracing

next Jjup [|previous |Jcontents |Jindex

Next: Individual inquiry tracing Up: Activation of tracing Previous. Individual system tracing

Individual chooser tracing

The only meaningful way of tracing choosersisto trace the full set of inquiries that any chooser uses. The right-click
menu command <Trace inquiries of chooser> therefore causes al the inquiries used by the clicked upon chooser to be
traced. The operation of tracing inquiriesis described in the following section. All inquiries for a chosen chooser can
also be removed from tracing by issuing the corresponding <Untrace inquiries of chooser> command.

An additional option that individual chooser tracing supports when the "Cumulate System and Inquiry Activity' flag is
set is to take the cumulated inquiry information for a chooser (that can be shown by the bevELoPMENT:<Show
Cumulative History> command), and to fold thisinto the graphical chooser display available under iNnsPECTOR:<Print
Chooser> (Section 6.3.2.2) or any of its equivalents. Setting the "Cumulate System and Inquiry Activity' to: al |
naturally provides this option for all choosers.

For this option to be activated, the flag cHooser-GRAPH: < Chooser Display Modes> “Generation Paths Shown' hasto be
selected (which it is by default in a newly loaded kpmL System).

An example of the default behavior when a chooser has been traced and graphed is shown in Figure 7.6. This shows

one traversal through the English PriIMARY-TENSE chooser. The definition of this chooser (i.e., without traversal paths)
was shown in full in Figure 6.10. The present figure shows just the middle portion of the chooser that was actually

effected during the traversal at hand.

The inquiry query and response shown in atraced and graphed chooser can be varied by altering the setting under the
CUMULATIVE-HISTORY :<Display Options> command (Section 7.5.5). In the present example, the options of hubs and
formal parameters have been selected. This shows for each inquiry, all of its formal parameters and their semantic
associations. The semantic results of identifying inquiries are also shown. The central portion of the chooser shown in
Figures 6.10 and 7.6 can therefore be compared node for node. The path taken through the chooser is also highlighted
(by being in color on color screens, and by a shade of grey on monochrome screens). We can directly see that, in this
case, the traversal path follows the arcs “noncounterfactual’, “extensional’, “notlogicotempora’, and "precedes; this
results in the choice of the grammatical feature “past’. Chooser nodes that do not lie on the traversal path (for example,

that below the final "notprecedes arc) are shown asthey are in the straightforward chooser definition graph git

{Lﬂ chooser—definition: PRIMARY-TENSE-CHOOSER (ENGLIS H)

puit display| Hardeopy| Chooser Display Modes

TIME-TH—RELATT 0H-T0-SPEAKI HE-TTWE-ID -
TEMPO0[5T12]
SPEECHACT[SA%] = MOl [ET1H]

COUKTERFACTURLITY—:
QKIS [SEXD ]

01[ET11]
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node213.html (1 von 3) [11.12.2004 20:34:33]




Individual chooser tracing
0K'S | SEMD |
i’jﬂmnlll’.'r]_‘l] |

—

AOMCOIMTERFACTIAL

ITENSTIHALITY-1) -
CESS[ SEHD ]

Fr,,-ff -

EXTENSLONAL

|

|Ll]EI CO-TEMPOEAL-COHDITI 0H-1Q -

OKUS [SEHD ]

_———f—__‘_——-ﬁi_‘

AT E G S B ORA L AT DT E Y

CEDE-0D:

ol[ETil]

o0 sT12] |

ANCTFRECEDE PRECEDES NCTFRECEDES
[{ cHoosE PAST )| {PRECEDE-1
TEMPOU)
TENPOL )
PRECEDES NOTPRECECES
||;c|muse TUTURE }| |-[t:Hnnﬂz FRESENT }|
¥
~d | -

Figure: Example of graphed chooser showing generation path

Note that this combined graphical and traversal option does not make the use of the cumulative history window
redundent. The cumulative history window (asillustrated in Figure 7.5) gives an overview of several instantiations of

any given chooser--as many instantiations as were invoked during generation since the last clear of the cumulated
history. Asking for a graphically displayed chooser for which several instantiations are on record brings up a set of

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node213.html (2 von 3) [11.12.2004 20:34:33]



Individual chooser tracing

windows, one for each instantiation. Each window shows one traversal through the selected chooser. For choosers that
are used frequently, this may become less simple to interpret than the simple overview given in the history window.

next Jjup |lprevious |Jcontents |Jindex

Next: Individual inquiry tracing Up: Activation of tracing Previous. Individual system tracing

" John Bateman -- GMD/IPS -- Darmstadt, Germany
{ ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node213.html (3 von 3) [11.12.2004 20:34:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Individua inquiry tracing

next |jup ||previous ||contents []index

Next: Clearing tracing selections Up: Activation of tracing Previous. Individual chooser tracing

Individual inquiry tracing

The right-click menu command <trace inquiry> causes the clicked upon inquiry to be added to the
list of currently traced inquiries.

When the "Cumulate System and Inquiry Activity' flag is unset, using any inquiry on thislist resultsin
the normal inquiry related information being displayed directly in the Generation History window as
illustrated in Figure 7.4.

When the "Cumulate System and Inquiry Activity' flag is set, full information concerning the system,
inquiry formal and actual parameters, the inquiry response, and the feature selected in the system are
cumulated for display in the cumulative generation history if required. In this case, no information is

produced in a Generation History window gif

Individual inquiries can be removed from the tracing list by selecting the matching <untrace inquiry>
command.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node214.html [11.12.2004 20:34:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clearing tracing selections

next |jup ||previous ||contents []index

Next: Graphical representation of systemic Up: Activating result focusing and Previous:. Individual
inquiry tracing

Clearing tracing selections

The command peveLormenT:<Clear Tracing Option> brings up a menu from which particular classes
of tracing selections, including those of the previous subsection, can be selected for clearing. The
optionsin full are:

 Clear dl tracing

« Clear traced systems

. Clear traced choosers

. Clear traced inquiries

« Clear paused inquiries (cf. Section 7.8.2)

« Clear collected features (cf. Section 6.2.3.4)

. Clear resource graph stop points (cf. Section 6.2.3.5)

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node215.html [11.12.2004 20:34:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graphical representation of systemic network traversal

next |jup ||previous ||contents []index

Next: Traversal and resource graphs Up: The KPML Development Window Previous: Clearing
tracing selections

Graphical representation of systemic
network traversal

In addition to the particular tracing of generation paths through individually selected choosers, kPmL
also maintains information about the traversal path through the systemic network as a whole.

. Traversa and resource graphs
. Dynamic traversal tracing

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node216.html [11.12.2004 20:34:58]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Traversal and resource graphs

next |jup ||previous ||contents []index

Next: Dynamic traversal tracing Up: Graphical representation of systemic Previous: Graphical
representation of systemic

Traversal and resource graphs

When the grapher display mode Resource-GRAPH:<Display Modes> “Show previous generation path'
IS set, then any systemic networks that are graphed (e.g., with peveLopmenT:<Graph Grammar> ) also
show highlighted for each system the last feature that was selected in that system during some
traversal. This display mode can also be set from the commands

DEVELOPMENT:<Grapher Display Modes> and cHooser-GRAPH:<Chooser Display Modes> . The
default on new loading of the kPmL system isthat it is activated.

Note that it isthe last feature selected in a system on any previous traversal of the systemic network
that is highlighted. This may be confusing if oneis only interested in seeing the most recent traversal
path through the network. Thisis because features will be highlighted in systems which were not even
used in the most recent traversal.

It is also possible to focus on just the last traversal so that only those systems that were actually used
in the last traversal have their feature selections highlighted. Whenever the
DEVELOPMENT:<Generation Modes> ‘realize selectively' flag is set (Section 7.5.2), then only those
features selected during the last traversal are highlighted. The realize selectively flag forces the
generation process to pause after each grammatical unit generated--i.e., after each traversal cycle
through the systemic network; graphing the systemic network at this point will highlight the features
from the selection expression of that grammatical unit only.

An example of using the “show previous generation path’ mode for both the systemic network and
choosersisgivenin Figure 7.7.

Figure: Example of generation path tracing

Here we see atrace of atraversal through the Tense region of the Nigel grammar of English. The
larger graph in the lower portion of the figure shows an extract of the grammar systemic network

beginning with the system secoNDARY-TENSE gif We can see that on the last traversal through the
grammar, the feature “secondary-tense' was selected, leading on to two Systems. SECONDARY -TENSE-

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node217.html (1 von 3) [11.12.2004 20:35:08]



Traversal and resource graphs

TYpPE and TERTIARY-TENSE. The highlighting of the selection expression in the graph tells us that the
features “present-secondary' and "no-tertiary' respectively were chosen in these two systems. The tense
selected was therefore some primary tense followed by a present secondary tense; in other words, one
of:

am/is/are running
was/were running
will be running

Examples showing these realizations of the selected tense could also have been displayed by
collecting the critical tense features and then invoking, for example, RESOURCE-GRAPH: <Show Examples
with Collected Features> (cf. Section 6.2.3.4).

Now, if the user wishes to find out the temporal semantic conditions to which such atense selection
corresponds, then left mouse-clicking on the features “secondary’, “no-tertiary', and “present-
secondary' brings up the three choosers responsible, shown in the Figure from left to right. Since the
previous generation path mode is activated, these chooser graphs also have folded into their display
the inquiry questions and associated semantic specifications that held for the traversal in question. The
semantic conditions can then be immediately collected; i.e., with the time intervals TEMPOn denoting
a sequence of reference times that relate the speaking time to the EVENTTI VE:

TEMPOL = RT515 (a tine interval)
EVENTTI ME = ET513 (a tine interval)
TEMPOL EVENTTI ME

TEMPO2 = ET513

TEMPO2 = EVENTTI ME

TEMPOL not - precede TEMPQO2

TEMPO2 not - precede TEMPOL

That is, the reference tinme and the event tine are overl appi ng but
not equal, and there are no further reference tines intervening
before the event tine.

Any portion of a specified system c network can have its senmantic
comm tnents displayed in this way, thereby providing relatively
qgui ck access to the semantic notivations for particular grammti cal
choi ces or fornms according to the |inguistic resource used.

next |jup ||previous ||contents []index

Next: Dynamic traversal tracing Up: Graphical representation of systemic Previous: Graphical
representation of systemic

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node217.html (2 von 3) [11.12.2004 20:35:08]



Traversal and resource graphs

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node217.html (3 von 3) [11.12.2004 20:35:08]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Dynamic traversal tracing

next |jup [lprevious ||contents ||index

Next: Additional generation process control Up: Graphical representation of systemic Previous. Traversal
and resource graphs

Dynamic traversal tracing

It is also possible to inspect the paths taken through the systemic network dynamically during generation. The
command INsPEcTOR: <:Traversal Graph> brings up awindow in which features are added dynamically as
they are selected on traversal. The dependency relations between features selected are also shown, producing
an extracted graph from the systemic network as awhole. The nodes of the traversal graph consist of the
feature selected and the system to which that feature belongs. Both system and feature are mouse-sensitive in
the normal ways (cf. Section 6.5.2 and 6.5.3 respectively). In addition, the options for pruning a systemic

network graph described in Section 6.2.3.5 also hold for the dynamic traversal graphs.

A sequence of successive views of atraversal graph taken at the outset of generation for an example is shown
in Figure 7.8. This contains the first 7 steps in generation. The latest growth isin each case shownin a

different colour or shade of grey. Note that this growth would normally be shown in a single window: the
cumulative view shown hereisfor illustrative purposes only. The graphs show the progressive refinement in
linguistic specification that occurs when the systemic network is traversed. The first decision indicates that
clauses should be generated, thisis then refined to the subtype of clause "clause', which isin turn refined to the
subtype of clause “full', etc. The graph gives more information than the straightforward list of a selection
expression since a systemic network includes conjunction in its connectivity definition: thus, the penultimate
graph here shows that the unit being generated is both “nonconjuncted' and “mood-unit', and these subtypes
both further specify the type “clause-simplex'. Finally, in the last snapshot taken we can see that the type
“independent-clause-simplex' is dependent on both “independent-clause’ and “mood-unit’; note also that here
two new nodes appear ("independent-clause’ and “independent-clause-simplex') with respect to the situation
shown in the preceding graph. Thisis because the first of theseis a gate (i.e., a system of one choice). The
traversal path istherefore free to go directly to this gate's successors whenever they may be selected.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node218.html (1 von 4) [11.12.2004 20:35:23]



Dynamic traversal tracing

e

Network Graphical Traversal {(ex: EX-SET-105)

Quit| Reset| Redisplay

,

CLARUSES

R

e

CLAUSES

_ CLARCLASS
CLAVSE

< w—|

|

«

bhi

CLAIWNSE 5

AR CRASE O AMEEELLIPERS

CLAIFSE = FULL

A

=

e

CLARSE CL35 CLNIN DRSS CLARE CrERIET

CLAWSES CLAUSE ULL CLAUSE—SIMPLEX

E

s

CILANE-CIANE CGIAREE-FILIPES  GLEREE GrEPLEITY L By

E[.HIISES_EI.MSE FULL EI.IHSE—SIHPI.EI_HIJD]]—II]TIT

i

4

I

R R & K19l S 19

CHAINCTIIN
ROAT CLANSECLASS  CLANSE_HHNNNS  CLARN COMLELTY UHIUHCTED
CLAVSES CLAUSE FULL CLAUSE-STMPLEX Y, gy pon

WMOOD-UKIT
Ei =
| FEPERBENCE ijmn:m.r E
rRT CLAMSECLAss  clamse Rppns / THDEFERDENT —CLAVSE oo naoaeren, WKFEERBERT CLARSE_HENEL
CLAUSES CLAUSE FULL LAY _CaRN FLTY IR AT THDEPEHIENRT —CLAWSE -SIMPLE

CLANSE- SIMPLEX MODD-UNIT

[

E

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node218.html (2 von 4) [11.12.2004 20:35:23]




Dynamic traversal tracing

Figure: Successive views of the features selected during network traversal

Traversal graphs can be useful for exploring how particular sets of features are related to one another. The
information given is equivalent to the selection expressions obtained from graphed structure nodes

(Sections 7.9.3.1 and 10.2.5) or from constituents of a generated string (Section 10.2.5.1). The selection
expressions shown by these other methods are displayed as simple lists of features however. This means that
the dependencies between features will not be clear unless one is reasonably familiar with the resources being
used.

More selective areas of traversal can be selected by combining traversal graphs with collected features
(Section 6.2.1.3). When features have been collected, a started traversal graph will only consider features
dependent on those collected features. If no features are selected that are dependent on the collected features,
then the traversal graph will show no growth. An example of dynamic traversal with three collected features
(‘temporal-location’, ‘temporal’, and “declarative’) is shown in Figure 7.9; this example also shows the
contribution of graph pruning: some of the descendents of the feature "declarative’ have been removed from
the graph.

Tr Network Graphical Traversal {ex: EX-SET-105)

Quit| Reset| Redisplay

I TERPARAE LACTHER FTHRICRY U
ORIC-TINE FIEIESIRER
-ORDER:
TERPERAL-LECAIAN TERPRRAL LICATUN ITERATILAI |
IEMPORAL-LOCRTION  rypypry - TEMPORAL-LOCATLON
FERITERIN
PRIPANY TEALE TEMPO ITENPOL
PAST
IRLARY
POSITIVE \

FEMCTICHY HNCRLAR_FINTTE
CEYPIRAL HCLRANETN MEARTY JAREING_MSTPE  STHECULAR-FINITE
VKT AGGED ~POSITIVE

X8I SESJECT \m.'m FWTE
HO-¥H-SUBIECT POSITIVE-FIKITE
IS RETOE
JECLARATIVE

TR LIL IR _—— —— —

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node218.html (3 von 4) [11.12.2004 20:35:23]




Dynamic traversal tracing

Ll AKHL L YL - A
[JLLLAkALL VL] AT
ATRINA A RSSERTIVE

HOHAITITUDIHAL

|

< — |

Figure: Example of selective traversal tracing by collecting features

Dynamic traversal will keep on adding to the displayed graph as long as that graph is the most recently started
and as long as generation continues. It is usually desirable to have atrace of the features selected during a
single traversal: therefore use of traversal graphsis normally to be combined with the "Realize selectively'
generation mode (cf. Section 7.5.3.1). A given traversal graph will in any case only show features from a
single rank (i.e., it will not mix features selected from, e.g., clauses and nominal groups), since each node can
only show at most one selected feature.

Note that dynamic traversal isonly activated when theresult focusing flag "Cumulate System and
Inquiry Activity' (cf. Section 7.6) isset to al | . In addition, the traversal graph command should be given
prior to starting generation--otherwise it may become confused about the state of generation.

next [Jup |lprevious |[Jcontents |Jindex

Next: Additional generation process control Up: Graphical representation of systemic Previous. Traversal
and resource graphs

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node218.html (4 von 4) [11.12.2004 20:35:23]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Additional generation process control options

next |jup ||previous ||contents []index

Next: Disabling and enabling systems Up: The KPML Development Window Previous. Dynamic
traversal tracing

Additional generation process control
options

. Disabling and enabling systems
. Pausing on inquiries
. Pausing and restarting generation

_— John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node219.html [11.12.2004 20:35:41]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Disabling and enabling systems

next |jup ||previous ||contents []index

Next: Pausing on inquiries Up: Additional generation process control Previous. Additional
generation process control

Disabling and enabling systems

Any system may be right-clicked upon to produce a further menu of operations. Two commands
here, <Disable system™> and <Enable system> , have consequences for the generation process. When a
system isdisabled, it istemporarily removed from those systems that are considered during
generation. That is, such systems will not be entered during generation and no feature from such
systems will be selected. A disabled system may subsequently be re-instated by a corresponding
<Enable system™> command.

= John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node220.html [11.12.2004 20:35:54]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pausing on inquiries

next |jup ||previous ||contents []index

Next: Pausing and restarting generation Up: Additional generation process control Previous:
Disabling and enabling systems

Pausing on inquiries

The two commands pevELOPMENT:<:Pause on inquiry> and DEVELOPMENT:< : StOp pausing on
inquiry> provide a means of generating until a particular inquiry, or member of a set of inquiries, is
reached. Generation then pauses (entering the Lisp debugger).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node221.html [11.12.2004 20:35:59]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pausing and restarting generation

next |jup ||previous ||contents []index

Next: Inspecting the results of Up: Additional generation process control Previous. Pausing on
inquiries

Pausing and restarting generation

At any time during generation, the generation process may be paused by issuing the command
DEVELOPMENT:<Pause> and restarted with the command peveLoPMENT.<Resume> .

Generation can be abandoned at any time with the command peveELoPMENT.<Abort> .

" John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node222.html [11.12.2004 20:46:05]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspecting the results of generation: Graph Structure

next |jup ||previous ||contents []index

Next: Introduction to structure graphs Up: The KPML Development Window Previous. Pausing and

restarting generation

Inspecting the results of generation:
Graph Structure

. Introduction to structure graphs
« Structure Grapher Options
. Operations available on structure constituents
o Selection expression
o Preselections
o Orderings
o Lexica constraints
o Associations
o All structural constraints

£ John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node223.html [11.12.2004 21:12:52]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction to structure graphs

next |Jup [lprevious |[contents |]index

Next: Structure Grapher Options Up: Inspecting the results of Previous: Inspecting the results of

Introduction to structure graphs

The most direct way of inspecting the results of generation, including the decisions that were made to get to that result, is by graphing the
sentence structure. The command pevELoPMENT:<Graph Structure> brings up a graph of the last structure that was generated (or part thereof,
if generation isincomplete but sufficient information for a graph representation was obtained). This can be used as the starting point for
inspecting all aspects of the generated result.

An example of such a structure is given in Figure 7.10. The grammatical structure is shown “sideways as a graph with the largest constituent

placed on the left and successively decomposed into its constituent parts moving to the right. Each constituent is shown in terms of the
functions that go to make up its function bundle. The structure shown is the Nigel example sentence reuters11 from the 1SI 1993 Penman

rel ease.

Strurkure Graph

—TNFIRTIn—""
TOPTCAL ¢ SUETECT p ALTOE / MEH'I'-:"__':F
TT—MEINE MEC

JUH ; LLTOR p RGENT / TOPICAL ¢ SDBIECT THTH:—ohi ch

_,-*" _~WOILE ¢ TE¥EOD [/ TINTTT ; LEERTED [/ ERELS5—nwmfachores
-_z' .-"'-f
L '_f"'
T DEILTLE
."F -"-} __.-"-
."'-I-'."f-{ .-"-.---.
P __ —~TITRFLICMPLENFYT ¢ GOAL ¢ HRRTT N L ASSTFTFR] — i e
‘-__.-' —_— - -\H"'\-\.
- —_ e
FL ABRETTON mmm«ék — a
\'\N. "'\._\_\_xk
/ II AV . —MIKEERMCESS—in
g - —_—
- EPMGELDBATIVE ——2
II T —HINIRANIE——TIING—Scat Tnnd
II *FUAELULALLVE ELHEUNS LabL E—al Taaty
_-TErl 4 TR¥ENN ¢ FPTNTTE is

SRR TENCE
. \\TD]]}I ; TETOIDEPEMDENT ¢ LEEVERE / TROGESES  buolding

DETETIC a

E
ﬂ { AE——(TALTTV —nex

¢
i
L
o
ior

S P ENENCE— UL LT — B tich

- 4
\ 5
";'JI __.-" .__.-'I"FI'I'NH 1I]rl1|
;,-"",.-"f.,.-"f
5;}'}*‘" (MG} ABTEGT /W '
TITRFCTAMHPMLFNTNT [ GOAL. 'I‘TH'I'ITI'N'H\_ M
. ;o .
-\"\-\._M ,-'Il. }_.-'
-\*-._ N W
. £ VOIGE ¢ NOHFINITIVE ¢ LEIVILD / EDOCESS—open
- L
" I"m“T":: d

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node224.html (1 von 2) [11.12.2004 21:37:52]



Introduction to structure graphs

~ 5

T

i N, _— TURLEFHR LSS —in

. -

e CATHRAGATTVR== L AFTETTE—The:

T T ——HINIRRNGE<]

L ~ THIME tall
miit. BErnebure Granher

151 Penman example: Reutersll:

*MEC, which manufactures computer
chipa in Scotland already, is building a
new British plant to open o the fall.”

Figure: Example of structure graphing

Each of the non-terminal nodes of the structure graph are mouse-sensitive. Clicking on them gives a further menu that allows diverse
information concerning the generation process responsible for the structure to be shown. One very commonly used option is that which shows
the selection expression, i.e, thelist of grammatical features that were selected for its generation, of that node. Other possible operations
allow inspection of various constraints that were used to construct the structure. They are described in full in Section 7.9.3.

In al casesit isimportant to note that it is the full internal data structure used during generation that is inspected. The options here provide,
therefore, the most detail that can be obtained concerning the generated structure. This differs from the superficially very similar looking
graphed structures that may be produced from stored examples or example records. These latter, as described in detail in Chapter 10, contain
only asubset of the full information, usually leaving out generation-process internal constraints that could be reconstructed from the definition
of the grammar. As an added reminder of the difference, when available, the result of generation structure graph is printed blue and the
example record structure is printed black. Example records are already very large: at present the space-cost seems to outweigh the information
loss. The missing information can always be reconstructed be re-generating the particular example.

A postscript file of the graphed structure suitable for printing or including as figures can be created in the normal way under the GrapH:<Print
Graph> command (cf. Section 6.2.2).

The structure graph command <Quit> exits from the structure graph and then removes the window.

next |jup [|previous ||contents ||index

Next: Structure Grapher Options Up: Inspecting the results of Previous: |nspecting the results of

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node224.html (2 von 2) [11.12.2004 21:37:52]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Structure Grapher Options

next |Jup |J|previous ||contents ||index

Next: Operations available on structure Up: Inspecting the results of Previous: Introduction to structure graphs

Structure Grapher Options

I ssuing the command sTRUCTURE-GRAPH:<Options> brings up a menu analogous to the corresponding menu for systemic
networks discussed in Section 6.2.1.5. There is only one content-oriented option for structure graphs, however:

. Highlight currently/last generated node: when thisflag is set (the default), the grammatical constituent that was most
recently generated (or, if graphing isinvoked prior to completing its generation, the unit still being generated) is
highlighted in the structure graph. If generation is complete, then no node is highlighted. This option is particularly
useful if an unexpected problem that suspends generation occurs and no tracing was being produced to indicate where in
the generation process one was.

Figure 7.11, for example, shows four successive views of a structure during generation: each view was produced immediately
after completing a single grammatical unit and prior to commencing the next (by means of the realize selectively flag under
DEVELOPMENT:<Generation Modes> : Section 7.5.2). The node highlighted in each case, therefore, is the larger grammatical unit
immediately containing the unit that is about to be realized.

In the first snapshot, the generation process has just produced the structure for the “Sentence' and is about to commence
generating this unit's substructure. The next unit to be realized can generally be recognized as the topmost unfilled child of the
highlighted unit: i.e., in the first snapshot, the grammatical constituent labelled "Topical/Medium/Subject’. In the second
snapshot, the “Topical/Medium/Subject' constituent has been generated and generation is about to commence on its (only)
child, "Thing'. Similarly in the third snapshot, which has moved on to the (only) child of the "Thing' grammatical unit, the
“Stem'. This latter grammatical unit isimmediately realized (probably morphologically), and does not need another traversal of
the systemic network. In the fourth and final snapshot, therefore, the child of "Stem’ ("Head') has already been filled in and the
“Topical/Medium/Subject’ constituent of the sentence as awhole is complete. The containing grammatical unit then revertsto
the "Sentence'. The first and second subconstituents of the Sentence' have now both been filled, and so the next unit to be
realized isthat labelled as " Spacel ocative'.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node225.html (1 von 3) [11.12.2004 21:40:30]



Structure Grapher Options

[«

Structure Graph

Opticns| Quit Structure Grasher| Printgraph|

[ | TOPICALH1 ¢ MEDIUNM#1 ¢ SUBJEGT1 Ky
YOICEtl ¢/ TEMPOO#1 / FINIIEL ¢/ LEXVERBt1l / PROCESS#1—NIL
i SENTENCE
SPAGEL OCATIVE+1
H"::—'I]HEI.I][:.F.‘II‘E'EH:I
NANNER+1 ¢ MEANSH1 |
i
= |
Osticons| guit Strusture Grapher| Printgraph
- F_TOPTCAL#L / WEDTUM:1 ;, SUBJECTHI THTHECH2 =
iﬂ"ﬂIEEﬂl ; TEMPODil ; FINITE#1 / LEZYIRB:]l ; FROCESS:1—NIL
SENTENCE
SPACELOCATIVERL
kl~;~TJ:r'l:lzr..||:n::.'=|.TITﬂs:|:r1
"MANNERKL ; FEANG#1 1
s
=~ |-
et it}ngl ouit Stracture Grapher| Peintgrapn
[ iy
Hr,f1‘|.'|I*Il|‘.;.i=|l.=l=rl. ; NEODIUMil ; SUBTECTH#L { THINGH2 ) —STEME3
{Ifml[:}:#l ¢ TENFOHL ; FIMITE#l ¢ LEXVERE#1 ¢ PROCESSH1—NIL
CENTENCE
\““SPMH.[I}RTITIﬂl
*\TTMEL OCATTVE#1
MANNER#1 ¢ FEFNSHL
7
[ =
H;rnrlml_ul J NEDIM#1l ¢ SUBJECT#1 THINGH 2—STEN:3—HEFDH -
( SENTENCE {—VOICE#1 ¢/ TENPOO%1 ; FINITEt1 / LEXVEEE#1 / PROCESS:1—NIL
\\SPLEELI][:ATI‘FI#I
M TMELOGATIVEN1
H'anmmitl } MEANSHL
v
I | -

Figure: Successive structural snapshots during generation indicating “last' generated node

The remaining structure grapher options concern layout and production of hardcopy versions of the structure graph:

. Send created postscript filesto printer: if thisflag is set, any postscript file produced by invoking the < Printgraph>

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node225.html (2 von 3) [11.12.2004 21:40:30]




Structure Grapher Options

command is sent directly to the default printer rather than simply being left in the hardcopy directory. The printer
command used is| pr.

Structure graph orientation: this flag controls the orientation of graphs; the possibilitiesare: hori zont al (the
default) and : verti cal .

Vertical scaling: the distance between elements vertically.

Hardcopy vertical scaling: the distance between elements that will be used in postscript files for hardcopying.
Hardcopy directory: the directory where postscript files for hardcopying will be stored (when the printgraph menu
option is used).

Hardcopy with header: this flag determines whether header information (containing the current language, and, if
hardcopy, the date of production of the graph) is shown in the graph or not.

Suitable for eps. when set, this flag causes hardcopy versions of graphs to be produced in “single page' mode. Postscript
filesfor inclusion in text documents should normally be produced with this flag set, otherwise extended postscript will
not produce the right results.

next

up |lprevious ||contents []index

Next:

Operations available on structure Up: Inspecting the results of Previous: Introduction to structure graphs

John Bateman -- GMD/IPS -- Darmstadt, Germany

ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node225.html (3 von 3) [11.12.2004 21:40:30]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Operations available on structure constituents

next |jup ||previous ||contents []index

Next: Selection expression Up: Inspecting the results of Previous. Structure Grapher Options

Operations available on structure constituents

Thefull list of available inspection options for particular constituents in the graphed grammatical is as
follows. The options are reached by left-clicking on the desired grammatical constituent. With the
exception of selection expressions, the information presented always appears in the Inspector

window: thisis because thisinformation is typically used as the starting point for further information
searches of the kind described under information chains in Section 6.5. Further details of the

realization constraints referred to here are given in Section 12.2.5.

. Selection expression

. Presdlections

« Orderings

. Lexicd constraints

. Associations

« All structural constraints

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node226.html [11.12.2004 21:40:39]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Selection expression

next |jup ||previous ||contents []index

Next: Preselections Up: Operations available on structure Previous. Operations available on structure

Selection expression

Produces alist of the features selected during the traversal of the systemic network that was
responsible for the generation of the clicked upon node. The list either appears in the INsPECTOR'S
interaction result pane or in a pop-up window of its own as toggled by the appropriate switch under
the rooT:< Flags> command. Each of the feature names shown is mouse-sensitive and can be clicked
upon for further graphing of resources or for listing the definitions of the systems involved, etc.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node227.html [11.12.2004 21:40:59]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Preselections

next |jup ||previous ||contents []index

Next: Orderings Up: Operations available on structure Previous: Selection expression

Preselections

Printsin the interaction results window alist of the preselection realization constraints that were
imposed upon the clicked upon node by its parent grammatical unit. The features specified as
presel ections are mouse-sensitive.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node228.html [11.12.2004 21:41:06]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Orderings

next |jup ||previous ||contents []index

Next: Lexical constraints Up: Operations available on structure Previous. Preselections

Orderings

Printsin the interaction results window alist of the ordering realization constraints that were imposed
upon the the clicked upon node by its parent grammatical unit.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node229.html [11.12.2004 21:41:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Lexical constraints

next |jup ||previous ||contents []index

Next: Associations Up: Operations available on structure Previous: Orderings

Lexical constraints

Printsin the interaction results window alist of the lexical realization constraints (i.e., classify,
inflectify and lexify realization statements) that were imposed upon the the clicked upon node by its
parent grammatical unit.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node230.html [11.12.2004 21:41:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Associations

next |jup ||previous ||contents []index

Next: All structural constraints Up: Operations available on structure Previous: Lexical constraints

Associations

Printsin the interaction results window a list of the function associations made during the generation
of the clicked upon node. These associations are displayed as a sequence of lists where the first
element in each identifies the grammatical function, the second the semantic unit associated with the
grammatical function, the third the set (if any) of lexemes selected for the constituent, and the fourth
the single lexeme selected for the constituent's realization. All are mouse sensitive as appropriate.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node231.html [11.12.2004 21:41:21]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

All structural constraints

next |jup ||previous ||contents []index

Next: Inspecting the results of Up: Operations available on structure Previous. Associations

All structural constraints

Thisoption isonly intended for difficult to find problems that may have been caused by non-standard
implementations of inquiries, or new choosers and inquiries. It pushes onto the global variable
*nodes* inthe Kpml package a pair consisting of:

. alist of the component grammatical functions making up the clicked upon node;
. the complete internal data structure constructed and accessible from that node.

Aslong asthe internal data structure is that created by Penman-inherited code (i.e., for the
grammatical structuresin kpwvL), its contents are extremely verbose. All information is present there,
albeit in avery unwieldy form. All the standard information can be reached more appropriately and
conveniently from the other graph node options described here--this option is therefore intended to be
used when non-standard additions to the standard capabilities are being experimented with, and where
access to the internal data structures themselvesis required.

Note: applications should not build code that depends on the internal form of these data
structures. Thereisno guaranteethat it will be preserved acr oss subsequent kpmL releases.

I nter action with kpmL-inter nal details of generation should only be defined in terms of
recognized interface structures, such asthose produced as a possibleresult of the say function,
for example (Section 14.1).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node232.html [11.12.2004 21:41:26]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspecting the results of generation: Operations on the produced strings or textua structure displays

next |jup ||previous ||contents []index

Next: Switching Languages Up: The KPML Development Window Previous: All structural
constraints

Inspecting the results of generation:
Operations on the produced strings or
textual structure displays

It should be noted here that afurther possibility for inspecting the partial results of generation is
offered by direct mouse-clicks on both the generated string and, if it is displayed, the textual version
of the final structure produced in the Development results pane. This can be a quicker way of finding
information than going via the structure graph. It isimportant to understand, however, that the mouse
operations here are operating not on the internal data structures used during generation, but on the
example record that was cumulated during generation. The options are, therefore, dightly different
and not limited to the last sentence that was generated. The full possibilities here are given in

Section 10.3. A detailed introduction to kemL example recordsis given in Chapter 10.

When "generated strings' are on the activated pop-up windows given under the rooT: <Flags>
command, then strings generated are brought up in their own display window. The results shownin
this window respect the same display flags as results shown in the Interaction results pane on the
DEVELOPMENT Window. The results are exhibit the same mouse sensitivity as strings shown in the
Development window with all the normal options for generated strings (cf. Section 10.2.5.1).

The pop-up window provides a convenient way of maintaining several generated results on screen at
the same time, as well as supporting diverging fonts (cf. Section 12.2.2.3). When generating in

contrastive mode, individual windows are popped up for each language.

John Bateman -- GMD/IPS -- Darmstadt, Germany
J ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node233.html [11.12.2004 21:41:31]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Switching Languages

next |jup ||previous ||contents []index

Next: Summary of generation process Up: The KPML Development Window Previous. Inspecting
the results of

Switching Languages

The command peveLoPMENT:<Set Language> allows the user to set the “current language'. Thisisthe
language that kpmL assumes for all generation and displays of information. The default kemL
behaviour isthat language switching is an entirely kemL-internal affair. That is, language switching
involves no additional reading or re-reading of external linguistic resource definitions and is achieved
solely on the basis of the kPmL-internal multilingual data structures.

Alternative means of generating in different languages are provided by the multilingual modes as
described in the following subsection. Moreover, if a particular example is defined only for asingle
language, then that it is the language that will be used during generation unlessthisis explicitly
overriden.

Note that any necessary changes that go beyond the systemically expressed resources (e.g., language
specific changes to the upper model, etc.) are beyond that supported automatically under this
command. Such changes are in any case to be avoided: the natural language conditionalization
mechanisms provided by kpvmL should be used instead. See also the comments on thistopic in
Section 12.1.

Although largely arelic of less multilingually consistent sets of resource definitions, it is possible to
cause language switching to have avariety of side-effects. When the internal flag * pat ch-

| oadi ng- on- | anguage- swi t chi ng* is set, then switching languages causes language specific
filesto be loaded for the language being switched into. These files are any inquiry implementations,
orderings, punctuation and kpvmL code patches that are found in the concerned language variety
directory (see Section 12.1 for the file names and directory structure). Loading thefilei nqui ry-

| npl enent ati ons. | i sp overwritesall existing inquiry implementations! If present, thisfile
should clearly contain definitions of all inquiry implementations needed by the language in question,
since existing definitions are either flushed (in overwriting mode) or simply overwritten (in merging
mode). Language specific implementations that are to be used in addition to the standard
implementations rather than instead can be placed in afilei nqui ry-i ncrenment. | i sp.

For optimal switching between language it is best if alanguage variety directory contains no language
specific inquiry implementations or code patches. Only then is language switching a completely kpmL-
internal affair, requiring no loading of files for further information. When resource sets are not
mutually compatible and changes to the system by means of file-loading is required, the frequent
changing of current language is made unattractive. In such cases, detailed contrastive work is
probably better performed by making a number of instantiations of the system, one for each language

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node234.html (1 von 2) [11.12.2004 21:41:36]



Switching Languages

required.

next |jup ||previous ||contents []index

Next: Summary of generation process Up: The KPML Development Window Previous. Inspecting
the results of

* - | John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node234.html (2 von 2) [11.12.2004 21:41:36]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Summary of generation process information chains

next |jup ||previous ||contents []index

Next: How to debug resources. Up: The KPML Development Window Previous. Switching
L anguages

Summary of generation process
iInformation chains

The tracing and inspection facilities described in this chapter provide a further set of possible
information chain transitions over and above those for the linguistic resources summarized in
Section 6.6. These provide chains of information involving the actualization of the potential
represented by the linguistic resources. i.e., the results and decisions made during the generation
process itself.

A e e m e m m m e m m e m e m e m e e e = e = e e e e e e e e e = m m e e e e = e o= e o= e o= e e e o= e e e e e e e e e e = = o= = = =

. the actualization process (seneration)

Inquiry re- Semantic
SpONnses Structure
T (SPL)
Tyzfems |
X o Traversal path eatures
‘"q"‘””{__thruugh choosers T lexemes

*

Grammatical

constraints
Traversal path imposed
systems H—1
d through network T during

Ceneration

rammatical
Structure

String

‘el Selection
ExPressinns

_____________________________________________________________________

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node235.html (1 von 2) [11.12.2004 21:41:47]



Summary of generation process information chains

Figure: Summary of actualization process information chains

These are summarized in Figure 7.12. The arrows pointing to unboxed linguistic objects printed in
italics (inquiries, systems, etc.) mark points of entry to the linguistic potential information chains
shown in Figure 6.12. The boxes with ablack circlein their top right hand corners have points of
entry provided by explicit kemL commands in addition to possible activation by mouse-clicks.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node235.html (2 von 2) [11.12.2004 21:41:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

How to debug resources: a sketch of a method

next

up |lprevious [Jcontents ||index

Next: The "old-style' KPML interface Up: The KPML Development Window Previous: Summary of
generation process

How to debug resources: a sketch of a
method

The following is one straightforward way of debugging resouces when they do not perform as
expected or required. There are other ways, and individuals will probably develop their own preferred
styles of working. Situations may also arise which are too complex for the simple strategy outlined
here--but as a starting point it would still serve well.

When a sentence or other linguistic unit has been generated and is known not to produce the correct
result, the following steps can be performed without any additional tracing activated:

1.

2.

> w

Generate (or attempt to generate) the unit desired, starting from the assumed semantics, with
either beveLoPmENT:< Generate Sentence> or from Lisp: (say ' <SPL- spec>) .

When something has been generated (or generation has broken), examine the structure
produced with peveLopmeNT:<Graph Sructure> . (For large structures, more selective structure
graphing can be used as set out in Section 10.3.)

Find an examle in the structure of a constituent that did not generate as expected.

Click the parent node (if any) and examine the constraints set on the problematic constituent
(particularly the preselections and lexical constraints: cf. Section 7.9.3): are these correct and
sufficient for the desired behaviour?

If not, it is the parent node that is at fault: go back to step (4) this time considering the parent
node.

If correct, bring up the selection expression of the problematic node (cf. Section 7.9.3).

Find the first feature on the selection expression list that deviates from that necessary for
desired behaviour. (When more familiar with the resources being used, this can be very quickly
established since one knows what the features are for. With more unfamiliar resources, some of
the inspection tools (Chapter 6) and examples (Chapter 10) may be usefully applied.)
Examine the system where the wrong feature was selected in order to find out why:

o if thereisachooser, then this can be traced (cf. Section 7.6.1.2), generation can be

redone, and the chooser examined in order to find which inquiries produced
Inappropriate responses--debugging can here move to the interpretation of the semantic
input, checking that the given inquiry implementations find the necessary semantic
distinctions;

o if thereis no chooser, then the correct feature must be selected by preselection: this may
indicate that insufficient constraints were brought to bear from the parent node.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node236.html (1 von 2) [11.12.2004 21:41:52]



How to debug resources: a sketch of a method

next |jup |lprevious |Jcontents ||index

Next: The "old-style KPML interface Up: The KPML Development Window Previous: Summary of

generation process

2 Q John Bateman -- GMD/IPS -- Darmstadt, Germany

: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node236.html (2 von 2) [11.12.2004 21:41:52]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The "old-style' KPML interface

next |jup ||previous ||contents []index

Next: Description of the interface Up: No Title Previous. How to debug resources.

The old-style' KPML interface

The old-style kpmL interface provides an interface very similar to that available with the Penman

system, with slightly extended graphical and mouse-oriented facilities gif Thisinterface consists of a
single top level interaction window which combines panes for presenting the most useful information
for debugging linguistic resources of the multilingual systemic-functional type. It also includesamain
root menu of available operations, many of the main commands for the distinct new-style interface
command menus are reachable here via submenus.

The old-style window interface is available for both Allegro and Lucid Common Lisp, CLIM-1 and
CLIM-2. It isthe only option available if Allegro Common Lisp is not being used, or if CLIM-2 is not
present. The old-style window interface is not being actively developed at this time.

The top level interaction windows and their contents are as follows:

Current System Name

Operation Menu
System and Feature History

Lurrent Inquiry b ame
(urrent Inguiry Definition Interaction Results
Inquiry Besponae History
larget yeotence

ommand [oteraction Window

The Operation Menu includes the most common actions that a resource developer will require, but
does not exhaust the commands available. Further commands can be typed directly at the Command
Interaction window and by special keystrokes. Details of all these commands are given in the sections
below, organized by desired functionality.

Results of operations performed are displayed in the Interaction Results window.

The Current System Name, System and Feature History, Current Inquiry Name, and Inquiry Response
History windows are present for the display of particular kinds of information concerning the text

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node237.html (1 von 3) [11.12.2004 21:42:10]



The "old-style' KPML interface

generation process and the traversal of the grammar; some of them are ‘live, i.e. mouse-sensitive for
the ready display of useful information concerning their contents. Moving the mouse around a
window will quickly reveal the mouse-sensitive portions.

The Target Sentence window shows atarget form for a sentence that is being generated: thisformis
associated with example input structures by the user as areminder of what the input structures are
intended to generate.

Finally, asis generaly the case with kpmL, it isrecommended that the user sets up the screen so that
the calling Lisp listener can also be seen in the background while working with kpvL (as can be seen
on the left of the screendump shown in Figure 8.1).

. Description of the interface “sub-windows
. Basic Old-Style Interface Operations
o Clear
o Flags
o Pause
u] uit
o Resume
o Reset
o Show Linguistic Object
o Generation Display Modes
o Resource Maintenance
o Multilingual Operations
o Graph Grammar
o Graph Sentence Structure
o Ready SPL Defaults
o Generate Again
. Further type-in commands
o Abort
o Environment Directories
o Show Path To
o Evauate Lisp Expression
. Various mouse-click triggered commands

next |fup ||previous [Jcontents |]index

Next: Description of the interface Up: No Title Previous. How to debug resources.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node237.html (2 von 3) [11.12.2004 21:42:10]



The "old-style' KPML interface

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node237.html (3 von 3) [11.12.2004 21:42:10]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Description of the interface “sub-windows

next |Jup

previous ||contents [lindex

Next: Basic Old-Style Interface Operations Up: The “old-style' KPML interface Previous: The “old-style' KPML interface

Description of the interface sub-windows'

An example of the top level interface in the middle of an interaction session is shown in Figure 8.1.

[

Restart 3
0: Try
1: Retuy
20 Try
3: setf
4: ABOR
[Current
[1] USER

USER{4):

[Current
[1] USER

USER{4):

USER{47:
There ardg
ISER{S):
ISER(SD:
"fusrila
; Loading
Fusr/locd
Warning:

Jusr/locd
Warning:

fusr/locd
.
USER(E]}:

7| KOMET-PENMAN {(Multilingual) DEVELOPMENT ENVIEONMENT {version: KPML-0.8.27)
Quit Pause
System: SECOHDARY-TEHSE-TYPE Reset Resume
Flags Hultilingual Operations
ALUSE-SIMPLEX 5|  Clear Reset Generation Hodes
INTERMAL-SUBJECT-MATTER MOMNINTERMAL-SUB.| Graph Sentence Structure Graph Grammar
ECT-MATTER Generation Display Hodes Grapher Display Hodes
bADOD-TYPE INDICATIVE Ready Spl Defaults Show Linguistic Object
FIMITE-IMNSERT FIMITE-INSERTED Resource Haigtenance
DEICTICITY TEMPORAL Generate Again
POLARITY POSITIVE becanse of the feature SECOMDARY. Y
POSITIVE-FINITE POSITIVE-FIMNITE
PRIMARY-TEMNSE PRESENT
SECONDARY-TEMNSE SECONDARY e
7 System SECONDARY-TENSE-TYPE is firing from system
SECONDARY-TENSE
becanse of the feature SECOMDARY.
Inquiry: PRECEDE-Q {PAUSE>
Ingquiry PRECEDE-[) is used in choosers:
?oes the moment or interwal ?f time ET29-88031 (  TENSE-CHOOSER  TENSE—CHOOSER
strictly precede the moment or interwval PRIMARY—TENSE—CHODSER
ST30-88026-88047 ? QUAL IFYING-COORDINATION-TYPE-CHOOSER
QUAL IFYING-COORDINATION-TYPE-CHOOSER
(UATENARY-TENSE-TYPE-CHOOSER
OUATEMARY-TENSE-TYPE-CHOOSER
SECONDARY-TENSE-TYPE-CHOOSER
COUMTERFACTUALITY -G WOMNCOUNTERFACTLIAL | SECOMDARY-TENSE-TYPE-CHOOSER

EXTEMSIONALITY -G EXTEMSIONAL
LOGICO-TEMPORAL-CONDITION-G NOTLOGICOTEMPORALCOND]
[T1CM

[l Lkt el o ol R e e Y o e e e

TERTTARY-TENSE-TYPE-CHOOSER
TERTIARY-TENSE-TYPE-CHOOSER )

: INQUIRY { ENGLISH PRECEDE-Q )




Description of the interface “sub-windows

FHRELELE— U PRELELED “DOMATN KB
PEECEDE-G MOTPEECEDES :MODE IMPLEMENTED
SAME-AS—0 DIFFERENT :PARAMETERS {FIRSTTIME SECOMDTIME )
TIME-IN-RELATION-ID ETz9-68031 LIS ( DOES THE MOMENT OR INTERVAL OF T|
FRECEDE-Q MOTPRECEDES J FIRSTTIME
STRICTLY PRECEDE THE MOMENT OR
/| INTERVAL
Target: It’'s raining cats and dogs. SE“UM]'-;-'D[E
L
: OPERATORCODE PRECEDE-(-CODE
: :PARAMETER ASSOCIATION TYPES (CONCEPT CONCEPT )
ENGLIZH:EPML> Resource Malntenance A : ANSWERSET {PRECEDES NOTPRECEDES )
ENGLISH:KPML> Clear : PRESEL ECTION-GUIDANCE NIL
ENGLISH:KPML> Generate Again : TRIVIAL -DEFAUL T NOTPRECEDES
ENGLIEH:EFPML> Pause :ACTIVE-DEFAULT {ENGLISH NOTPRECEDES )
ENGLIZH:EPML>=> |:| J
i i
R: Menu of completions.

Figure: Old-style top level interface window

Running from top to bottom on the left-hand side of the screen, the windows are:

. System Name: displays the grammar system that is currently being traversed through. Left-clicking on the system name in this window will display the definition of that systemin the
Interaction Results window on the right-hand side of the screen. Right-clicking will present a menu of options, one of which isto enter the grammar system network browser that displays
the conectivity of the linguistic resource network in graphic form. This possibility is more fully described under the Graph Grammar operation (Section 6.2).

. System Feature History: maintains a scrollable list of the systems that have been traversed through and the choice of feature that was made in each of those systems; clicking on any entry
allows the system concerned to be inspected in asimilar way to that available in the System window.

. Current Inquiry Name: shows the formal name of the current inquiry that is being put to the environment; the english gloss of thisinquiry is shown in the Inquiry question window.
Clicking on the inquiry's name in this window causes the definition of the inquiry to be displayed.

. Current Inquiry Definition: as long as the appropriate flag from the Generation Display Modes menu (Section 7.5.2) is set theinformal natural language form of the current inquiry
appears here.

. Inquiry Response History: is a scrollable window showing the names of all the inquiries that have been put to the environment and the responses that were received. Clicking on any of the
entries in this window causes the definition of the selected inquiry to be displayed.

. Target text or Input text: shows the text that the grammar is trying to generate. Thisis set in the case of examples from afield in the example record data structure. It serves as areminder
to the user of the form that the example will generate. Thisisthet ar get f or mfield of an example record; the user can set this as a suitable reminder of what the linguistic resources are
being used for in order to generate.

. Command Interaction Window: all commands (including those selected by clicking on the operation menu) that the user gives are entered here. Also, any responses that the user needs to
supply which are not handled via separate menus are entered here. Thisis also, therefore, where the prompts for such information appear.

On the right-hand side of the screen there are two windows:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node238.html (2 von 4) [11.12.2004 21:42:35]



Description of the interface “sub-windows

. Operation Menu: the most commonly required operations available to the user. These menu options provide for starting, pausing, and ending the generation process, setting the quantity of
information that is given during generation, examining particular aspects of the generation process as it occurs, examining the linguistic resources (paradigmatic specifications) and the
results of using those resources (syntagmatic structure), and loading and saving linguistic resources.

This main menu appears as follows

= KEQMET-MFEMMa Mk IMukltilingual) DEVELOFYERT EMVIRDYVERT . .
it Tmact s
st o COHCEA FIVE—CIRCUWHETRHCE Cloan Slurw Limcpalsktde Gbjcck '
Graph Bcntcnes Btructure  Cencration Display Horos N |
] ey Bpl Deraul s TrsouTns Hadnbennree
A At ol 4l ISE conerake Bontowon Tanne
= P L N R T G N CLALEL=51ALLE Tl cs RATFR apl
. AEASTT=R ¢ Food T afds MMk 2 F = Hul i 14nqa | aperations nranh Gnaenno
IR | et o e et o Mt o e MormoFCi gl Fraphar Meplay Hodas
M LR ] I L -
|1 et P | R bl | ol ) -t e R A AR A | BT LR T TR TR NS TRST T H T T
A Tk TX ETIMART TiTR—AT—1 FIMSE TIEFFRANT=5TRTIN
N on sl =0 170 k4SRN TE [Tl A 5L ET1 RTTITS-TAEATHA YIITRE FM T THT-HRAE IS T
. o ) T TRESETTTYTTY MTRETHNCSTE )
SR
r:;"l b | Iakmriag: AT EEEN RS -1 TR
oFlE:
Fex. ‘Mz umen amwacr: SISAGGHFTSHINENT
=z |Emcpizy: COCE BETUVE-CIN CTHA TANCE -0
Fe-a
Fe-
rﬁ:: = thevre o coucccsiwe clromskancs obF FI-100207 .
e—n Purwilile Sywlooe: CLEAUSAL GLEAMSTANLE
1 : MANLESSIVE FLE A ILE LURSEAMIVE LLHLURS TARE
A T WUy EH LIHANETAMUE ULALE ULHAREIANUE HULE ARIUARTT
|F'-'F_ CIN.LE LOCATIOH CIRLUFEIANGE
< TIHE LOCATIM] CIFCUHEIANDE HMOD LBIT
i‘: TL ROOARI I IH-3T—CARSE IEFELERCT-STRTUS
- R ATIMS-CIARGING VOICE I TIOHC-HRAKELE ST
= e re— - TRENGIIITITE CIETMDLHTE)
LA | I [ Do RN D LR I W U RIS TN
A L s . - b - = rd T MEARSET = TEMMFRTARLE
A kIl TIF F 2RCIFAS 3 HNE F e
FE-LT | R 1%3=-Z0E2
4 I PR OCATIY. HFRD RIS IYFS AT The TARAY ATueoes s MTESTIRTTR AT, TS THYTE
. |[FZTCRCIC-T ~C-IZ TE-TULS
Rt S DL N | B aoFT O NATE

SO A TIR

M IF=6F=S ¥
W= T
CRTE ANUE B WDNCALGS

e T Symaamed: CHISERSSEPE LIRS L ASER
Fotl T =T " JUUNSELULLYE GRERAME LANGE FARKEE WAKEUKE LALGE
Folbe 5] SRCE A|ILALE LIHGINETSAUE KULE ALJIRLT

» SAMLE LULATLUAN LAKEUFSLANLE

A T1HE LULALL CARGUHSLAGLE FREL LBLLT

L HLAHURALIUN U LLAUSE HEFEHFNGE STATUS

" RELALLUS GHARGIPG CULLE FUWLS THEME HAHREIS ESS
.{TRINEIIIFITY DECEMDENTE)

TEOT wwd Ll oC Ciioow bk Lot alo et iLok. .

———TT—— T T T -,
G L P 2 *He. o llodiaa Cveodlious HEntceray: GMCESSIVE CIADIMSTRAMGE
JECE e P OMelTils : tions N
T . °
JEGYI e rations L ]The ook memers; HIHCOCESSOVI-CIRIANEINGGE

- FEM T D E R

(R

Most of these commands can also be typed in directly at the Interaction window; those with submenus typically allow the submenu commands to be typed at the interaction window also.

The functions and uses of those menu options particularly concerned with controlling the window interface are given in detail below in Section 8.2.

. Interaction Response: thisis the window that holds all the general information that may be given during generation because of the flags that are set from the Generation Display Mode
menu option and the specific information that the user can ask to be displayed at any time, such as, for example, the displaying of systems, choosers, or inquiries by clicking on the mouse-
sensitive window areas described above.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node238.html (3 von 4) [11.12.2004 21:42:35]



Description of the interface “sub-windows

next |Jup |lprevious |[Jcontents |Jindex

Next: Basic Old-Style Interface Operations Up: The “old-style' KPML interface Previous: The “old-style' KPML interface

John Bateman -- GMD/IPS -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node238.html (4 von 4) [11.12.2004 21:42:35]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Basic Old-Style Interface Operations

next |jup ||previous ||contents []index

Next: Clear Up: The "old-style KPML interface Previous. Description of the interface

Basic Old-Style Interface Operations

The interface oriented basic operations offered by the operation menu are as follows.

. Clear

. Flags

. Pause

« Quit

. Resume

. Reset

. Show Linguistic Object

. Generation Display Modes
. Resource Maintenance

. Multilingual Operations
« Graph Grammar

. Graph Sentence Structure
. Ready SPL Defaults

. Gengrate Again

et John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node239.html [11.12.2004 21:42:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear

next |jup ||previous ||contents []index

Next: Flags Up: Basic Old-Style Interface Operations Previous: Basic Old-Style Interface Operations

Clear

Immediately (or as soon as the process gets a chance...) clears al windows, including the scrolling
windows history.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node240.html [11.12.2004 21:43:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Flags

next |jup ||previous ||contents []index

Next: Pause Up: Basic Old-Style Interface Operations Previous: Clear

Flags

Brings up amenu containing a host of flags that control the finer running of the kpmL system. This can
typically ignored until a more precise idea of the possibilities that kemL offers has been gained. These
options are as described in Section 5.4.2.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node241.html [11.12.2004 21:43:10]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pause

next |jup ||previous ||contents []index

Next: Quit Up: Basic Old-Style Interface Operations Previous: Flags

Pause

Temporarily stops the generation process. While the process is stopped one may use any of the
display functions to look at the current state of the generation process. Note that pause only works for
generation started in the window interface with commands such as <Resource Maintenance:
Operations on Examples. Generate Sentence> , <Generate Again> , etc., and not for generation
started elsewhere (for example directly in the Lisp listener viathe say function as described in
Section 14.1).

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node242.html [11.12.2004 21:43:14]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Quit

next |jup ||previous ||contents []index

Next: Resume Up: Basic Old-Style Interface Operations Previous. Pause

Quit

This command exits from the interface window and then destroys that window.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node243.html [11.12.2004 21:43:18]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resume

next |jup ||previous ||contents []index

Next: Reset Up: Basic Old-Style Interface Operations Previous. Quit

Resume

Continues the generation after a <Pause> .

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node244.html [11.12.2004 21:43:22]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Reset

next |jup ||previous ||contents []index

Next: Show Linguistic Object Up: Basic Old-Style Interface Operations Previous. Resume

Reset

Immediately (or as soon as the process gets a chance...) clears al windows, including the scrolling
windows history, and forces any existing generation process that has been started to exit.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node245.html [11.12.2004 21:43:26]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Linguistic Object

next |jup ||previous ||contents []index

Next: Generation Display Modes Up: Basic Old-Style Interface Operations Previous. Reset

Show Linguistic Object

L eads to the inspection options--mostly similar to those described for the Inspector window in
Chapter 6.

et John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node246.html [11.12.2004 21:43:31]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation Display Modes

next |jup ||previous ||contents []index

Next: Resource Maintenance Up: Basic Old-Style Interface Operations Previous. Show Linguistic
Object

Generation Display Modes

Sets the generation modes as described in Section 7.5.1; these modes can then be reset with the <Reset
Generation Modes> command.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node247.html [11.12.2004 21:43:37]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource Maintenance

next |jup ||previous ||contents []index

Next: Multilingual Operations Up: Basic Old-Style Interface Operations Previous: Generation
Display Modes

Resource Maintenance

L eads on to options similar to those available under the Devel opment window of the new-style
interface (Chapter 7).

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node248.html [11.12.2004 21:43:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual Operations

next |jup ||previous ||contents []index

Next: Graph Grammar Up: Basic Old-Style Interface Operations Previous: Resource Maintenance

Multilingual Operations

L eads on to options similar to those available under the Root window of the new-style interface
(Chapter 5).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node249.html [11.12.2004 21:43:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph Grammar

next |jup ||previous ||contents []index

Next: Graph Sentence Structure Up: Basic Old-Style Interface Operations Previous: Multilingual

Operations

Graph Grammar

Provides similar functionality to the iINnspecTOrR:<Graph Grammar> command (Section 6.2). The
modes for graphical display can be set by the command <Grapher Display Modes> .

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node250.html [11.12.2004 21:44:00]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph Sentence Structure

next |jup ||previous ||contents []index

Next: Ready SPL Defaults Up: Basic Old-Style Interface Operations Previous. Graph Grammar

Graph Sentence Structure

Displays the grammatical constituency of the last generated sentence or linguistic unit (cf.
Section 7.9).

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node251.html [11.12.2004 21:44:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Ready SPL Defaults

next |jup ||previous ||contents []index

Next: Generate Again Up: Basic Old-Style Interface Operations Previous: Graph Sentence Structure

Ready SPL Defaults

Older versions of the system required that default values for inquiries be explicitly set if required (cf.
Section 7.4.4). This command activates defaults on demand.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node252.html [11.12.2004 21:44:30]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generate Again

next |jup ||previous ||contents []index

Next: Further type-in commands Up: Basic Old-Style Interface Operations Previous:. Ready SPL
Defaults

Generate Again

Generates the last example again, as with peveLoPmENT:< Generate Again>.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node253.html [11.12.2004 21:44:46]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Further type-in commands

next |jup ||previous ||contents []index

Next: Abort Up: The "old-style' KPML interface Previous. Generate Again

Further type-in commands

The following commands can be typed directly at the interaction window and are not available from
the menu. Command completion is provided.

. Abort

. Environment Directories
. Show Path To

. Evaduate Lisp Expression

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node254.html [11.12.2004 21:44:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Abort

next |jup ||previous ||contents []index

Next: Environment Directories Up: Further type-in commands Previous. Further type-in commands

Abort

Commands being typed in at the interactor window can be aborted at any time by typing a control-Z.

9 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node255.html [11.12.2004 21:45:00]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Environment Directories

next |jup ||previous ||contents []index

Next: Show Path To Up: Further type-in commands Previous: Abort

Environment Directories

Brings up amenu in which the environmental file directories that the kpmL System uses for various
kinds of information access and display. The directories currently maintained here are:

. Root of resources: the directory where all linguistic resources hang.

. Hardcopy directory: the directory where postscript versions of graphed information are sent.

. Merging results directory: the directory that records the actions taken when resources are being
merged during loading rather than overwritten when the most verbose tracing flags are set (see
Section 5.7.2.2).

. Example runner results directory: the directory where the results of attempting to generate all
loaded examples (see Section 9) are recorded.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node256.html [11.12.2004 21:45:07]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Path To

next |jup ||previous ||contents []index

Next: Evaluate Lisp Expression Up: Further type-in commands Previous: Environment Directories

Show Path To

This shows the path through the loaded systemic network that is necessary to reach the specified
linguistic feature. This may be incomplete if complex entry conditions (i.e., digunctions) are found on
the backward chaining path. See also Section 6.5.3.4.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node257.html [11.12.2004 21:45:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Evaluate Lisp Expression

next |jup ||previous ||contents []index

Next: Various mouse-click triggered commands Up: Further type-in commands Previous: Show Path
To

Evaluate Lisp Expression

This command is given by typing acomma ," as the command name in the Interaction window. The
user isthen expected to typein aLisp expression. Thisis evaluated and the results are shown in the
General Information window.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node258.html [11.12.2004 21:45:16]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Various mouse-click triggered commands

next

up |lprevious [Jcontents ||index

Next: Static Integrity Checks. Resource Up: The “old-style KPML interface Previous. Evaluate Lisp
Expression

Various mouse-click triggered
commands

In general, aleft mouse click over a mouse-sensitive object in the Interaction results window will
print a definition or description of the object selected. In addition, however, aright mouse click will
offer amenu of further commands which vary depending on the type of object selected. For the
display type options, see the descriptions given in Section 6.3; for the options that effect generation

(tracing, enabling, etc.), see Chapters 9 and 10.

The options for agrammatical system are to:

print the description of the system,

disable the system from use in generation,

enable the system for use in generation,

trace the system when it is used in generation,

stop tracing the system,

graph the network beginning at the system selected.

The options for a systemic feature (i.e., aterm in a systemic network system) are to:

. print the description of the feature (showing the systems which have the feature as an input

condition and the system where the feature is defined),

only show systems having the feature as input,

only show systems having the feature as output,

print the path through the systemic network leading to the systemic feature,
show the list of loaded examples that use the feature.

Note: thisoption will only show examples wher e the selection expressions have alr eady
been provided by generation (Chapter 10). In order to save space, many examples do not
include thisinformation. It can be added, of course, by generating the example with the
Update Example Record Fields option set (Section 7.5.2).

The options for an inquiry areto:

. print the inquiry definition,
. print the definition of the inquiry implementation,
« show who can ask the inquiry,

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node259.html (1 von 2) [11.12.2004 21:45:22]



Various mouse-click triggered commands

. show who can identify the inquiry,
« pause when theinquiry is used in generation,
. stop pausing when the inquiry is used in generation.

Any options marked ast r ansl| at or should probably be avoided under Lucid Common Lisp's
CLIM.

next |fup |lprevious [Jcontents |]index

Next: Static Integrity Checks. Resource Up: The "old-style KPML interface Previous. Evaluate Lisp

Expression

_‘ John Bateman -- GMD/IPS -- Darmstadt, Ger many
ig ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node259.html (2 von 2) [11.12.2004 21:45:22]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Static Integrity Checks: Resource maintenance

next |jup ||previous ||contents []index

Next: Background concepts Up: No Title Previous. Various mouse-click triggered commands

Static Integrity Checks: Resource
maintenance

. Background concepts
o Static tests during resource loading
o Static tests on whole resource set

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node260.html [11.12.2004 21:45:27]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Background concepts

next |jup ||previous ||contents []index

Next: Static tests during resource Up: Static Integrity Checks: Resource Previous. Static Integrity
Checks: Resource

Background concepts

The resource debugging support tools offered by kpvL can be divided into three broad classes.

. static tests during resource loading,
. Static tests on whole resource set,
. generation tests.

Static tests examine the resources as defined and attempt to determine inconsistencies, possible
mistakes, etc. These tests are described more fully below. Generation tests involve using the linguistic
resources for generation: thiswill typically bring out far more detailed inconsistences or errors than
the static tests can.

Thewarningsissued by the static tests carried out during loading should always be car efully
attended to. Inherently inappropriate or incorrect resour ce definitions can lead to resour ce sets
that aredifficult to debug using the generation tests!

There are in addition two classes of messages that the system will give while running static tests or
during generation: warnings and cautions. Warnings are issued when an error is known to have
occurred in the system. Cautions are issued when a potential error or suspect condition is recognized.

. Static tests during resource |loading
. Static tests on whole resource set

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node261.html [11.12.2004 21:45:34]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Static tests during resource loading

next |jup ||previous ||contents []index

Next: Static tests on whole Up: Background concepts Previous. Background concepts

Static tests during resource loading

The most common warning given here is that a grammatical feature is defined for some grammatical
system and that feature was aready known as being defined for some other grammatical system. This
IS an untenable situation since a grammatical feature can only be used uniquely. When this occurs,
therefore, awarning is given and the previously existing grammatical system is disabled. Disabled
grammatical systems play no further role for integrity checking or for generation. They are, however,
still present in the system and can be reactivated (assuming that the originating error condition no
longer applies) with the <:Enable system™> command (cf. Section 7.8.1).

The uniqueness condition for grammatical features holds only within a single language however. It is,
of course, acceptable to have distinct languages which assign a grammatical feature of the same name
to distinct grammatical systems. Disablement of a system is therefore aways relative to particular
languages. It is possible for a system to be disabled for one language but enabled for another.

) John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node262.html [11.12.2004 21:45:39]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Static tests on whole resource set

next |jup ||previous ||contents []index

Next: Resource Verification: Example Sets Up: Background concepts Previous: Static tests during
resource

Static tests on whole resource set

The insPecTOR:<:Grammar Consistency Tests> command carries out arange of general consistency

checks on the resources as |loaded aif

In addition, prior to generation with any resource set, kpvL runs through a standard set of network
connectivity checks which can produce various warnings. Note that thisis arequired step before using
the resources for generation and is thus triggered automatically if generation is requested before
connectivity has been established. During this phase, a number of start-up tests are run. Problems here
are given as warnings as follows:

« Output features of systems which are not reachable from entry features - ideally there should
not be any of these as this type of warning indicates a mismatch between some of the systems
of the grammar.

. Input features not recognized as the output of any system. There should always be just one of
these - the feature Start, which is the input for the system rank. Thisis the topmost level of the
grammar and therefore is not the output of a system. Any other featuresin thislist indicate
some error in the grammar.

. Lexical features not called for by any Classify or OutClassify - Note that |exicons may also be
intended for use by other systems and somany contain features which are not used by the
currently loaded resources; such features are listed in the start up warnings.

. Features demanded by Classify or OutClassify but not present in the lexicon. This warning
indicates that there is a mismatch between the lexical features that the grammar expects to be
able to call on, and those that actually exist. If such awarning occurs, then either the grammar
or the lexicon should be adjusted to eliminate them.

. Words demanded by Lexify but not present in the lexicon. Anything appearing under this
warning should be added to the lexicon.

. Features demanded by preselect but not chosen in the grammar. This means that there are
systems which are trying to preselect for features that don't exist in the grammar. This should
not occur.

« Chooser for system choosing differently to the system. If a chooser for some system contains a
possible choice of afeature that is not one of the output features of its associated system, then
thisis an error; the chooser or grammatical system probably needs to be fixed.

It is possible to call for more stringent start-up tests by selecting the Show Cautions flag (see
Appendix A). Then cautions such as the following will be given:

. Too many void features on system. This means that the system outputs named in the warning
are ones which neither serve asinput for other systems nor have any terminal realization.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node263.html (1 von 2) [11.12.2004 21:45:45]



Static tests on whole resource set

When resources are being developed, there tend to be quite afew of these, usually marking the
starting points where further development is intended.

. Chooser for system choosing differently to the system. If the chooser has been designed to
choose only some of the available options in the system to which it is attached, then it will be
reported here. Usually this is because the other options in the system lead to undevel oped areas
of the grammar or they are always handled by preselection.

next |jup ||previous ||contents []index

Next: Resource Verification: Example Sets Up: Background concepts Previous: Static tests during
resource

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node263.html (2 von 2) [11.12.2004 21:45:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource Verification: Example Sets and Test Suites

next |jup ||previous ||contents []index

Next: Example sets and test Up: No Title Previous. Static tests on whole

Resource Verification: Example Sets
and Test Suites

One of the main tasks that an environment such as kpvL has to support is the ongoing verification that
the resources defined do what they are supposed to do. That is, in this case, that a correctly formed
semantic specification will lead to an appropriate linguistic realization of that specification in the
desired languages. The principle means adopted to achieve thisis by supporting extensive test suites,
or example sets, for any resource set released. A test suite is constructed by generating from awide
range of semantic specifications, attempting to cover as many components of the grammar asis
possible. Developing such test suites relies heavily on the generation functionality of kemL and the
extensive resource debugging aids provided.

. Example sets and test suites
. Theexample operations
o Load Examples
o Write Examples
o Clear Examples
o Generate from example SPL
o Graph example structure
« Display generated string
o Show examples with features
o Copy examples with new names
o Delete some examples
o Example runner
« Starting the example runner
« Levelsof detail while example running
« Low detall example running
= Medium detail example running
« High detail example running
o Features used in examples survey
. Operations on example strings and textually displayed structures

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node264.html (1 von 2) [11.12.2004 21:45:50]



Resource Verification: Example Sets and Test Suites

o Operations on displayed strings
= Show corresponding fundle
« Graph corresponding constituent and bel ow
= |Nnspect selection expression
« |Inspect corresponding semantic term
= Partial re-generation
o Operations on displayed structures
« Graph this constituent and below
« Show selection expression
« Show corresponding semantic term
« Generate again up to but not including this constituent
. Full summary of linguistic resource information chains

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node264.html (2 von 2) [11.12.2004 21:45:50]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Example sets and test suites

next |Jup ||previous ||contents |Jindex

Next: The example operations Up: Resource V erification: Example Sets Previous: Resource Verification: Example Sets

Example sets and test suites

While debugging or maintaining a set of resources it is usual that a standard set of examples be maintained. Thisisalist of
either semantic specifications or records of responses to inquiries for a complete sentence. The form of an example record is
described in Section 12.2.9. Example sets are a crucial way of verifying that aresource set is consistent and adequate. Since
it is not feasible to check all combinations of defined features when resources become realistic in size, the consequences of
changes and extensions can be monitored by verifying that the generation of the example set has not been compromised.
When adding new features to the resources, corresponding examples should be added to the example sets. The ideal isto
achieve for each language variety an exercise set that includes sufficient examples to “exercise' every feature of the linguistic
resource defining the variety.

Example records are created by storing particular kinds of information concerning the sentences that are generated by a
linguistic resource. Each time the generator runs, a particular example record is either selected--explicitly by the user from
menus of prestored examples--or created--if semantic input is specified directly (by providing an SPL specification for
example). This selected/created example record is updated according to the details of the generation process for the
linguistic units generated. The example record therefore provides an abbreviated record of the results of the generation
process.

Some information is always stored to the currently active example record. This minimal information is that used for
presenting the final generated string to the user (the string that is printed in the Devel opment window or in its own pop-up
window following generation); thisis the "mouseable structure’ described in detail in Section 14.5. The string display of this
mouseabl e structure can be used for recovering information about the generated linguistic unit without updating any of the
stored example records. As long as such a string is shown in the Devel opment window, the minimal associated information
remains inspectable. Thisinformation is sufficient for supporting the commands on generated strings for graphing structure
and showing associated semantic specifications, but not for the commands for showing selection expressions. If this further
information is sought for example records that are not sufficiently complete, the message:

No i nformation mai ntai ned for this node.
or something similar will be displayed.

Even the minimal “mouseable structure' information that is always produced is not automatically transfered to the
information associated with the named example with which generation was started. Simple generation does not, therefore,
ater information that has been loaded from example sets. In order that any information be stored to the maintained example
records and maintained, the flag peveLopmenT:<Generation Modes> “Update Example Record Fields' (Section 7.5.4.2) must

be set.

With this flag set, the basic information plus additional information is added to the current example record and, following
generation, used to update the maintained example record associated with the selected example name. The full information
collected is then:

. the semantic entity that is the principal “hub' for any traversal of the grammar (i.e., the head semantic term),

. the set of features selected (the selection expression) during traversal of the systemic network for each such hub,
. the complete set of inquiries posed, their actual parameters and their responses,

. thegrammatical structure generated as represented in the “rich mouseable structure’ form (Section 14.5).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node265.html (1 von 3) [11.12.2004 21:45:58]



Example sets and test suites

This provides the necessary information for additional operations such as showing al examples that use some set of
systemic features and presenting the selection expressions and semantic information associated with each grammatical
constituent generated. It also supports useful on-line example-based documentation and debugging capabilities.

Most of the standardly released linguistic resources include at least one prestored set of full example records. Thesefilesare
generally quite large, and so are available separately from the resource definitions. Loading these files enables examples to
be found for the defined systemic network features, as well as all the grammatical structures to be inspected, without having
to generate the examplefirst.

Prestored full example sets are created ssimply by invoking the example runner over the chosen set of examples with (i) the
updating flag set, and (ii) the degree of example runner detail (described in Section 10.2.9) set to: conpl et e. The user

can, therefore, extend these full example sets, or make new such sets, freely at any time.

The operation of the "Update Example Record Fields flag is shown graphically in Figure 10.1. This extends the information
chain diagram for the generation process of “actualizing' linguistic resources given in Figure 7.12. The dashed arrows mark
the additional information flow that occurs whenever the updating flag is set.

. the acinalization process (peneration) | |r
. b example sets
I I
! I
I
|
Semantic , : _
: Structure -i-- L] Stored Semantic
: (SPL) ! T Structure (Ex-
! o amples)
: o
: ;| A
: v
: ' |
. oo
. o
: o
1 L] I
: o
' ' |
: ' |
; v
i o
! Co
| -
| - Y
: Do Selection
; : '__, E . Grammatical
. - ; xpressions
! Selection -"'f’%l’ Structure
; Expressions | | |
. —_ :
, kS ; I
E n-‘—--‘______‘i__:h,_.ﬂﬂ' Strlng
I I

Figure: Therelation of the generation process to example records

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node265.html (2 von 3) [11.12.2004 21:45:58]



Example sets and test suites

Having a set of full example records loaded al so extends the possibilities for following information chains described in
Chapter 6 considerably. The complete set of information chain transitions is summarized in Section 10.4.

Note that the example record only records the last generated version of an examplein the last language for which generation
proceeded. Other information is accessible from the interface as long as the generated strings for any example are being
displayed (cf. Section 10.3). In order to save the information for multiple languages, individual save examples should be
carried out following generation in the desired languages. The information saved in an exampleis extensive and it is
probably desirable to break this down into as small a packets as possible. Hence single example records do not accumulate
any more than the basic results of generation in multiple languages.

next |Jup ||previous ||contents |Jindex

Next: The example operations Up: Resource V erification: Example Sets Previous: Resource Verification: Example Sets

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
‘ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node265.html (3 von 3) [11.12.2004 21:45:58]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The example operations

next |jup ||previous ||contents []index

Next: Load Examples Up: Resource Verification: Example Sets Previous. Example sets and test

The example operations

This section describes all of the operations that may be performed on examples. This includes both the
commands available under the peveLoPmeNT:<Example Operations> command and those commands
that are reached by clicking on mouse-sensitive example namesin any of the kpmL windows.

. Load Examples

. Write Examples

« Clear Examples

. Generate from example SPL

. Graph example structure
o Display generated string

. Show examples with features

. Copy examples with new names

. Delete some examples

. Example runner
o Starting the example runner
o Levelsof detail while example running
o Low detail example running
o Medium detail example running
o High detail example running

. Features used in examples survey

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node266.html [11.12.2004 21:46:05]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Load Examples

next |jup ||previous ||contents []index

Next: Write Examples Up: The example operations Previous: The example operations

Load Examples

Whereas the standard behaviour for loading described in Section 5.7 loads by default all example set

definitions for alanguage variety, it is also possible to be more selective about which sets of examples
are loaded into the kPmL environment.

The command <Example Operations. Load Examples> brings up a menu of the example sets
available for a selected language variety. Selecting from this menu loads the selected set only. This
permits particular example sets to be worked with. The example sets offered in the Load Examples
menu consist of those files with extension . spl found in the appropriate language directory as set out
in Section 12.1.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node267.html [11.12.2004 21:46:09]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Write Examples

next |jup ||previous ||contents []index

Next: Clear Examples Up: The example operations Previous. Load Examples

Write Examples

The command <Example Operations: Write Examples> writes out the currently |loaded examples to
the appropriate directory of the selected language variety. The directory structure of the loaded
examplesis preserved.

The amount of information in the examples written is limited to:

. the name of the example,
. thetarget form of the example,
. thelogical form of the example.

This enables basic sets of example to be created.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node268.html [11.12.2004 21:46:13]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear Examples

next |jup ||previous ||contents []index

Next: Generate from example SPL Up: The example operations Previous. Write Examples

Clear Examples

The command <Example Operations: Clear Examples> clears all loaded examples--i.e., not just the
examples for the current language variety.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node269.html [11.12.2004 21:46:18]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generate from example SPL

next |jup ||previous ||contents []index

Next: Graph example structure Up: The example operations Previous: Clear Examples

Generate from example SPL

The command <Example Operations. Generate from example SPL> brings up a menu of examples,
selection of one of which initiates generation by appeal to the semantic specification stored in that
example (rather than by user interaction or by rote from an example file). Generation is nevertheless
normally undertaken in “implemented’ mode (Section 7.4.7), which means that inquiry
implementations, where they exist, are used to interrogate the environment (knowledge base, upper
model, etc.) rather than having a user intervene in the generation process or having inquiries take their
responses directly from the example record. The menu showing available examples can be
configured in various ways as described in Section 7.4.2.

As described in Section 7.4.2, generation of examples can also be started by the command
DEVELOPMENT:.<(Generate Sentence> .

In addition, clicking left on any mouseable example name, or selecting the first option in the right-
click menu from any mouseable example name, also invokes generation for the clicked upon example.

= John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node270.html [11.12.2004 21:46:22]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph example structure

next |jup |[previous [Jcontents ||index

Next: Display generated string Up: The example operations Previous. Generate from example SPL

Graph example structure

The command <Example Operations: Graph example structure> brings up a menu of examples as for <Generate
from example SPL> and peveLorPMENT:<Generate Sentence> (Sections 10.2.4 and 7.4.2 respectively). Selecting an

example from this menu brings up a graph representing the generated structure associated with the selected
example. The structure graph for an example only exists, if

. the example has aready been generated within the current session with kpmL, or
. the example has been loaded from a suitably complete example set (cf. Section 10.2.9).

Note that although the graphed structure usually looks very similar to that graphed following generation by the
DEVELOPMENT:< Graph Sructure> command (Section 7.9), the example structure is, of course, based on the example
record and not on the internal data structures manipulated during generation. This has two consequences:

1. the inspection possibilities are limited to the information preserved in the example record,

2. the graph reflects the mouseabl e sentence structure rather than the true grammatical structure--while these
are by default in kPmL equivalent, they need not be as Section 14.5 describes. Figure 10.2 illustrates this by
showing several graphs of the same grammatical structure but with decreasing discrimination of
constituents. The top-right graph is the default, with all constituents and terminals mouse sensitive. The
bottom-right graph has, in contrast, no terminals mouse sensitive and only those constituents that are either
nominal groups or prepositional phrases. Thus only these constituents (nominal groups. the Subject “"the
news', the Addressee ""him", and the Minirange ""noon"; prepositional phrases. the Spacel ocative ""at noon")
have their functional labels shown in the graph. The top-left graph distinguishes only the nominal groups.
Finally, the bottom right has no mouseable grammatical units and reflects simply the sequence of strings
(including punctuation) representing the generated resullt.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node271.html (1 von 3) [11.12.2004 21:46:33]



Graph example structure

ik Example Graph akd Example Graph !
Cuit Ezenple Grapher| Frin- Ezxampls mwmwr_ Quit Ezanple Frapher| Print Ezample _uwmww_
0 ] I
\\EHEHEN|=5 H%Hn.ﬁgcmﬁhnégﬁugﬁtmﬁiﬁuﬂx
TOPICFLEL/SUBTECT#1/MEDIUM: 1/ REPORT# 1< { —
I,,_H_“_..zm#m YIEVS
/Ras
VULGES L/ TEMPUDE 1/ FINLTES 1 %as -told
\ SENTENCE .
| VVICEDEPENDENT /L BXYERBH1/PROCESS+1—told ADDRESSEE+1/BENEFTGIARY#HL him
SENTENGE ‘at
;f.ﬂ_uuwmmmmm#“_.___umﬂm.HnH_Eﬁ“— THINGt :—hin
\NINIRANCES 4 noon
FINORPEOGESS+4—al _,.
%EEEHEH\
T NINIRANGEH4— THING#5—noon
kd
4 [+
¥, Ecample Graph -
i P : ik Example Graph
Juit Examole n.wmﬁ_.umﬂ_ Print Example nwmw&_ _ - .
. Quit Ezxample Graphz<| Print Ezamole mwmﬂ_u_
i The 4 U The A
TOPICAL+ 1/ SUBJECT#1/NEDTUM: 1/REPORT4 1
\ bt \53&
AR AR
! /
told told
4 SENTENGEE. .
SENTENCE, - IDRESSEES1/BENEFICIARCIl— hix him
f.,wﬁ
/, —— /H__n.n-..
SACHOMIEl—=—___
/ MINIRFMGEH —mnoon .
Y M
R a4 (MK I3

Figure: Reducing constituent discrimination in example structure graphs

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node271.html (2 von 3) [11.12.2004 21:46:33]



Graph example structure

The inspection possibilities for graphed example structures are reached by clicking left on any constituent shown in
the graph. The options are:

. Selection Expression
. Semantic Expression

Of note here is that the identification of selection expressions proceeds on the basis of the head semantic term
associated with a constituent--in most released resources this is the semantic entity associated with the pseudo-
grammatical function Onus during each systemic network traversal. Selection expressions will be shown for all
traversals of the systemic network that are concerned with the same semantic head. This means that selecting the
selection expression for a given constituent can result in several selection expressions being shown.

Example graph structures are displayed in black (rather than, when kpmL is running in colour, the blue of the
generated structures graphs). Another difference, briefly noted above, is that since the example graphs reflect more
the structure of the final string rather than the actual grammatical structure, these graphsinclude any punctuation
that the string has been allocated.

. Display generated string

next [jup |[previous [Jcontents |]index

Next: Display generated string Up: The example operations Previous. Generate from example SPL

John Bateman -- GMD/IPS -- Darmstadt, Ger many
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node271.html (3 von 3) [11.12.2004 21:46:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Display generated string

next |jup ||previous ||contents []index

Next: Show examples with features Up: Graph example structure Previous: Graph example structure

Display generated string

The command <Display generated string> isto be found on the right-click menu associated with any
mouseable example name. Invoking this command brings up in the Development window a printed
representation of the generated string associated with the clicked-upon example. This representation
obeys the general layout flags for generated strings present under the rooT:< Flags> command. The
mouseable constituency of the string is always determined when the example is generated: this cannot
subsequently be changed without re-generating.

An important additional functionality of this command is to make the displayed string sensitive to the
current set of collected features (cf. Section 6.2.3.4). If there are some collected features, then any
constituents in the displayed generated string that contain these featuresin their selection expressions
will be highlighted.

A relatively complex example combining this functionality with several of the features offered by
kPML is shown in Figure 10.3. Here we see on the top left portion of the figure two overlapping

systemic resource graphs (cf. Section 6.2) leading from the rank system (not shown in partly covered
graph) to the miNnor-PROCESS-TY PE System for the language variety Dutch. Here we have focused in on
just one feature, “portion process, removing al others from the graph with the graph pruning facility

(cf. Section 6.2.3.5).

Assume that we are interested in seeing how this grammatical featureisin fact realized in sentences--
what role doesit play?

To begin to get a sense of its use, we collect the feature by right-clicking and selecting the collect
feature option (cf. Section 6.2.3.4). We can then ask, by means of the command <Show examples with
collected features> in the grapher menu, which of the loaded examples use this feature. The result of
this operation is shown in the Inspector pane bottom left. Right-clicking on any of the example names
shown there and selecting the “display generated string' option produces the corresponding string in
the Development window on the right of the figure. A selection of the examples have been printed in
thisway. The constituents of the example sentences using the collected feature are highlighted (in
colour on color screens; on monochrome screens they show up as a shade of grey). Thus we can
immediately see that the feature “portion process occurs in phrases such as the following: ~van een
eigen huis’, "van Mannesmann AG", ""van de eeuw", etc.--probably already giving a general
impression of the role of this grammatical feature.

http://www.darmstadt.gmd.de/publisrhlrkomet/kpmI-l-dcrjcrlﬁorde272.html (1 von 3) [11.12.2004 21:46:44]



Display generated string

Partim—PrYnreRs
Minoyprooess ! Van.

pivor-rROCERS- TRPLE T
A

=l

Vho Can .
Print syy
Prant Chd
Prant Imc

print Iwg |-

|-

Print LexTENT ITETN — FrInT [EECORE —— OTEDIRET DISpING, OOER

SEBNCH:KPM . Graph Sranmar (svetem) Eark

DUTCH: EEML> EXample:s Using Featuras

DUTICH: EEML> Ci=play generdaled =Leing B-CREATI-C3F
NMTOH:EFMT THisaplay genarate] stri-g B—rRRBATS-TH

Exanples wwiny [ealures: (PORTION-PROGESS) are
TENSE PREST'ERF THRE 2 TENSE DAST IRH CGAIFEESL CAUSEL CAUSEd CAIFEEZ BE |
HHEMN=5] | HBEHHBNS5 HFHHENSSA HEHHEMS41) B—UCHEATE-IIBHLY B-UKEATE-1G _
B-GREATE-DS B-CREATE-DJ TENSE-PRESPERF-IFR-Z TENSE-PAST-IRR W|ﬂw.m.ur.H._
E DEBIS B CEEARIE D6 B CREATE DS B CHEATE D3 CAUSEG CAUSEL CAIFSEL Ch|
USE? HFHKEMNSS50 1 BEHHFM=511 EFHRENSGA BEHEEFRN=41

H: Menu of completions.

arerated strings for axanple: HB-LHEALE-US
(D0 ({1833 ) nibegon Ji(hij Jy((Zifn icarr:
el (e ([hmws) (e gileen )0 RTgwem)) (e s
Al i {Dacmsbadly) 3 1.

vererated strings for exanple: H-UHEALE-DE
(LRehremsl ) imntarierp 00 (CrATed jhniien i g
Eilent” Micuals 1(de ”___H_HnghFurhnr._.n_n_u_E..!H__:H_Hn
n i(DasseldorE)) § 0.

Grrwerabed sEvings for exanple: CRTISEA

(00 kel W(0eiodel) hilvas ilide (fewae]) 110 ya
Jomast)) diffop)) om i) ilarchitektamr)) Biidn 1)

Gerervabed |trings fnr exanple: TENSFE-PRESFFR

_H_"..._.q._ AOCTRAED 4 Ndes g D0 meexlachiler)
ssiom)) j)igevesst .

Gernerated strings for exanple: BEHRENSSD.1

(Lo el (G ienbeyy diCwaerr Jiicde (flsered) D000 g
Fomsty) ot en 300 3o Ly(00e) il archit

Gererated strings for exanple: CRAUSEZ

(0D (et JiCiRindAR)) JfEEn ide ([een) 100 gA

wnh..u_“”_”_ Do) emdabl Bk 000 archi bebelooe)
.

B: Translalor KPRIL-1::PRESENT-MOLUSAEL

http://www.darmstadt.gmd.de/publish/komet/kpmI-l-doc/node272.html (2 von 3) [11.12.2004 21:46:44]



Display generated string

E

ua

caryierell 1ilals JQ(acchitelkt]] 170w _
iFrF=1 iap Cide 1 (iMathi T denhnehe) ”__

113
1 nenrlagsi sti schiie] T iroenen |

wil (e} (vt i e matrery AGY) 3 1L

Migal Ji{Behcens) ) 3((de 3(iwchilder |
n i Damstadt)) ) ite Jivelgeal 1.

SFFRF—-TRR-&

Next: Show examples with features Up: Graph example structure Previous: Graph example structure

)
: m
Loy O
2 g
Lt (e 0ckes VR rer e e ) ”_.."__"_".._H.ﬂw...u._..._q_ w .m
= o 8
| m = “
Migal WReheenx’ 3 W 0Te .."__H_H_"H.u._..m._.._-:._ O} muu )
chiteklvw)) 3o ((CDacrsladll) 1 070 . .m % =3
8 g S £
DAt J((Mehrens) ) IR J(ischilder | = S 0 g
boway 3 EEn (e Lad ) 3 30 vodai (] M L8
3 %) m m
B 2 = 3
G 3 Q2
- o S c —
z 2 S E
ABLE-KPML-OUTPUT. D o -
- )
ml..m
3 |5
[ c

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node272.html (3 von 3) [11.12.2004 21:46:44]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show examples with features

next |jup ||previous ||contents []index

Next: Copy examples with new Up: The example operations Previous: Display generated string

Show examples with features

The command peveLoPMmENT:<Example Operations. Show examples with features> is equivalent to
the commands available directly from the resource grapher window GrarH:<Show example with
collected features> (Section 6.2.1.3) and from the Inspector window INsPECTOR: <Examples using

features> .

Any invocation of the command produces in the Inspector window alist of example names where the
features currently collected (see Section 6.2.3.4) occur in some network traversals responsible for

generating the examplesis produced. The list is mouse sensitive thus allowing the further mouse-click
commands for examples:

. Say example for generating the example (Section 10.2.4),
. Rename exampl€ for copying the contents of the example to a new example record with a

different name (Section 10.2.7), gif
. Graph structure' for graphing the associated structure (Section 10.2.5), and
. Display string' for displaying the associated generated string (Section 10.2.5.1).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node273.html [11.12.2004 21:47:01]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Copy examples with new names

next |jup ||previous ||contents []index

Next: Delete some examples Up: The example operations Previous: Show examples with features

Copy examples with new names

The command peveLormENT:<Example Operations. Copy examples with new names> makes a copy
of a set of specified examples and prompts for new names for these copies. Subsequently the new
names will also appear on the list of examples offered to the user for selection for generation or
Inspection.

This command may be used for saving aworking version of an example, and then changing either the
example or the resources in order to be able to compare the effects of the change side-by-side with the
situation before the change (since if the original example contains generation process information
such as the selection expressions, this information will naturally have been preserved).

Since this feature can be very useful in checking successive alterationsto a set of resources, the flag
DEVELOPMENT:< Generation Modes> "Automatically create new examples provides this as the standard
behaviour whenever an example is generated. Thus setting this mode and issuing
DEVELOPMENT:<Generate Sentence> for the example Behr ens4, for example, first causes the
example record |abelled Behr ens4 to be copied to a new example (named: Behr ens4[ hh- nm
ss] , where the extension denotes the time of creation of the new example), and then initiates
generation on the new example not on the old. This means that the original example record is
preserved untouched and can be inspected and compared with the new.

| ssuing a beveLoPMENT:<Generate Again> command in this mode will have precisely the same effect:
I.e., the previous example generated is first copied, and the new example record is then used for
generation. Invoking generation by mouse-clicking appropriately on an example nameis also effected
in the same way.

With this mode in force, no example record is ever changed: all invocations of generation always
produce a new example record and work with this. Different versions of examples are therefore
maintained simultaneously. Subsequently, versions that are to be kept can be renamed and unwanted
versions can be deleted.

next |jup ||previous ||contents []index

Next: Delete some examples Up: The example operations Previous: Show examples with features

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node274.html (1 von 2) [11.12.2004 21:47:34]



Copy examples with new names

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node274.html (2 von 2) [11.12.2004 21:47:34]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Delete some examples

next |jup ||previous ||contents []index

Next: Example runner Up: The example operations Previous. Copy examples with new

Delete some examples

The command <Example Operations: Delete some examples> brings up a menu of examples as for
<Generate from example SPL> and peveLorpmENT:<Gener ate Sentence> (Sections 10.2.4 and 7.4.2
respectively). Any number of examples may be selected from this menu. The selected examples are
then deleted--i.e., removed from the example list. They are then no longer accessible in any way.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node275.html [11.12.2004 21:47:41]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Example runner

next |jup ||previous ||contents []index

Next: Starting the example runner Up: The example operations Previous. Delete some examples

Example runner

. Starting the example runner

. Levelsof detail while example running
. Low detall example running

. Medium detail example running

. High detail example running

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node276.html [11.12.2004 21:47:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Starting the example runner

next |jup ||previous ||contents []index

Next: Levels of detail while Up: Example runner Previous. Example runner

Starting the example runner

An exercise set can be runin its entirety to test the loaded and active linguistic resources. This may be
initiated by selecting the command peveLoPmENT.<Example Operations. Example runner> . Example
running is a batch operation: no interaction is expected with the user when generation is proceeding in
this mode. Progress during example running is reported in the originating Lisp listener from which
KPML Was started--not in one of the kpmL windows. Any errors that arise that would necessitate user
interaction (such as anwering an inquiry, deciding on afeature selection, etc.) are trapped and result in

the generation of the effected examples “failing' gif Following example running, any examples that
failed are listed.

The results of an example run are typically written to afile. The name of the file created consists of
eg- runner - and the date and time. The directory of thisfile can be changed by using the the rooT:
<Environment Directories> command (Section 5.4.1); initially the default directory is/ t np.

The example runner can run both over semantic specifications in the form of sp. examples and over
records of the inquiry responses obtained. If the linguistic resources |oaded are adequate for the
examples, this operation should run all the way through without any warnings being issued. Any
warnings that do occur appear in the example running file as comments.

Note: sinceit isnot possibleto further interact with kemL during the execution of the example
runner, all flags required should be set appropriately beforehand.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node277.html [11.12.2004 21:47:53]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Levels of detail while example running

next |jup ||previous ||contents []index

Next: Low detail example running Up: Example runner Previous. Starting the example runner

Levels of detail while example running

Four different levels of detail are provided for the output produced during example running. The level
of detail desired may be set by the corresponding flag in the rooT:<Flags> menu.

The levels differ in the quantity and form of the information written to the example runner file. They
can be described briefly thus:

« .l ow- minimal detail (the default): this shows only the example name and the strings
generated.

. . medi um- this shows thelogical specifications used and strings generated from these.

« : hi gh - thisshows all of theinformation for low and medium detail and the textual structure
display of the structure generated. If the "Update environment record' option is activated
(Section 10.1 and Figure 7.3), the selection expressions of the generated examplesare also
shown.

. . conpl et e - this mode causes complete example definitions (as described in Section 12.2.9)
to be written to the example running file. These definitions contain all of the information
associated with an example record. This mode can therefore be used to create sets of prestored
example sets suitable for supporting on-line documentation and the availability of string,
structure, and selection expression information for all examples |oaded.

The: conpl et e mode turns off all warnings and forces the values produced by inquiries to
be accepted without question. This option should only, therefore, be used when the example
records to be written have been debugged sufficiently to serve as a proper example set.

All of the created files can be read as Lisp files for further automatic processing: although only the
filesunder the: conpl et e detail mode setting are explicitly intended for this. Indeed, the
- conpl et e example running files are usually so long that they would normally only be used in this

way.

Corresponding extracts from an example runner execution for the first three levels of detall are shown
in the following subsections. Regular use of the example runner is recommended for ensuring that a

set of linguistic resources under development remains consistent as the resources grow gif

next |jup ||previous ||contents [lindex

Next: Low detail example running Up: Example runner Previous. Starting the example runner

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node278.html (1 von 2) [11.12.2004 21:47:59]



Levels of detail while example running

_‘ John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node278.html (2 von 2) [11.12.2004 21:47:59]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Low detail example running

next |jup ||previous ||contents []index

Next: Medium detail example running Up: Example runner Previous. Levels of detail while

Low detail example running

Thefollowing is an extract from the beginning of the example runner file created under the : | ow
detail setting. The sentences are for illustration purposes only and do not represent actual resources.

(in-package "KPML")

;i3 Summary of a run of the example runner on 20-7-1995 Z20:44:12
H 4 sxamples selected.

(EX-SET-1

"It is raining cats and doge. "

)

(EX-SET-11
"Each sgystem from HNew York his and Smith *=a
twentieth—century programmer created . "

)

(PRIMER-144
"A ghip loads a truck . "

)

(REUTERSZ
"The difference haz led to =2some schizophrenic behaviour . "

)

The general form of the low detail output file is therefore:
package-info

(example-namel generated-stringl)
(example-nameZ generated-string2)

{:;.u.[élmpla—namaﬂ generated-stringh)

John Bateman -- GMD/IPS -- Darmstadt, Germany
%] mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node279.html [11.12.2004 21:48:09]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Medium detail example running

next [jup ||previous [Jcontents |]index

Next: High detail example running Up: Example runner Previous. Low detail example running

Medium detail example running

The following is an extract from the beginning of the example runner file created under the : medi umdetail setting. The sentences are asfor the: | ow
detail example.

(in-package "KPHML") :ACTEE (T / TRUCK ) )
;33 Summary of a run of the sxamples runner on 20-7-1955 20:45:41
- 4 sxramples zelected.
;i; Generating from logical form / spl: (PRIMER-144
(L / AMBIENT-PROCESS "A ghip 1loads a truck . "
:LEX RATN )
:TENSE PRESENT-CONTINUOUS
:ACTEE ;i; Generating from logical form / spl:
(C / DBJECT (LEAD / LEAD-RELATIONAL
:LEX CATS-AND-DDGS :LEX LEAD-TD
: NUMBER MASS ) : CTRCUMSTANTIAL-ASCRIFTION-{ TINCLUDED
) : TENSE PRESENT-FERFECT
:DOMATH
(DIFFER / DIFFER
(EX-SET-1 :LEX DIFFERENCE
"It iz raining cats and dogs. " :DETERMINER THE )
)
: RANGE
; ;i Generating from logical form / spl: (BEHAVE / BEHAVE
(M / CREATIVE-MATERIAL-ACTIDN :LEX BEHAVIOUR
:LEX CREATE : DETERMIKER SOME
:TENSE PAST : FBROPERTY-ASCRIFTION
:THEME T (SCHIZDID / SCHIZOPHRENTIC
:ACTOR :LEX SCHIZOFPHRENTC-ADT )
(F1 / PERSON )

http://www.darmstadt.gmd. de/publlsh/komet/kpml -1-doc/node280.html (1 von 3) [11.12.2004 21: 48 20]



Medium detail example running

:LEX FROGRAVMMER )
: OWVNED-BY
(
:AND (REUTERSZ
(P2 / WALE "The difference has
:EXPRESS-TYFE KO )

: IDENTIFTABILITY-0 IDENTIFIABLE
: UMBER SIHGULAR )

(F3 / PERSON
: HAME SHWITH )

)

:IDENTIFTABILITY-[) IDENTIFTABLE
: TEMFORAL-QUAL-) NOTEMPORAL
: TEMFORAL-NONORDERING
(C / TIME-INTERVAL

:HA¥YE TWENTIETH-CENTURY )
)

:ACTEE

(T / ODBIECT
:LEX SYSTEM
:DETERMINER EACH

:LOCATTON-CLASSTFICATION-0 NONLOCATION
: SOURCE

(§ / SPACE-INTERVAL
: HAME HEV-YDRK )
)

(EX-SET-11
"Each gsystem from HNew York his and Smith *=
twentieth-century programmer created . "

)

;i; Generating from logical form / spl:
(E / LOAD

" ———— - o e———

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node280.html (2 von 3) [11.12.2004 21:48:20]

led to

S0oms

gchizophrenic behavic



Medium detail example running
:ACTDR (S / SHIF )

The general form of the medium detail output file is therefore:

package-info

sexample-logical -forml
(example-namel generated-stringl)

example-logical -forml
(example-name2 generated-string2)

exampl ;a.-i_ugic al =1 ormN
(example-nameN generated-stringh)

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node280.html (3 von 3) [11.12.2004 21:48:20]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

High detail example running

next [Jup ||previous ]Jcontents |]index

Next: Features used in examples Up: Example runner Previous. Medium detail example running

High detail example running

The following is an extract from the beginning of the example runner file created under the : hi gh detail setting. Only the first example of those
shown for : | owand : medi umdetail is shown.

(in-package "KPML") (A-14955 LEXTCAL-VERB-TERM-RESOLUTION DO-HEEDING-VERBS TED
;i3 Summary of a run of the erample runner onVRFECE-LESFERA: RANEED MATERTAT-RANGED ACTIVE-FROCESS UNTA(
- 4 examples selected. MOOD-SUBJECT-EXFANDED SUBJECT-INSERTED IT-SUBJECT METEDRI
;33 Generating from logical form / spl: MATERTAL NOT-PHASE NO-TEMFORAL-LOCATION NO-TEMPORAL-EXTEI
(A / AMBIENT-PROCESS HO-SPATTAL.-L.OCATION HO-SPATTIAL-EXTENT NONROLE NONWATTEER !
:LEX RATN NONACCOMPANTMENT TRANSITIVITY-UNIT UNMARKED-FOSITIVE HD-i
:TENSE FRESENT-CONTINUOUS NHONATTITUDINAL DECLARATIVE NO-TERTIARY FRESENT-SECONDARY
:ACTEE FOSITIVE-FINITE FOSITIVE TEMFPORAL. FINTTE-INSERTED FINITE-
(C / OBIECT NONTNTERNAL-SUBJECT-MATTER INDEPENDENT-CLAUSE-STIMPLEX THI
:LEX CATS-AND-DOGS NONCONJUNCTED MOOD-UNIT CLAUSE-STMPLEX FULL CLAUSE CLAUSE
:HUMBER MASS ) )
)
(EX-SET-1
"It 18 raining catsz and dogs. "
(
1: Function structure:
[SENTENCE]
[SUBJECT#1] "It "

[TEMPO1#1/TEMPDO# 1/FINITE#1] Yia ¥
[VOICE#1/TEMPO1DEPENDENT#1/LEXVERB#1 /PROCESS#1] = "raining "
[RANGE#1]

N o ——— = 1

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node281.html (1 von 4) [11.12.2004 21:48:33]



High detail example running
LDEICT ICHZ |
[THING#Z] = "cats and dogs"

)

((C-15132 NOMINAL-TERM-RESOLUTION OBLIQGUE NONSUPERLATIVE NONREFRESENTATION
RONFARTITIVE NONQUANTIFIED NONORDINATIVE NOMINAL-GROUP-STMFLEX NONTYFIC
HO-FOST-DEICTIC NOT-PROCESS-QUALIFIED NOT-PORTTON-QUALIFIED
ROT-LOCATION-QUALTFIED NOTBENEFTCTARY-QUALTFIED NONATTRTIRUEND-QUALTFTED
ROT-TEMFORAL-QUALTFIED NOT-ACCOMPANTMENRT-QUALTFIED NONAGERT-QUALIFIED
OTHER-NONFERSON NONPERSON NONPROCESSUAL HOT-STATUS-MODIFIED NOT-SIZE-MODIFIED
NONFROVENANCE-MODIFIED NOT-COLOUR-MODIFIED HOT-AGE-MODIFIED UNCOUNTABLE-NOUN
LEXTCAL-THING PRIMARY-NONCLASSTFTICATION NOMINAL. NONNUMERTFIED NO-QUANTITY
NONSELECTIVE-PARTTAL FPARTTAL. NOMINAL-NONSPECTIFIC NONSPECTFIC-INSTANTIATTION
NHONSTNGULAR NONFPLURAL CLASS-NAWE HONTHNTERACTANT
RONELARORAT TN G-HOMT NAT.-GROUP-COMFLEX NONEXTENDTNG-NOMINAL-GROUF-COMPLEX
HORVA-NOMINAL, HOMTHAL-GROUFP NOWINAL-LIKE-GROUPS GROUPS GROUPS—-PHRASES START)
(A-15115 LEXTCAL-VERB-TERM-RESOLUTION DO-NEEDING-VERBS TEMFPOOTEMPO1 REAL
VOICE-LEIVERR RANGED WATERTAL-RANGED ACTIVE-FROCESS UNTAGGED
HOOD-SUBJECT-EXPANDED SUBJECT-INSERTED IT-SUBJECT METEOROLOGICAL MIDDLE
MATERTAL. HOT-FHASE NO-TEWFORAL-LOCATION NO-TEMPORAL-EXTENT
RO-SPATTAL-LOCATTON NO-SPATTAL-EXTENT NONROLE NONMATTER NONMANNER NONCAUSE
RONACCOMPANTMENT TRANSITIVITY-UNIT UNMARKED-POSITIVE NO-WH-SUBJECT ASSERTIVE
NHONATTITUDINAL DECLARATIVE NO-TERTIARY PRESENT-SECONDARY SECONDARY PRESENT
FOSITIVE-FINITE FOSITIVE TEMPORAL. FINTTE-INSERTED FINITE-CLAUSE INDICATIVE
RONTHTERNAL.-SUBJECT-MATTER THDEFENDENT-CLAUSE-STMFLEX THDEPENDENT-CLAUSE
HORCONJUNCTED MOOD-UNIT CLAUSE-STMPLEX FULL CLAUSE CLAUSES START)

(C-149572 NOMINAL-TERM-RESOLUTION OBLIQUE NONSUPERLATIVE NONREFRESENTATION
RONFARTITIVE NONQUANTIFIED NONORDINATIVE HOMINAL-GROUP-STHFLEX NONTYFIC
RO-FOST-DEICTIC NOT-FROCESS-QUALIFIED NOT-FORTION-QUALTIFIED
HOT-LOCATION-QUALTFIED NOTBENEFICTARY-QUALTFIED HRONATTRIBUEND-QUALIFIED
ROT-TEWMFORAL-QUALTFIED NOT-ACCOMPANTMENT-QUALTFIED NONAGERT-QUALTFTED
OTHER-NONFERSON NONFPERSON NONPROCESSUAL NOT-STATUS-MODIFIED WOT-SIZE-MODIFIED
NONFROVENANCE-MODIFIED NOT-COLODUR-MODIFIED HOT-AGE-MODIFIED UNCOUNTABLE-NOUN
LEXTCAL-THIHG PRIMARY-HONCLASSTIFICATION NOMINAT. NONNUMERTFIED ND-QUANTITY
RONSELECTIVE-FARTIAL FARTTAL NOMINAL-NONSPECIFIC NONSFECTFIC-INSTANTIATION
HONSTNGULAR NONFLURAL CLASS-NAWE HONTHNTERACTANT
NHONELABRDRAT TN G-NOMI NAL-GROUP-COMPLEX NONEXTENDING-HOMINAL-GROUF-COMPLEX

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node281.html (2 von 4) [11.12.2004 21:48:33]



High detail example running

HORWH-HOMINAL. HUMIBAL-GROUF HOMINAL-LIEKE-GHOUFS GROUPS GROUPS-FHREASES START)

.. Etc.

The general form of the high detail output file is therefore: gif

package-info
example-logical -forml
(axamp le-namel gensrated-ztringl
{ function=-gtructure=11
function-structure-12

function=-structure-1M_1)

(
(zemantic-head1l selection-expressionil)
(gemantic-head12 szelection-expreszionl2)

(semantic-head1X_1 selection-expressioniX_1)))

axample-logical =formN
(axamp le-namel generated-ztringh
{ function-structure-H1
function-structure-H2

function=-structure-N¥_K)
(

(semantic-headf1 selection-expressionll)
(gemantic-headN2 selection-expressionN2)

t:;évmant ic-headHX_N selection—expressionHX_H)))

Note that, since the information here is produced from the associated example records, the amount of detail given for the function structures obeys the
specifications for mouseable structures asillustrated in Figure 10.2 and described in Section 14.5.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node281.html (3 von 4) [11.12.2004 21:48:33]



High detail example running

John Bateman -- GMD/IPS -- Darmstadt, Germany
{ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node281.html (4 von 4) [11.12.2004 21:48:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Features used in examples survey

next |jup ||previous ||contents []index

Next: Operations on example strings Up: The example operations Previous. High detail example
running

Features used in examples survey

The command peveLorPveNT:<Example Operations: Features used in examples survey> displaysin
the Development window alist of all the systemic network features that are selected in the selection
expressions to be found in the currently loaded set of example records, and alist of all systemic
network features that are not selected. This command could be used, for example, to check
completeness of an exercise set that is intended to cover all features that a linguistic resource defines.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node282.html [11.12.2004 21:48:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Operations on example strings and textually displayed structures

next |jup ||previous ||contents []index

Next: Operations on displayed strings Up: Resource Verification: Example Sets Previous. Features
used in examples

Operations on example strings and
textually displayed structures

Usually, all of the strings that are generated within the window interface and appear in the Interaction
Results pane of the Development window, as well as their grammatical structure display versions (cf.
Section 7.4.2), are mouse sensitive and can be used as the starting points for inspecting various

aspects of the generation process.

As noted in Chapter 7 and above, this mouse sensitivity operates not viathe internal data structures
used during generation, but via the stored example records that are maintained by the kpmL system
whenever the flag peveLoPmeNT:<Generation Modes> “Update environment record fields' is set
(Section 10.1). Since not all information is stored, this restricts somewhat the information that can be
retrieved (when compared with the options under the beveLoPmenT:< Graph Structure> (Section 7.9)
command for example, where the internal generation data structures are used). It also, however,
makes available a more representative selection of possible information, since all loaded examples are
always available for inspection and comparison. Asillustrated in Section 10.2.5, the "mouseability'--
I.e., which components are mouse sensitive--of the resulting generated strings can be further fine-
tuned by the user as set out in Section 14.5.

The following subsections describe the commands that may be invoked directly from the mouse
sensitive constituents in a displayed string or in the textually displayed grammatical structure.

. Operations on displayed strings
o Show corresponding fundle
o Graph corresponding constituent and below
o Inspect selection expression
o Inspect corresponding semantic term
o Partia re-generation
. Operations on displayed structures
o Graph this constituent and below

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node283.html (1 von 2) [11.12.2004 21:48:47]



Operations on example strings and textually displayed structures

o Show selection expression
o Show corresponding semantic term
o Generate again up to but not including this constituent

| John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node283.html (2 von 2) [11.12.2004 21:48:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Operations on displayed strings

next |jup ||previous ||contents []index

Next: Show corresponding fundle Up: Operations on example strings Previous. Operations on
example strings

Operations on displayed strings

The menu of commands for operations on the strings displayed in the Devel opment window are
reached by mouse-clicking right on a highlighted constituent. Constituency is made more visible by
ensuring that the flag rooT:<Flags> ~Show constituency display in generated strings is set. Moving
the mouse over the string will in any case quickly show the constituents which are mouse-sensitive.
The default kpmL behaviour when newly installed is that all constituents and terminals are mouse
sensitive.

The string-mousing commands are as follows.

. Show corresponding fundle

. Graph corresponding constituent and below
. Inspect selection expression

. Inspect corresponding semantic term

. Partia re-generation

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node284.html [11.12.2004 21:48:52]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show corresponding fundle

next |jup ||previous ||contents []index

Next: Graph corresponding constituent and Up: Operations on displayed strings Previous:
Operations on displayed strings

Show corresponding fundle

This command displays in the Devel opment window the full functional label (the “function bundl€’)
(e.g., TOPI CAL#10/ MEDI UM#£10/ SUBJECT#10) of the clicked upon constituent. The number
following each functional description isthe “traversal cycle number' that is also shown in structure

graphs.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node285.html [11.12.2004 21:48:57]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph corresponding constituent and below

next |jup ||previous ||contents []index

Next: Inspect selection expression Up: Operations on displayed strings Previous. Show
corresponding fundle

Graph corresponding constituent and below

This command brings up a example structure graph as described in Section 10.2.5 but only for the

substructure of the clicked upon constituent. Thisis, of course, particularly useful for focusingin
during debugging or maintenance on some part of a complex sentence.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node286.html [11.12.2004 21:49:07]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspect selection expression

next |jup ||previous ||contents []index

Next: Inspect corresponding semantic term Up: Operations on displayed strings Previous: Graph
corresponding constituent and

Inspect selection expression

This command shows the selection expressions for al grammatical units sharing the same head
semantic term (or “onus) as the clicked upon constituent. The selection expressions are shown
according to the mode set in the rooT:<Flags> menu.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node287.html [11.12.2004 21:49:13]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspect corresponding semantic term

next |jup ||previous ||contents []index

Next: Partial re-generation Up: Operations on displayed strings Previous: |nspect selection
expression

Inspect corresponding semantic term

This command shows in the Inspector window the semantic term (typically an SPL expression) that
provides the semantics for the clicked upon constituent.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node288.html [11.12.2004 21:49:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Partial re-generation

next |jup ||previous ||contents []index

Next: Operations on displayed structures Up: Operations on displayed strings Previous:. Inspect
corresponding semantic term

Partial re-generation

The right-click menu command <...: Generate up to but not including a constituent with this number>
invokes generation for the selected example and suspends the generation process when atraversal
cycleis about to be started with atraversal cycle number equal to that of the clicked upon constituent.
This provides a speedy way of skipping over generation until a problematic or interesting constituent
is reached. When generation is suspended, the peveLoPMENT:< Generation Modes> menu

(Section 7.5.1) is brought up with the flag "Realize Selectively' automatically set. Any additional flags
required can be set at this point. Then, on exiting the generation modes menu and as long as the
realize selectively option was not deactivated, the user is asked whether the paused upon constituent is
to berealized or not. At this point, further information can be obtained from the structure graph or the
Inspection options.

If the string clicked upon represents the last example generated, then this command is equivalent to
requesting that generation be restarted but should stop just prior to generation of the clicked upon
constituent.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node289.html [11.12.2004 21:49:28]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Operations on displayed structures

next |jup ||previous ||contents []index

Next: Graph this constituent and Up: Operations on example strings Previous. Partial re-generation

Operations on displayed structures

The menu of commands for operations on textually displayed grammatical structures displayed in the
Devel opment window are reached by mouse-clicking left on a highlighted constituent. Grammatical
structurees are shown following generation when the appropriate flag in the rooT:<Flags> menu is
set. Moving the mouse over the structure will in any case quickly show the constituents which are
mouse-sensitive. The default kemL behaviour when newly installed is that all constituents and
terminals are mouse sensitive.

These commands form a subset of those for string-mousing. Since the structure display already shows
the functional label of a constituent, this option is not present. The structure-mousing commands are
therefore as follows.

. Graph this constituent and below

. Show selection expression

. Show corresponding semantic term

. Generate again up to but not including this constituent

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node290.html [11.12.2004 21:49:44]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph this constituent and below

next |jup ||previous ||contents []index

Next: Show selection expression Up: Operations on displayed structures Previous. Operations on

displayed structures

Graph this constituent and below

This command brings up a example structure graph as described in Section 10.2.5 but only for the

substructure of the clicked upon constituent. Thisis, of course, particularly useful for focusingin
during debugging or maintenance on some part of a complex sentence.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node291.html [11.12.2004 21:50:14]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show selection expression

next |jup ||previous ||contents []index

Next: Show corresponding semantic term Up: Operations on displayed structures Previous: Graph
this constituent and

Show selection expression

This command shows the selection expressions for al grammatical units sharing the same head
semantic term (or “onus) as the clicked upon constituent. The selection expressions are shown
according to the mode set in the rooT:<Flags> menu.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node292.html [11.12.2004 21:50:19]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show corresponding semantic term

next |jup ||previous ||contents []index

Next: Generate again up to Up: Operations on displayed structures Previous. Show selection
expression

Show corresponding semantic term

This command shows in the Inspector window the semantic term (typically an SPL expression) that
provides the semantics for the clicked upon constituent.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node293.html [11.12.2004 21:50:24]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generate again up to but not including this constituent

next |jup ||previous ||contents []index

Next: Full summary of linguistic Up: Operations on displayed structures Previous. Show
corresponding semantic term

Generate again up to but not including this constituent

This command performs the same operation as the equivalent command for string-mousing
(Section 10.3.1.5): that is, generation is restarted and is suspended when a constituent with a traversal

cycle number equal to the clicked upon constituent is reached.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node294.html [11.12.2004 21:50:28]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Full summary of linguistic resource information chains

next

up

previous

contents

index

Next: Maintenance: Resource Patching Up: Resource Verification: Example Sets Previous: Generate again up to

Full summary of linguistic resource information chains

We can now extend the view of information chains given in Chapter 6 to include the possibilities offered by examples sets discussed in this
chapter. Figure 10.4 extends the diagram of Figure 6.12 accordingly.

Semuntic
MNetwaork

Systemic
Netwaork

Concept

reelEre 0N s

A

Inqﬁir}'
Implementatiaon

A

Inquiry

Chooser

Grammatical
& yxtem

patentinl (the resaurces)

Grammatical
Feature

Figure: Information chain possibilities: potential and realizations

Sem antic

Structure (5PL)

E xam ple

Y

Grammatical
Structure

Selection

E xpression

AsFigure 10.4 shows, there are two distinct kinds of linguistic object which are maintained by kpvL: objects that represent the linguistic

potential--i.e., the linguistic resource definitions themselves, and objects that represent the result of using that potential--i.e., the realizations,
or linguistic structures, that are produced (grammeatical structures) or consumed (semantic structures) during generation. The possibilities for

inspecting resources were described in Chapter 6; the information concerning realizations extends these possibilities considerably. Most

information concerning realizationsis stored as part of example sets: as emphasized above, information here is only available if example sets

have been created during the generation or if pre-loaded (cf. Section 10.1).

Once stored or loaded, it is possible from any exampleto retrieve its associated grammatical structures, selection expressions (i.e., traversals

through the systemic network), generated strings, and original semantic specification. These then can form the starting points for further
resource exploration as Figure 10.4 indicates.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node295.html (1 von 2) [11.12.2004 21:50:39]



Full summary of linguistic resource information chains

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node295.html (2 von 2) [11.12.2004 21:50:39]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Maintenance: Resource Patching

next |jup ||previous ||contents []index

Next: Introduction Up: No Title Previous: Full summary of linguistic

Maintenance: Resource Patching

. Introduction

. Patching and loading linguistic resources

. Patching and saving linquistic resources

. Some further consequences of using the patching facility
. Modifying linguistic resources

. Example record versioning

. Acquiring lexical items

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node296.html [11.12.2004 21:50:49]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next |jup ||previous ||contents []index

Next: Patching and loading linguistic Up: Maintenance: Resource Patching Previous. Maintenance:
Resource Patching

Introduction

When working with kpmL for the construction and development of linguistic resources for
generation, it isusually the case that sets of resources will be successively modified and tested. To
support this process, kpmL provides for linguistic resource patches. Thisfacility allows changes to be
isolated from a stable background set of resource definitions. Once the changes have been sufficiently
tested, it is then possible to incorporate them in the main body of definitions.

Since the use of the patching facility has severa repercussions for the behaviour of the system, the
default situation is that patch usage is not activated. The use of patching and these repercussions is
described in the following subsections: first the consequences for loading linguistic resources are
described, then the consequences for saving linguistic resources, and finally some general
consequences of working with the patching facility are listed. When the patching facility is not
activated, loading and saving behavior is as defined in the sections above and any patches specified in
the linguistic resources are not loaded. Thisis the default system behavior.

In order to activate the patching facility, one ssmply needs to add the pseudo linguistic “object’
resour ce- pat ches to the focused linguistic object list. Thisis done with the normal kpmL
command <Focusing Operations> in the root window (Section 5.6).

For the present, the selective patching facility is limited to definitions of systems, choosers, and
inquiries since these are the objects that primarily define linguistic resources. Versioning of examples
IS, however, also provided.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node297.html [11.12.2004 21:51:01]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Patching and loading linguistic resources

next |jup ||previous ||contents []index

Next: Patching and saving linguistic Up: Maintenance: Resource Patching Previous:. Introduction

Patching and loading linguistic
resources

When : r esour ce- pat ches isonthelist of focused linguistic objects, loading linguistic resources
with the command <Load linguistic resources> will in addition to the behaviour described for that
command in Section 5.7 also load any patches defined for the linguistic resource being loaded. Such
patches must be placed in subdirectories of the main directory for the language variety being patched
and have names ending with the string Pat ches. The internal structure of these patch subdirectories
Isan exact mirror of the resource directory itself.

If there are severa Patch directories available, the system will ask the user which is to be loaded. If
thereis only one, thiswill be loaded without user intervention.

For example, if a set of resources named 'f r ench' isto be patched with respect to systems and
choosers of the region moob, then the directory structure should be as follows. (See Chapter 12 for the

general directory structure.)

. ..Root /FRENCH/ Grammar/ ...
Lexricons/. ..
Examples/. ..

éﬁfuhaﬂfﬂrammarfﬁﬂﬂb.Bystams
MOOD. choosers

All components of the main directory (i.e., the directory FRENCH in the current example) may be
patched in thisway. The patches should have the same multilinguality properties--either monolingual
or multilingual--as those of the definitions being patched.

Asisusually the case, the set of object types to be loaded is defined by the list of objects on the
focused linguistic object list (see Section 5.6). Thus, if systems only are focused and patching is

activated, issuing a<Load linguistic resources> command will only load systems: first the main
definitions and then any patches concerned with systems.

If no linguistic objects are specified as focused apart fromr esour ce- pat ches, then all objects
will be loaded in the normal fashion, followed by patches.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node298.html (1 von 3) [11.12.2004 21:51:11]



Patching and loading linguistic resources

Region focusing (Section 5.6.3) may be used to further restrict patch loading if required.

Once a set of linguistic resources has been loaded then, aslong as resource patching is activated, all
system, chooser and inquiry definitions that are |oaded--regardless of whether via an explicit load
instruction from Lisp, an evaluation in an Emacs-buffer, etc.--are marked as patches with respect to
the original language definitions for their corresponding language varieties. Thismeansthat it is
possible to make arbitrary changes to a set of resources, and then (see next section) to save these
changes without affecting the original language definitions. The only definitions that are immune to
this are main linguistic resource definitions (i.e., those not in Patch-directories) that are loaded with
the kPmL <Load linguistic resources> command. Any patches loaded in this way remain, of course,
marked as patches.

One way of creating the patches for French moob referred to above is then as follows:

load the original French resources (which would not yet have had any patches defined),
ensure that the patching facility is activated,

edit the required definitions of the moop systems and choosers,

evaluate/load the changed definitions,

save the French resources.

abkrwbdpE

Thiswould create the two files that appear in the Patches directory above and the necessary additional
directory structure without changing any of the original definitions.

Care should be exercised when loading/eval uating definitions in order that the desired loading
behavior is enforced. For example, unless merging is activated (Section 5.7.2.2) any definition loaded

will replace all definitions of the same named object for other languages. If thisis not required, then
merging mode must be explicitly selected and the language restriction for the object to be loaded must
be set as appropriate. For example, if resources for English, German and French are loaded and it is
only required to patch the definition of the chooser AbvERBIAL-TYPE-CHOOSER for German, leaving
definitions (if they exist) for English and French untouched, then a chooser definition beginning:

(chooger :name (:german ADVERBIAL-TYPE-CHOOSER)
:definition (... )}

)

should be evaluated with merging (i.e., not overwriting) mode set. If the : ger man restriction is not
present, then the definition will be taken as holding for all known languages; if merging mode is not
present, then overwriting mode will force all other objects of the same name to be deleted when this
oneisloaded.

If the user knows that patches are going to be made for a single language, then it is possible to set up
acontext in which al definitions will automaticallly be restricted to a given language without needing
to explicitly add alanguage restriction. Thisis enforced by the command rooT:<Set Default

Language> gif It is then possible to evaluate definitions without the explicit |language restriction

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node298.html (2 von 3) [11.12.2004 21:51:11]



Patching and loading linguistic resources

and still to obtain the behavior described above where only the definitions of a single language are
patched.

Thisis clearly more convenient if, for example, aresource definition file has been loaded into an
Emacs buffer, and a definition has been edited and then evaluated. Typically definitionsin afile do
not have individual language conditionalizations, and would therefore, without the <Set Default
Language> command, be interpreted incorrectly when evaluated.

next |jup ||previous ||contents []index

Next: Patching and saving linguistic Up: Maintenance: Resource Patching Previous:. Introduction

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node298.html (3 von 3) [11.12.2004 21:51:11]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Patching and saving linguistic resources

next |jup ||previous ||contents []index

Next: Some further consequences of Up: Maintenance: Resource Patching Previous: Patching and
loading linguistic

Patching and saving linguistic
resources

When : r esour ce- pat ches ispresent on the list of focused linguistic objects, saving behavior
initiated by the command rooT:<Store linguistic resources> is affected asfollows. First it is assumed
that the user is working using patches rather than with any direct alterations to source linguistic
resource definition files, and so only linguistic objects marked as belonging to patches are to be saved.
Thiswill then be noted explicitly in the save dialog box that is brought up. If thisis not intended, then
it ispossible at this point to override this. As with loading, the types of linguistic object saved can be
further restricted by setting the list of focused objects; if only r esour ce- pat ches is set, however,
then all patched systems, choosers, and inquiries are saved in an appropriate patch subdirectory.
Whenever r esour ce- pat ches is set, no changes are ever made to any non-patch linguistic
resource definitions.

Whenever patches are saved, new versions of the default ordering and punctuation files are also
written out within the patch directory (unless, of course, there is an object focusing restriction
excluding them).

A save linguistic resources command that involves writing patches will create a patch directory of the
formyyddmm hhnmss- Pat ches indicating the time of creation.

If asave linguistic resourcesis used to create a new language variety, then this new resource will be

created with any patches present already folded into the main definitions. If it isrequired to create a

new set of resources for alanguage inheriting both the definitions and the patch structure from some
other language, then the patches need to be saved explicitly.

If asave linguistic resources is used when region focusing is present, then only those regions focused
will be saved as patches.

Note that the patch saving facility is generousin the directory structures that it creates. The patches
subdirectory will be afull mirror of the originating resource directory even if there are no patches
present at that time to fill it. That is, even if there are no files present containing patch-specific lexicon
entries, there will till beaLexi con subdirectory created automatically within the patches directory.
The user can delete these if required; they are not crucial to the operation of the patching facility.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node299.html (1 von 2) [11.12.2004 21:51:16]



Patching and saving linguistic resources

next |jup ||previous ||contents []index

Next: Some further consequences of Up: Maintenance: Resource Patching Previous: Patching and

loading linquistic

: John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node299.html (2 von 2) [11.12.2004 21:51:16]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Some further consequences of using the patching facility

next |jup [lprevious ||contents ||index

Next: Modifying linguistic resources Up: Maintenance: Resource Patching Previous: Patching and saving
linguistic

Some further consequences of using the
patching facility

When the patching facility has been activated, systems, choosers and inquiries may have one of two statuses:
either patched or non-patched. It may sometimes be useful to know whether alinguistic object that is being
examined during resource development and testing belongs to the original resource definitions or to a patch.
To aid this, resources that are defined in patches are displayed in italics when inspected in the kPmL inspection
window. This allows them to be readily identified as patches. Note that once an object has been patched, it is
not possible to examine the pre-patch version.

Itis, of course, possible that alinguistic object of agiven nameis only patched for some subset of the
languages for which it is defined. For example, the screendump of Figure 11.1 shows various views on the
system (which were produced by printing the system named comPARATIVE-PROCESS-TY PE; these views were
produced by giving the command in the interactor pane in contrastive display mode: cf. Section 6.3.3.2. The
resulting display shows that this system has only been patched in its German version--the other variants are as
given in the main source definitions and so are not marked as patched.

r Inspector (KPM L) E
¥ho Can ... Print Zentence Plan  ¥ho Has As Input
Print System Print Expanded Plan %ho Has As Output
Print Chooser Print Spl Term Examples Using Features
Frint Inquiry Print Concept Grammar Consistency
Print Inplementation Primt Relation Graph Grammar
Prant Lexical Item Print Feature Grapher Display Modes

DUTCH:KPML> Print System COMPARATIVE-PROCESS-TYFPE
DUTCH :KPML>

DUTCH:KPML>

DUTCH :KPML=

DUTCH : KEFML>

DUTCH:KPML>

DUTCH:EPML> []

Langumadge: ENGL ISH

{SYSTEM
i MAME GOMPARASTIVE-FPROGESS—TYPE
- TNRTITS rNMPARAT TV F=PROCFSS

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node300.html (1 von 2) [11.12.2004 21:51:26]




Some further consequences of using the patching facility

i MAME
:INFUTS
:0UTPUT S

: CHOOSER
‘REGION
‘METAFUNCTION

)
Langumadge: GERMAM

{STSTEN
:NARE
(INFUTY
HUTPUTS

(CHOOSER
REGTON
HETAFUNCTION

2
Language: DUTCH

{ SYSTEM
i MAME
: INPUTS
:OUTPUT S

:CHOOSER
:REGION
METATUNCTION

)

COMPARATIVE-PROCESS—-TYPE
COMPARATIVE-PROCESS
{((0.5 SIMILAR )

(0.5 DIFFERENT

{LEXIFY MINORPROCESS DIFFERENT-FROM }})
COMEARATIVE-PROCESS-TYPE-CHOOSER
PPOTHER
TDEATTIONAL

COMPARATIVE-PROGESS-TIPE

COMPARATIVE-FROCESS

{{0. 5 SINIIARITY {LEXTFY MINORPROCESS WIE ))
(0. 5 DIFFERENCE ))

COMPARATIVE-PROCESS-TIPE-CHOOS IR

PPOTHER

IDEATTONAL

COMPARATIVE-PROCESS-TYPE

COMPARATIVE-PROGESS

{({0.5 SIMILAR (LEXIFY MINORPROCESS ZOALS 1)
(0.5 DIFFERENT })

COMPARATIVE-PROCESS-TYPE—CHOOSER

PPOTHER

TDEATIONAL

R: Menu of completions.

Figure: Selective patching according to language

John Bateman -- GMD/IPS -- Darmstadt, Ger many
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node300.html (2 von 2) [11.12.2004 21:51:26]



http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Modifying linguistic resources

next |jup ||previous ||contents []index

Next: Example record versioning Up: Maintenance: Resource Patching Previous: Some further
consequences of

Modifying linguistic resources

KpmL provides direct interaction with GNU Emacs (or GNU Mule: see Section 12.2.2.3) to support
the editing or modification of loaded linguistic resources. Thisis only supported when kpmL is started

as a subprocess of Emacs/Mule gif All the basic linguistic objects (systems, choosers, inquiries,
lexical items, and examples) presented in akpmL window have an option < Edit...> in their right-click
mouse menus. Selecting this option brings up an editor buffer in the originating Emacs/Mule
containing just the definition of the clicked upon linguistic object. The presentation form of the
linguistic object as it appears in the editor buffer is controlled by the multilingual flags as described
and illustrated in Section 6.3.3. The object brought up in the editor buffer may then be freely edited.

The originating kemL window waits for control to return from Emacs/Mule. Return may be made in
two ways:

. the changes made in the editor buffer may be accepted by giving an Emacs command: cntrl-C
cntrl-C. The modified definition is then made part of the currently loaded resource definitions.
If the patch mode is activated (which it probably should be when editing resourcesin this
fashion), then the modified linguistic object is appropriately marked as a patch.

. the changes (if any) made in the editor buffer may be discarded by giving an Emacs command:
cntrl-C cntrl-Z. Control is returned to kpmL but there is no effect on loaded resources.

Note that the usual considerations with evaluating linguistic resource definitions apply: if these
definitions do not themselves explicitly contain appropriate language conditionalizations, then such
conditionalization should be indicated with the rooT: < Set Default Language> command (cf.
Section 11.2).

One exception to the above isfor inquiry implementations: it isalso possible to issue <Edit Inquiry

| mplementation> commands. Such a command |loads the appropriate Lisp file containing the
definition of the clicked upon inquiry implementation (typically afile

i nquiry-inplementations.lisporinquiry-increnent.|isp:cf.Section12.1) and
positions the editor cursor at the required Lisp definition. If no such inquiry implementation is known
to the Lisp process, then anew editor buffer is started with a skeleton definition of an appropriate
inquiry implementation in place for editing. The user should write this definition to afile (the Emacs
buffer proposes a default consisting of the date of creation and the inquiry name) and then evaluate as

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node301.html (1 von 2) [11.12.2004 21:51:34]



Modifying linguistic resources

normal (emacs: <cntrl-C cntrl-S> under the Allegro  Emacs protocol).
Editing commands can also be given directly from the Inspector window.

If KemL is started from Emacs, additional resource definitions can also be straightforwardly evaluated
in any other Emacs buffer, but it then remains the task of the user to find the appropriate files for
editing.

There is never any automatic updating of the originating resource files--this remains the responsibility
of the user. If the patching facility is activated, then it is possible, as described above, to write out just
those changes that have been made during a session to a patch directory. If patching has not been
activated, then writing out resources following a session where modifications have taken place will
create a new resource set incorporating the changes made. Note: care must be taken that this does
not prematurely destroy the existing resour ces!

The additional steps necessary for installing the Emacs/Mule interface are described in Section 3.2.

next |jup ||previous ||contents []index

Next: Example record versioning Up: Maintenance: Resource Patching Previous: Some further
consequences of

= John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node301.html (2 von 2) [11.12.2004 21:51:34]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Example record versioning

next |jup ||previous ||contents []index

Next: Acquiring lexical items Up: Maintenance: Resource Patching Previous: Modifying linguistic
resources

Example record versioning

Asdescribed in Section 10.2.7, the flag peveLoPmENT:<Generation Modes> “Automatically create
new examples causes each new generation request to create a new version of the specified example
record. These distinct versions can either be deleted when no longer required, or saved in the normal
way. Thisfacility therefore provides a basic versioning capability for example sets.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node302.html [11.12.2004 21:51:39]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Acquiring lexical items

next |jup ||previous ||contents []index

Next: Resource Organization and Definition Up: Maintenance: Resource Patching Previous:
Example record versioning

Acquiring lexical items

The normal kpvL generation behaviour when an unknown lexical item is requested follows that of the
Penman system. That is, atemporary lexical item whose spelling is the upper case variant of the
associated concept name is inserted.

Thus, with the following SPL input,

(2 / nondirected-action :lex sat
:actor (p / person :name John))

assuming that the conceptsnondi r ect ed- act i on and per son are defined (which they arein the
standardly released upper model), and that the proper name John is aso defined (which it is not
usually), but the lexical item ski p isnot defined, then the following strings would be generated for
English: either

““John SKIP"
without morphology and
““John SKIPs"
with morphology. The capitalization is the indication that arequired lexical item has not been found.

With kpmL it is possible to activate an automatic lexical acquisition mode in which all required lexical
items that are not defined are created on the fly with a default set of lexical and morphological
features appropriate for the grammatical context in which they appear in their sentences of use. This
mode is activated by the flag rooT:<Flags> "Acquire Lexical Items. When set, the above SPL input
would not only produce " John skips' but also leave a new lexeme defined for English called ski p
(i.e., the form given in the SPL specification).

This mode is most useful when a set of examples containing unknown lexical itemsis run through (by
using the example runner, for example). The lexical items newly acquired can then be written to afile
of lexeme definitions by means of the function

make- new- | exi cal -itens-fil e. Thisalows new definitions to be straightforwardly added to
the linguistic resources for the concerned language variety; naturally it might then be necessary to
provide idiosyncratic or non-default morphological information for these new lexemes.

http://www.darmstadt.gmd.de/publish/komet/kpmi-1-doc/node303.html (1 von 2) [11.12.2004 21:51:45]



Acquiring lexical items

Thisfunction is used from a Lisp listener and has the details:

make-nev-lexical -iteme—file pathname [function]

next |fup |lprevious [Jcontents |]index

Next: Resource Organization and Definition Up: Maintenance: Resource Patching Previous:
Example record versioning

_* John Bateman -- GMD/IPS -- Darmstadt, Ger many
' ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node303.html (2 von 2) [11.12.2004 21:51:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource Organization and Definition Formats

next |jup ||previous ||contents []index

Next: Directory structure and contents Up: No Title Previous: Acquiring lexical items

Resource Organization and Definition
Formats

The kpmL system assumes (and creates when the resource manipulation operations are used) a
particular organization of linguistic resources. Those resources are in turn represented in an extended
form of that defined by the Penman system. In general, kpmL can interpret Penman-style resources,
although the reverse does not hold. This section describes in detail the kpmL resource organization and
definition format.

. Directory structure and contents
. Resource definition formats
o Resource definition files
o General language property declarations
Morphology style declarations
Standard default environments
L anguage-font associations
« Disabling systems
o Language variety range declarations
u| &Stems
o Redlization Statements
= Introduction
« Basic redlization constraints
« User-defined realization operators
« Morphological realization constraints
o Choosers
o Inquiries
o Lexicons
o Examples
o Punctuation
o Non-systemic system dependencies
o Default orderings

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node304.html (1 von 2) [11.12.2004 21:51:50]



Resource Organization and Definition Formats

o Domain concepts and links with the lexicon
o SPL macros and defaults
. Language variety conditionalization
. Reguirements for resource definitions
o Specia inquiries
o Specia semantic concepts and relations

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node304.html (2 von 2) [11.12.2004 21:51:50]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Directory structure and contents

next |jup ||previous ||contents []index

Next: Resource definition formats Up: Resource Organization and Definition Previous: Resource
Organization and Definition

Directory structure and contents

KpmL maintains aglobal variable (*r oot - of - r esour ces* intheuser and kpm packages)
which defines one directory to be the root of linguistic resources. Thisvariableis normally set up
during system configuration but can also be set from the window interface by using the <Environment
Directories> command (see Section 5.4.1). Each language variety or multilingual resource set for
which separate resource definitions are required then occupies a subdirectory to this root directory. A
typical initial form of the directory on initialization of the system would be:

- - GENERAL
*r oot - of -resources*----- GERVAN

-- M- BASELI NE

The general file organization for linguistic resources maintained by kpvL within any language variety
directory isillustrated in the following maximal example. The directory structure for multilingual
resources (i.e., adirectory containing the combined definitions of several languages, suchasml -
basel i ne)isidentical to this. Not all of the files need to be present in any given language variety
definition.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node305.html (1 von 4) [11.12.2004 21:51:58]



Directory structure and contents

<language-variety>/properties.lisp
language-range.lisp
Grammar/<regions>.gystems
<regions>.choosers
<regions>.inguiries
punctuation.gram
ordering-constraints. gram

Lexricong/<lexricon-names>.lexicon
Exampl es/<example-get-names>. spl
rxr-Patches/. ..

inguiry-implementations.liap
inguiry-increment.lisp

basic-spl-macros.lisp
basic-spl-defaults.lisp

code-patches.lisp

For directories containing definitions of several language varieties there may be several sets of inquiry
implementations. For such casesit is also possible to use a subdirectory

| nqui ry-i npl enent ati ons paralel to G ammar , etc. where the inquiry implementation files
can be kept. All fileswith extension . | i sp found in the inquiry implementations subdirectory will be
loaded.

Each such directory contains either:

. the complete monolingual definition of the grammar and semantics for the language indicated
by its name, or

. the complete multilingual definition of a set of languages where the name is alabel for the
resource set.

Such definitions consist of several distinct kinds of information. The linguistic resources proper are
held in the subdirectory G anmmar in fileswith extensions. syst ens, . chooser s, and

.1 nqui ri es. Onedistinction between systemic-functional resources as they are generaly
maintained and supported in kpvL and earlier versions of, for example, Penman, is that the resources
are divided into functional regions (see Section 2). Although always present in the Nigel grammar of
English, thisinformation was not previously used for maintenance and modification. Now, all of the
multilingual development support tools and the graphical displays operate in terms of regions. Thus,
each linguistic resource file normally corresponds to the resources of a particular “functional region'.
Thisis not enforced in any way, but files created automatically by the Save Linguistic Resources
command (Section 5.9.1) will follow this principle.

Note that any standard kpvL resource definitions released were in fact created in precisely this way.
The <Sore Linguistic Resources> command was given successively for each of the languages

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node305.html (2 von 4) [11.12.2004 21:51:58]



Directory structure and contents

available, the individual monolingual definitions often being drawn from a pooled multilingual
resource.

The form of entriesin each type of the linguistic resource files is given in the next subsection.

Note: in the case that resourcefilesare not found, check that the path definition given in thisfile
iscorrect for the current directory configuration that is being used.

In addition to the linguistic resources proper, loading linguistic resources from one of the above
directories with the rooT:<Load Linguistic Resources> command (Section 5.7) will also load the

following files or file types:

. afileproperties.|isp:ifsuchafileexists, it isassumed to hold general declarations
applying to the language variety or varieties as awhole (see Section 12.2.2).

. afilel anguage-range. | i sp:if suchafileexists, it isassumed to hold a declaration of
the range of language varieties dealt with by its containing resource directory (see
Section 12.2.3).

. afilei nquiry-i npl enentations.|isp:ifsuchafileexists, it isassumed to hold the
Lisp code that implements the inquiries defined by the linguistic resources (in the files with
extension . i nqui ri es). Note: unlessthe merging modeisin for ce (Section 5.7.2.2), any

implementations currently loaded will belost or replaced during this operation! If the
resources use standard inquiry implementations, then no such file should appear in the
language-specific directory.

. afilei nquiry-increnment.|i sp that may contain additional inquiry implementations
over and above the standard ones. Placing inquiries here avoids the default removal of existing
inquiry implementations once afilei nqui ry-i npl enent ati ons. | i sp hasbeen found.
Any inquiry implementations placed in the inquiry implement should, however, by compatible
with other inquiry implementations--this should not be used as a way of patching existing
inquiries either since this may not be picked up when switching back to use other language
resources.

. dl filesin asubdirectory Lexi cons with extensions. | exi con: used for adding language
specific lexical items. These files can also be loaded as a group separately from other resource
components by the appropriate linguistic object focusing (Section 5.6.1) or by the command

ROOT:< :Load lexicon> (see Section 12.2.8).

. inasubdirectory Domai ns, al fileswith extensions. | oom used for adding domain concepts
for particular examples.

. ifitexists, dl filesinadirectory Exanpl es that have the extension . ex and . spl : used for
storing test suites for linguistic resources. These files can also be loaded separately by means
of the command <load-examples> (see Section 10.2.1).

The following files provide further language specific conditions or changes to the kpvL system and are
not required (or recommended!) for general use.

. afilecode- pat ches. | i sp: used for defining additions that go beyond the current

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node305.html (3 von 4) [11.12.2004 21:51:58]



Directory structure and contents

language conditionalizations that kemL offersfor its resources. Thisfileisloaded when the
resources as awhole are loaded only when the relevant “linguistic object’ focusing is activated.
(Section 5.6.1). The default action is that such files are not |oaded.

Note: theinjudicious use of any code- pat ches filesin a set of resour ces makes that entire set
subject to their requirements. That is, if language variety X usesa code- pat ch, then all other
varieties should then bein a position either to work with the changesintroduced or to undo the
effects of that code- pat ches (for example, viatheir own code- pat ches!). Using code-
pat ches thus potentially compromisesthe integrity of all resour ces defined. Changes that
apply to all language varieties are properly positioned askpmL (possibly user-specific) patches
(see Section 3.4) and not subordinateto particular language variety directories.

Any other filesin the directory will be ignored (unless, of course, code- pat ches explicitly uses
them).

The result of performing the operation rooT:<Load Linguistic Resources> isthat a complete resource
set (monolingual or multilingual) isloaded as the current set of active linguistic resources. Generation
can then proceed for the language(s) defined by those resources.

next |fup |lprevious [Jcontents |]index

Next: Resource definition formats Up: Resource Organization and Definition Previous. Resource
Organization and Definition

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node305.html (4 von 4) [11.12.2004 21:51:58]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource definition formats

next |jup ||previous ||contents []index

Next: Resource definition files Up: Resource Organization and Definition Previous: Directory
structure and contents

Resource definition formats

. Resource definition files
. Genera language property declarations
o Morphology style declarations
o Standard default environments
o Language-font associations
o Disabling systems
. Language variety range declarations
. Systems
. Redlization Statements
o Introduction
o Basic realization constraints
o User-defined realization operators
o Morphological realization constraints
. Choosers
. Inquiries
. Lexicons
. Examples
. Punctuation
. Non-systemic system dependencies
. Default orderings
. Domain concepts and links with the lexicon
. SPL macros and defaults

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node306.html [11.12.2004 21:52:06]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource definition files

next |jup ||previous ||contents []index

Next: General language property declarations Up: Resource definition formats Previous. Resource
definition formats

Resource definition files

Each linguistic resourcefileis, for historical reasons, assumed to be in the Lisp package kpmi . They
all begin, therefore, with the Lisp declaration (i n- package " KPM.") . Also, in addition to this, a
linguistic resource file may include as initial in-line commands:

. (in-region :nane Regi on) : which defines the resources following the command to
belong to the functional region named.

. (i n-language : | anguages L) : which definesthe resources following to belong to the
language specified (L may also be alist of languages).

These commands may be combined asfollows: (i n-regi on : nane Regi on : | anguages
L)

Resource files created by roor: <Store linguistic resources> wl|
have appropriate in-region and in-|language conmands inserted
autonmatical ly.

The scope of an in-region command in ended either by the end of file
or by a matching: (end-region)

This is also inserted automatically in files created by <Store
| i ngui stic resources>.

The individual types of objects in the linguistic resources
supported by the devel opnent environnment and their definition forns
are discussed in Sections 12.2.4-12.2.13.

= John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node307.html [11.12.2004 21:52:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General language property declarations

next |jup ||previous ||contents []index

Next: Morphology style declarations Up: Resource definition formats Previous: Resource definition

files

General language property declarations

It is possible to define general properties that the language variety or varieties maintained in a
directory should have as awhole: these are placed inthefilepr operti es. | i sp. Currently three
kinds of information are maintained in thisfile:

. language morphology style declarations,

. Standard inquiry default environment sequences to be used on starting generation with the
resource set,

. associations between particular languages and fonts,

. disabled systems

These are used as follows.

Morphology style declarations
. Standard default environments
. Language-font associations

. Disabling systems

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node308.html [11.12.2004 21:52:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Morphology style declarations

next |jup ||previous ||contents []index

Next: Standard default environments Up: General |language property declarations Previous. General
|language property declarations

Morphology style declarations

Various options are available for handling morphology. The most common ones are:

. Systemic morphology is adopted: that is, the resource definitions include systemic networks
that describe that various morphological patterns of alanguage variety and their realizations.

. Resource-external morphology is adopted: that is, the resource definitions assume that the
morphological features that they use will be interpreted by some non-systemic component of
kPML. One example of such aresource definition isthe Nigel grammar of English, for which
the Penman system provided hardcoded English morphology. This hardcoded morphology is

inherited by kpmL and so can be used if required gif

. KpmL-external morphology is adopted: that is, the the resource definitions assume that the
morphological features that they use will be interpreted by some component that is entirely
external to kpmL. The German grammar variant used in the TechDoc project (RGsner & Stede),
for example, uses the morpPHIX component for German morphology (Finkler & Neumann)

rather than akpmL component. Such interfacing is straightforward, but requires redefinitions of
two internal kpmL-functions.

The first two options are supported by the following declaration:

(define-language-morphology-requirements
:lanpguage LANGUAGE
:gystemiciend TF
:generator-function FN)

This defines the language variety LANGUAGE to either assume systemicized morphology (when TF is
true) or not (when TF isnil), and to use the function FN as the mapping from features used in the
systemic linguistic resources (i.e., in classify and inflectify realization statements: see Section 12.2.5)

to features that are found in the lexicon for the language (see Section 12.2.8). The latter is optional
and if not provided the resources are assumed to use the same features in lexicon and systemic

networks gif If resources are created by inheritance, they also inherit the morphology requirements,
including the generator function.

For use of the latter option, interested users should contact the author.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node309.html (1 von 2) [11.12.2004 21:52:23]



Morphology style declarations

next |jup ||previous ||contents []index

Next: Standard default environments Up: General |language property declarations Previous. General
|language property declarations

i John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node309.html (2 von 2) [11.12.2004 21:52:23]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Standard default environments

next |jup ||previous ||contents []index

Next: Language-font associations Up: General language property declarations Previous. Morphology

style declarations

Standard default environments

Asdescribed in Section 7.4.4, it is possible to define sets of inquiry defaults that may be activated and
deactivated at will during generation. It isalso common that a given language variety defines a
standard set of environments that simplify the semantic specifications that need to be given for that
variety (see also Section 12.2.14). For example, both the English and Dutch resources assume that the

following default environments hold.

. present-tense
. basi c-assertion

These mean that any semantic specification that does not specify otherwise will receive inquiry
responses that are appropriate for constraining a simple positive assertion in present tense to be
generated. Importantly, if a semantic specification is given that lacks the necessary information, and
no defaults are present, generation will be suspended and the user or calling process will be asked to
provide this information.

Since the use of such defaults is commonplace for Penman-style linguistic resources, the following
form is provided for declaring a standard set of environments that will be activated whenever
generation is attempted with the language variety concerned. This ensures that switching into a
language variety does not lose the minimal sets of defaults necessary for simple generation.

(define-language—-standard-defaults
:language LANGUAGE
:defaults LIST-0OF-DEFAULTS)

The LI ST- OF- DEFAULTS should be alist of defined default environment names. The definition for
Englishis, for example:

(define-language-standard-defaults
:language ENGLISH
:defaults (basic-assertion present-tenze))

The definition forms for these default environments are described below in Section 12.2.14.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node310.html (1 von 2) [11.12.2004 21:52:27]



Standard default environments

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpmi-1-doc/node310.html (2 von 2) [11.12.2004 21:52:27]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Language-font associations

next |jup [lprevious |Jcontents |lindex

Next: Disabling systems Up: Genera language property declarations Previous: Standard default environments

Language-font associations

It is possible to define particul ar associations between fonts and languages. This can be used to alter the appearance of generated textsin various
kPML windows. More significantly, it permits the use of languages with other writing systems than English. The mechanism described here provides
support for single-byte font encodings; the selected fonts must have been installed for the X-server being used in the normal way (see the system

administrator if necessary).

Font selections normally only have an effect for generated results pop-up windows (Section 7.10) and generated structure graphs (Section 7.9

and 10.2.5) gif Examples of these usages are shown in Figures 12.1 and 12.2. In Figure 12.1 contrastive generation has produced popup generation
windows for English and Greek; only the window for Greek is affected by the font change.

§iR=display

% Behrer:= like Le Corbmsizr began  ais professizaal actiwozy

1 fgainter

? Behrer: azgan kis  prafessioral acktivity  1ike _e Corbusier

a  Eainter

FBehrer: azgan  kis professioral  activity a5 a2 painter

#_oorkuszier

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (1 von 8) [11.12.2004 21:52:45]

is

is

Le




Language-font associations

Behrer:= a2gan like Lz Zorkusier ais professiosnal actiwizy as

a Eainter

I

R S

Redisplai]

o Mmnégeve [3zhrens) atws o A& EKoppaouwlie (Le Corbusier) (e L TS
TNV EMEvvEALETLRY  Eepiipx  TOX  oev  Eves  fwypdooe .

o Hncgpeve [Fchrons) SPYLTC TPV CEevyohaseTuan wepLEDE TOV  GTwE O

he Kopprowivng (Le Ceorbus-er) ooy evee Luvpddoe

o Mmnégpeve [Szhrens) EPYLIE TPV ETMyYSRJOTURY  repLEDe TOV  gov
Evoen  Cuvptepos omwe o he Hopumewfie (L2 Zorkuszier)

o Mnépeve (3shrens) | epyioe dmug o  he Hoppmow{af (Le Corbusier)

L r I I I
THY O ALK T zepripy  Tov  oev  cves  Cwypdoos .

Figure: Contrastive generation in English and Greek using font associations for Greek pop-up generated result windows

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (2 von 8) [11.12.2004 21:52:45]



Language-font associations

{Lﬂ Example Graph
Cuit Ezample Grapherl Print Ezample Graph'
DEICTICH#Z2—n
T@PIC&L#1;’MEDIUM#1£5UEJECT#1<
THINGH#Z Avvv Alumepe (Anni Albers)
VOICEH®1 /TEMPOOH1 /FINITE$1 /LEEVERE /PROCESS#1 —evrotuctdBnxe
MANNERH1 /QUAL ITVH1 CIRCUMSTANCE#Z —pudvupee
MINCORPROCESSH#H4 —oe
SENTENCE
SPACELOCATIVEH DEICTICH#S—Tnv
HIHIRHHGE#4<
THINGHS——Apeprxn
DEICTICH#A—o
TIHELDCHTI?E#1<
THIHG#IE;';({}..L::-: EVLOKOOLE TPLEVTo—TpLe
4] =

i

Figure: Generated structure graph using font associations for Greek

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (3 von 8) [11.12.2004 21:52:45]




Language-font associations

L anguage-font associations can be defined most simply with a declaration of the form:

(define-language—font-reguirements
:language :english
:font
"-bkh-lucidabright—-demibold-r-normal--20-140-100-100-p—118-i8oB8E55-1")

This means that, whenever English generated results are produced, they will be shown using the X-font with the name identified under the : f ont
parameter. The font identifier isthat used for the X-release font aliases.

The following slight variation on this allows differing selections of fonts for the inspector window and the generated string popups.

(define-language—font-Treguirements
:lanpguage :english
:inspactor
"b&h-lucidabright-demibold-r-normal ——20-140-100-100-p-118-isoBEEP-1""

- popup
"—adobe-courier-bold-i-normal--0-0-0-0-m—-0-igoB8EP-1")

Note: itisin al casesthe responsibility of the user to ensure that the requested fonts exist and are accessible to the kPmL process! Setting afont
requirement without access causes a string of error messages concerning the unlocatable or unknown font.

If particular resources require non-standard fonts, this will be clearly documented in the individual resource descriptions. Information about where to
obtain the necessary fonts should also be given there.

One further possibility for displaying generated strings with different writing systemsis to pass the results of generation back to GNU Mule gif
This can be triggered automatically by using the special font name : nul e in alanguage font requirement declaration. GNU Mule must have been
installed previously and kpvL started within a Lisp buffer within Mule as usually done within Emacs; as always, the user is responsible for ensuring
the appropriate software has been installed.

When Mule is specified for the generated string pop-up window font of a language, strings generated in that language will appear in anewly created
Mule editor buffer instead of in a Generated Result pop-up window from kpmL. As an example of use, the following declaration defines the language
variety : Japanese to use Mule asits output medium. Note that it makes no sense (and is ignored) to specify : mul e asthe output font for the
Inspector.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (4 von 8) [11.12.2004 21:52:45]



Language-font associations

(define-language-font-regquirements
:language :japanese :font :mule)

Subsequently, generating examples with the pop-up generated string flag set causes the strings generated to appear in Mule editor buffers. Thisis
illustrated in Figure 12.3 where two generations of a single example are shown--one using lexical items defined using the Roman alphabet and one

using lexical items defined using Mule character codes for Japanese. Such results might be obtained by generating in contrastive generation mode,
for example.

Development (KPML)

Graph Structure Resume

Generation Modes Reset Generation Modes
Clear tracing options Example Operations
Generate Sentence show Cumulative History
IGenerate Again| Abort Generation

Pause set Language

Target: kare no hongyoo wa kenchikugaku. ..

<GEHERATIHNG {(example: BEHREHNS9 AGAIN):>

<GENERATIHG {(example: BEHREHNS9 AGAIN):>

J_'1| mule@ennepe

wffers  File Edit  Help
TR—LIROAY 1899F (C R o LT W
FIbiaFy b T AF & 56 7o "

— S = E— »
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (5 von 8) [11.12.2004 21:52:45]



Language-font associations
[ LEneration Kesulit

Redisplay'

((beerensu jiga Jji{(1899nen Jini
kenchikuka to {shite ))i{(daarumshitatto

DIIIHIdE nidshigoto jwo Jithajime jita j).

«

Figure: Use of Mule for extended character displays

Since the character codes for Mule are largely incompatible for those used within Common Lisp, it will not make sense to display generated strings
or structures using such lexical items within kPmL-maintained windows, such as the Inspector or the structure graphers. However, since the
information displayed in the Mule editor buffer is aso sensitive to the Flag options for displaying constitutent structure (Section 5.4.2), it is possible
to obtain aview of the grammatical structure of such strings. An example showing the grammatical structure displayed in a Mule buffer isshown in

Figure 12.4.

rﬂ mule@ennepe

File Edit Help

Function Structure: 1
[SENTENCE]
[TOPTCALK MEDTIMAL /STBJECTH ]
[THINGH#Z],, = "~— LR "
[MAREER#Z],, = "H% 7

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (6 von 8) [11.12.2004 21:52:45]




Language-font associations

[TIMELOCATIVEH] ]
[MINIRANGEHRS]
[THING#4],, = "1893%¢ 7
[MINORPROCESS#3]. . = "(2 7
[ROLEA1]
[MINIRANGEHRS ]
[PORTTON#E]
[MINIRANGEH ]
[STATUSHE]

[POSSESSTVEMAREER#S], |
[THING#S], . = ”H‘Ilmﬁﬂﬁ ’
[HINURPRDCESS#T] N
[THINGHE], , = ”ﬁ‘ﬁﬂ AT
[ ROLEMARRERHD]. |
[RDLEHCTIEQTDR#ﬁ]
[ETEMELO]., = " LT 7
[TEMPOO#1/ROOT#1 /V0OTCER L/ LERVERE#1,/PROCESS#1 ]
[STEMHLL], . = "idEE ©
[PASTAERLL],, = " LFZ7

(IN—L 2 2 ) (Y J) (L1895 J) (S J) ((0(((Za
(=AEHANR ) ) OEEEERREE ) (e )L

IEind file: /M kpol/EPML-1, 0/enacs—x,

[QUQLITY#Q] — " T4 :.-""*""""-.:.-" ”

I:?:l”

f;:.x 1

Iy
DGER )Lz ).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (7 von 8) [11.12.2004 21:52:45]




Language-font associations

Figure: Use of Mule for showing grammatical structures filled by Mule-compatible lexeme definitions

next |jup [lprevious |Jcontents |lindex

Next: Disabling systems Up: General language property declarations Previous: Standard default environments

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (8 von 8) [11.12.2004 21:52:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Disabling systems

next |jup ||previous ||contents []index

Next: Language variety range declarations Up: General language property declarations Previous:
L anguage-font associations

Disabling systems

The only language specific customizations foreseen at present are differing “disable system'
declarations (cf. Section 7.5.2.4). These declarations have the following form:

(dizable-system ’Sysztem-name :Languge)

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node312.html [11.12.2004 21:52:49]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Language variety range declarations

next |jup ||previous ||contents []index

Next: Systems Up: Resource definition formats Previous. Disabling systems

Language variety range declarations

Particularly for multilingual resource sets, it isimportant the kePmL system knows which language
conditionalizations it must expect in the resource definitions. For thisreason, afilel anguage-
range. | i sp will typically define the varieties dealt with by a given language directory.

The contents of the language range file istypically of the form:
(define-language—-variety-range :english :german :french)

This ensures that kpmL can interpret language conditionalizations involving the specified languages.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node313.html [11.12.2004 21:53:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Systems

next |Jup [lprevious ||contents [Jindex

Next: Realization Statements Up: Resource definition formats Previous. Language variety range declarations

Systems

A typical system is shown below; thisis the system called ApPARENT-REALITY Which has two features that may be
selected - [real] and [apparent]. The first of these has no realization statements associated with it but the second
does; realization statements are described in Section 12.2.5 below. The entry conditions for the system are rather

complex; they are given asthe logical formulaunder the: i nput s slot. Only when this condition istrue is the
choice represented by the system available to be made.

(gyztem
:name APPARENT-REALTTY
:inputs
{ AND
(OR MATERIAT. MENTAT. YERBAL. TDENTIFYING EXTSTENTTIAL CIRCUMSTANTIAL

POSSESSIVE (AND EQUATIVE INTENSIVE) INCHOATIVE-ASCRIPTION
REAT-ASCRIPTION)

(DR FINITE-CLAUSE FINITIVE))
:outputs

((0.5 REAL)

(0.5 APPARENT
(INSERT REALITY)
(CLASSIFY REALITY APPEARANCE)
(INSERT REALITYDEPENDEHNT)
(INFLECTIFY REALITYDEPENDENT STEM)
(INSERT TOREALITY)
(LEXTFY TOREALITY TO)

(ORDER TOREATL.TTY REALTTYDEFENDENRT)))
:chooser REALITY-CHOOSER

:8eleactor CHOICE-MASTER
:Tegion HONRELATIONALTRANSITIVITY
:metafunction EXFERTENTTAL)

The meaning of the additional slotsis asfollows:

. chooser : givesthe name of the chooser (see below) corresponding to this system,
. sel ect or : givesthe name of the function that chooses between grammatical features (only one such

function is provided by the system: the function kpmi : : choi ce- mast er; if the user wanted to provide
some other function, however, thisiswhere it could be specified),

. regi on: the functional region to which this system belongs,
. et af unct i on: the metafunction to which the region belongs.

Definitions can be evaluated as ordinary Lisp forms once the development environment is loaded.

Note that if anindividual grammatical system isredefined in any language, then it is necessary for the system to
reestablish the network connectivity for that language. KpwmL tries to recognize when thisis necessary itself in
order to remove this from the actions the user has to perform. The operation is actually performed by invoking the

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node314.html (1 von 2) [11.12.2004 21:53:15]



Systems

Lisp functionr eset - syst em net wor k (Section 14).

John Bateman -- GMD/IPS -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node314.html (2 von 2) [11.12.2004 21:53:15]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Realization Statements

next |jup ||previous ||contents []index

Next: Introduction Up: Resource definition formats Previous. Systems

Realization Statements

. Introduction

. Basic redization constraints

. User-defined realization operators

. Morphological realization constraints

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node315.html [11.12.2004 21:53:20]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next |jup ||previous ||contents []index

Next: Basic realization constraints Up: Realization Statements Previous: Realization Statements

Introduction

Grammatical systems are not directly concerned with specifying structural constituency but, rather,
with specifying the set of grammatical features that a structural product as a whole will instantiate.
Thus, the sets of grammatical features produced by making all the choices available in the grammar
respecting the interdependencies defined by the network are related to actual linearized syntactic
structures viarealization statements. The process of making all the available choices that the grammar
presentsis called traversing the grammar network. Sentences are therefore generated by a succession
of grammar network traversals, or passes through the grammar, one for each major constituent to be
produced (cf. Section 2.3.1).

Each traversal of the grammar produces then a collection of grammatical features and each
grammatical feature may have associated with it a set of realization statements. These realization
statements successively constrain the structure that the grammar is producing. The example system
APPARENT-REALITY above shows a number of realization statements that are performed upon selection
of the feature "apparent'.

Realization statements are defined in terms of functional operations upon grammatical functions. A
grammatical function describes the function which a particular constituent is performing in a pass
through the grammar. For instance, at the clause level a particular constituent might be functioning for
some language as the subject of the clause, so it will be partly defined in terms of a grammatical
function called "Subject’. Similarly, the realization statements associated with the feature “apparent'
shown above concern the grammatical functions: "Redlity’, "Realitydependent’, and "ToReality'. Each
pass through the grammar is committed to the generation of a particular level of structure; in systemic
terms these levels of structure, corresponding to the major constituents of the product being generated,
are termed ranks (cf. Figure 2.2).

Thus, in systemic-functional grammar in general, grammatical structures are interpreted as
configurations of grammatical functions. That is, particular choicesin the grammar will lead to
grammatical functions being present, will constrain them to occur together with certain other
functionsin particular orders, and will further constrain their linguistic realization as constituents. For
example, one grammatical feature might constrain the function "Process' to be present, while another
might constrain the functions "Actor' and "Subject’ to be "conflated’, i.e., both of these functions will
become defining components of a single constituent analogous to unification in a grammar
implemented in such terms, while another constrains the "Subject’ to be a Singular nominal group.
Traversing the grammar network therefore causes alist of functions to be accumulated, along with
information on how they are to be combined and ordered, and constraints on how they arein turn to
be realized by subsequent traversals of the grammar. The result is agrammatical unit such as a clause
or aphrase, completely specified at that rank, although awaiting subsequent grammar traversalsto

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node316.html (1 von 2) [11.12.2004 21:53:26]



Introduction

provide the internal linguistic details of its constituents. Grammar traversals continue until
constituents have been constructed at a fine enough scale to be realized as words or morphemes rather
than as constituents requiring further grammatical organization. All of the structures shown in
Chapters 7 and 10 can be seen to be organized in these terms.

In summary, grammatical constituents are defined in terms of combinations of grammatical functions.
Configuration of these functions, or function bundles, are built up by the interpretation of the
grammar's realization statements. Realization statements are expressed in terms of realization
operators and are triggered by particular choices in the grammar; each choice of grammatical feature
from a system in the grammar network may have some particular set of realization statements
associated with it which, upon the selection of that choice, will cause the operations necessary for the
distinction that that system'’s choice represents to be reflected in the structural result. By this means,
the choices made during execution of the grammar successively construct the configuration of
functions that constitutes the structural grammatical output of the grammar.

next |fup ||previous [Jcontents |]index

Next: Basic realization constraints Up: Realization Statements Previous. Realization Statements

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node316.html (2 von 2) [11.12.2004 21:53:26]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Basic redlization constraints

next

up |lprevious [Jcontents ||index

Next: User-defined realization operators Up: Realization Statements Previous: |ntroduction

Basic realization constraints

The realization operators supported in kpmL may be grouped into three functional categories:

. Functions defining particular grammatical constituents are created by the Insertion, Conflation

and Expansion of grammatical functions; these operators therefore specify structure.

These constituents may additionally have linear ordering constraints imposed upon them by
means of the Partition, Order, Order AtFront and Order AtEnd realization operators.

The operators Preselect, Agreement, Classify, Outclassify, Inflectify and Lexify all associate
features with functions; they are realizational operatorsin that they are concerned with how
constituents are to be realized rather than with their specification as constituents at a given
level of structure. Preselect provides control between ranks, e.g., it provides one means of
ensuring subject-verb agreement: if the number is determined at clause rank then making the
appropriate preselection of "singular' or “plural’ for the Subject at the Nominal Group rank and
for the Finite verb at Verb Group rank would have the desired effect. Thisis how, for example,
the Nigel grammar of English specifies such agreement. An aternative is offered by the
operator Agreement, which sets up sister dependency relations in the grammatical features
selected. Classify, Outclassify, Inflectify and Lexify relate bundles (or individual functions) to
the Lexicon, either as a particular lexical class or as a specific word.

These realization operations may be defined in more detail as follows:

. Structure specifying realization operators.

1. Insert- (I nsert Functi on) - states that the grammatical structural result of this
pass through the grammar will necessarily contain the grammatical function
FUNCTION as a defining component of one of its constituents.

2. Conflate- (Conf | at e Functi onl Functi on2) - statesthat the named
grammatical functions will both be defining components of the same constituent.
Alternatively, from the perspective of the constituents being constructed, some single
constituent comes to include both the named functions as defining components. Within
the systemic-functional view, therefore, syntactic constituency is decomposed
according to grammatical function, which is taken as basic for structure. Typically the
grammar will follow several independent lines of development in each pass,
(corresponding to different kinds of functional reasoning), which are ultimately
reconciled within a single structural product by the application of the conflation
operator. For example, if an ideationally-based chain of reasoning has established that
some entity functions as an Agent in its clause, while “simultaneously' a topicality-
based chain of reasoning has established that that same entity functions as Subject in its
clause, then performing the conflation of the functions Agent and Subject effects a
combinination and reconciliation of these lines of reasoning by stating that the

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node317.html (1 von 4) [11.12.2004 21:53:33]



Basic redlization constraints

grammatical functions Agent and Subject both co-constrain a single clause constituent;
that constituent is then functionally multiply labelled. Conflation shares some
similarities and historical roots with the notion of unification employed in Functional
Unification Grammar (Kay ) and its descendents.

3. Expand - (Expand Functionl Functi on?2) - specifiesthe second grammatical
function as a constituent of the first, but within the same rank. For example, (Expand
Mood Subject) means that the function Subject is necessarily contained as a sub-
constituent of the constituent labeled by the function Mood, which isadirect clause-
level constituent. In this case, there is also a corresponding (Expand Mood Finite)
realization statement elsewhere in the grammar. Thus, the complete clause structureis
analysed as possessing a single constituent labeled the Mood constituent, which in turn
has two sub-constituents, labeled by Subject and Finite. This Mood subconstituent does
not consituent a separate rank in the gramar however, which is the normal means by
which constituency is constructed. The combination of Subject and Finite functions as a
significant unit for the clause but it does not constitute a structurally distinct category as
would be required to grant it rank status along with clauses, nominal phrases,
prepositional phrases, etc.

. Linear ordering operators:

1. Partition- (Partition Functionl Function?2) - ordersthefirst function
anywhere to the left of the second. Thisisthe least restrictive of four operators that
constrain the relative ordering of the grammatical functions inserted into structure.

2. Order - (Order Functionl Functi on?2) - ordersthefirst function immediately to
the left of the second. Here the ordering constraint requires that no other constituent can
occur between the functions selected, in contrast to the case with Partition.

3. OrderAtFront - (Or der At Front Funct i on) - orders the function as the leftmost
congtituent of the level of structure to which the function most immediately belongs.

4. OrderAtEnd - (Or der At End Funct i on) - orders the function as the rightmost
constituent of the level of structure to which the function most immediately belongs.

In addition to these explicit statements of order that are triggered when appropriate
grammatical feature selections are made during grammar traversal, there are also a collection
of default ordering constraints that are appeal ed to when the explicit ordering information is
not sufficient for constraining the order of constituents sufficiently for a structural result to be
achieved. These default ordering constraints provide a convenient place to state largely
invariant or default orders that occur with high frequency; they do not alter the functionality of
the grammar. The definition form for default orderingsis given in Section 12.2.12.

« Inter-rank realizational operators:

1. Presdlect - (Presel ect Function G ammati cal - Feat ur e) - associatesthe
grammatical feature with the function. This calls for the constituent that the named
function labels to be realised by an additional traversal of the grammar which must at
least include the selection of the grammatical feature specified. Preselection only
operates between ranks. e.g at clause rank a preselection can be made for the group
rank, but not for some other element at clause rank or below group rank. The Presel ect
operator is what triggers recursion in the grammar. When a particular featureis
preselected it causes the grammar to be reentered at the Rank system once the current

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node317.html (2 von 4) [11.12.2004 21:53:33]



Basic redlization constraints

pass through the grammar is compl eted.

Preselect functions by adding alist of features that pre-specifies features that must be
selected during the traversal of some constituent. Thislist is obtained by “path
augmentation' whereby the feature mentioned in the preselect statement itself is used as
aroot for collecting entailed features backward, i.e., leftwards, through the systemic
network. Path augmentation does not proceed through disjunctive entry conditions,
however. Therefore an augmented path is not necessarily complete and further
constraints may need to be given (in the form of further preselections) in order to obtain
the full constraints desired. How complete an augmented path will be can be smply
obtained by the command insPecTOR:<Show Path To feature> (Section 6.5.3.4).

2. Agreement -

CAgresment F1 F2 (£11 £21)
(Lf1Z2 £22)
(f13 £23)

.- 2D

defines an agreement/prosody domain to hold over the grammatical functions F1 and
F2, such that the selection of the grammatical features f1i during the realization of
function F1 constrain the automatic selection of corresponding features f2i during the
realization of function F2. Note: if adependency chainisbroken (i.e., X dependson Y
dependson Z, but Y does not appear, then the indirect dependency X dependson Z is

not enforced gif

3. Classify - (( assi fy Function Lexi cal - Feat ur e) - associates the |lexical
feature with the function. Thisis similar to preselection; however, whereas presel ect
operates between different ranks of the grammar, classify sets up an association
between a grammatical constituent and features drawn from the lexicon.

4. Outclassify - (Qut Cl assi fy Function Lexi cal - Feat ure)-issimilarto
Classify except that "not lexical feature' is associated with the function. Thus,
(Outclassify Finite negative) means that the function Finite may not come to possess the
lexical feature Negative.

5. Inflectify - (Infl ectify Function Inflectional-Feature)- associates
the inflectional feature with the function. Thisis again similar to Classify, but is
operative at the level of morphological organisation rather than at that of lexical items.
Note that when systemicized morphology is being used, this realization statement is

largely equivalent to “preselect’ gif

6. Lexify -(Lexify Function Wor d) - realizes the grammatical function asthe
particular lexical item WORD. Thisisthe limiting case of a classify operation; rather
than specifying some set of lexical featuresthat constrain the possible lexical items that
may realise the selected function, asingle lexical item is specified. WORD is the name
of alexical entry defined in the lexicon.

The redlization statements used in Penman-style linguistic resources are also described in Matthiessen
& Bateman (, pp95-97). Proposals for their respecification in terms of unification and classification

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node317.html (3 von 4) [11.12.2004 21:53:33]



Basic redlization constraints

formalisms can be found in, for example, (Kasper , Kasper & O'Donnell , Bateman et al. ).

KpmL provides two modes of graphing systemic networks where the realization statements associated
with particular features are shown in the graph (Section 6.2.1). Realization statements can either be

shown in the definition form, as described here, or using the more compact, standard systemic
notation. This latter is the default. The realization statement notation is summarized in Table 12.1.

gif

Bealisation Statement Systemic Notation
Insert + Funrction

ConHate Functionl / Function?
Expand Functionl {Function2 )
Partition Functionl . Function?
Order Functionl Function?
OrderAtFront # Funftin:-n
OrderAtEnd Function  #
Preaclect Function : feature
Apreement (no standard )

Classify Function :: feature
Qutclasaify = Function :: feature
Inflectify Function ::: feature
Lexify Function ! LEXEME

Table: Realization statements and systemic notation

next |jup ||previous ||contents []index

Next: User-defined realization operators Up: Realization Statements Previous. Introduction

John Bateman -- GMD/IPS -- Darmstadt, Germany
@l mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node317.html (4 von 4) [11.12.2004 21:53:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

User-defined realization operators

next |jup ||previous ||contents []index

Next: Morphological realization constraints Up: Realization Statements Previous: Basic realization
constraints

User-defined realization operators

It is possible to define new realization operators. The user needs simply to define afunction of the
same name taking the appropriate number of arguments. In addition, however, new realization
statements should always be defined along with a declaration of the form:

(define-realization-operators HEW-0P)

Thisis necessary so that internal interpretation routines can appropriately decompose system
definitions and to set up internal records.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node318.html [11.12.2004 21:53:40]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Morphological realization constraints

next |jup ||previous ||contents []index

Next: Choosers Up: Realization Statements Previous: User-defined realization operators

Morphological realization constraints

KpmL provides additional realization operators for working within the word and morpheme ranks of
agrammar. These operators are more experimental than the standard operators described above and
may change as more experience is gained with their use with awider range of languages.

The morphological realization operators divide into two classes:

. oOperators that associate a grammatical constituent (typically aword or its subparts) with some
linguistic material (lexeme or morpheme),

. operators that perform morphologically motivated perturbations of the selected linguistic
material.

The definitions of the latter class are for the present left deliberately simple and user-extensible.

Thefirst class consists of the operators. pr esel ect - subst ance, pr esel ect - subst ance-
as-stemand pr esel ect - subst ance- as- property. Theseall act in an identical manner
and are used in realization constraints of the form:

(presel ect-substance Functi on nor phene- nane)

This serves to associate the identified morpheme (nor phenme- nane) with the identified grammatical
unit (Funct i on). It isthe morphological equivalentto | exi fy described above. The morpheme
name refersto alexical entry. The term “preselect substance' is intended to be reminiscent of the fact
that thisrealization is in effect an inter-stratal preselection from lexicogrammar down into the

phonology or graphol ogy--even though kpmL does not yet support these lower strata explicitly gif

Since it is often the case that arecognized unit within the lexicogrammar can have several distinct
renderings in terms of phonological/graphological forms (cf. the notion of “stems), provision is made
inthe pr esel ect - subst ance- as-. .. formsof the realization operator for selecting differing
forms depending on specified features. Whereas pr esel ect - subst ance takesits definition of
the linguistic material from the string heldinthe: spel | i ng sot of the named morpheme,

presel ect - subst ance- as- st emtakesinstead the string held under the : st emdlot. The
presel ect - subst ance- as- pr operty generalizes upon this and takesits linguistic material
from an identified element from the value of the : pr operti es dot. It isused in constraints of the
form:

(presel ect -subst ance-as-property Function property)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node319.html (1 von 3) [11.12.2004 21:53:58]



Morphological realization constraints

This constraint indicates that the form of the linguistic material to become the realization of the
grammatical function "Function' isthe value of the property "property’ asfound inthe: pr operti es
dot of the lexical item associated with “Function'. This latter association will typically have been
established upstream in the generation process on semantic grounds.

The second class of morphological realization operators form an open class of, currently, string
operations. They are used in grammar definitions by giving a single argument specifying a
grammatical function. The effect of the operation is then to alter the then current realization associated
with the grammatical function (which will be a string) in some regular fashion.

Examples are as follows; their operation isindicated by transforming the input string " abcde" .

. chop: removes the last character (producing " abcd" ) - used for some English graphological
aternations (e.g., "use'/ "using"),

. strengthen: doubles the last character (" abcdee" ) - used for some English graphological
alternations (e.g., ~ run"/""running"),

. weaken: changes the last character toan “'i" (" abcdi ") - used for some English
graphological alternations (e.g., ease"/ "easily"),

« Span: removes the penultimate character (" abce" ) - used for some Dutch graphological
alternations.

Thislist is clearly not complete, nor particularly theoretically driven. Hence it is to be expected that
user might need to extend thislist, and that a more theoretically complete treatment will be developed.
In the meantime, new morphological transformations of the above sort can be readily defined using
the kpmL function:

(define-realization-operators NEW-0F) [function]

Transf or mat i on isauser-defined Lisp function operating on a string to produce the desired
change. G anmat i cal - f unct i on isthe name of agrammatical function used in a systemic
network specification. Realization operators are, in general, the names of Lisp functions that take
arguments exactly as they appear in the grammatical system definitions. The definition of the
realization operator st r engt hen above could then be given asillustrated in Figure 12.5.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node319.html (2 von 3) [11.12.2004 21:53:58]



Morphological realization constraints

Definition for the realization operatur ‘etrengthen’.
Thie ie ueed in grammatical eyeteme by writing realization
;; conetrainte euch ae (ptrenpgthen Head).

;55 Firet, announce the operator to KPML...
(define-realization-operator STRENGTHEN)

:3: pecond, define the depired traneformation...
(defun STRENGTHEN-MDRPH (epelling)

(etring-append
epelling
(pubereq epelling (1- (length epelling)) (lenpgth epelling))))

;55 finally, define the realization operater...

(defun STRENGTHEN (Function-name)
(morphoee Function-name #'etrengthen-morphl)

Figure: Example definition of a morphological realization operator

next |jup ||previous |Jcontents ||index

Next: Choosers Up: Realization Statements Previous. User-defined realization operators

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node319.html (3 von 3) [11.12.2004 21:53:58]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Choosers

next [Jup ||previous []contents []index

Next: Inquiries Up: Resource definition formats Previous: Morphological realization constraints

Choosers

An example chooser definition is shown below; thisis the definition form corresponding to the
graphical version given in Figure 6.9.

{choosger
:name TYPE-OF-BEING-CHOOSER
:definition
((ASK (EXTSTENTIAL-{ FROCESS)
(EXTSTENTTAL
(IDENTIFY EXTSTENT (EXISTENT-ID PROCESS))
(COFYAUR EXISTENT SUBJECT)
({COFYHUR EXTSTENT DIRECTCOMFLEMENT)
(CHOOSE EXTSTENTTAL))
(HONEXTSTENRTTAL
(ASK (IDENTITY-0) PROCESS)
( IDENTITY
(IDENTIFY IDENTIFIED (IDENTIFIED-ID FROCESS))
(IDENTIFY IDENTIFIER (IDENTIFIER-ID FROCESS))
(IDENTIFY TOKEN (SYMBOL-ID FROCESS))
(IDENTIFY VALUE (SYMBOLIZED-ID EROCESS))
(COFYHUB IDENRTIFIED SUBJECT)
(COFYHAUB IDERTIFIER DIRECTCOMELEMENT )
(CHODSE IDENTIFYING))
(HONTDENTITY
(CHODSE RELATIONAL-OTHER)))))
(* Christian "22-Jan-865 18:82:49"))
:comments ‘'
:editor MV
:date ")

ThisisaLisp form that may be evaluated; it is also the form that is printed by the inspector command
<Print Chooser> when the graphical chooser display is not activated. The chooser actions that are used
here, i.e. ask, identify, choose, and copyhub, may be described as follows.

. Ask - putsan Ask type of Inquiry (a Q-inquiry) to the environment. The set of possible responses
is predefined and closed.

. ldentify - takes a grammatical function and an Identify Inquiry (an ID-inquiry) and puts that
Inquiry to the environment. The set of possible responses is open ended. The actual response
becomes associated with the grammatical function specified. This association is maintained in a
function association table; the form and use of thistable is described further below.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node320.html (1 von 2) [11.12.2004 21:54:08]



Choosers

. Choose - specifies agrammatical feature to choose in the system to which a chooser is attached.
If the point in the chooser's decision tree at which the choose operation is situated is reached, then
the appropriate choice of grammatical feature to make is the one specified.

. Copyhub - copies the association that exists between one grammatical function and a hub onto
another grammatical function.

« * - introduces a comment.

Two additional chooser operations not used in the present example are:

. Pledge - declares that a specified hub isto be considered “expressed’; subsequent passes through
the grammar should not then attempt to re-express already expressed information since
responsibility for that expression has aready been taken.

. TermPledge - declares that a specified hub is to be considered “expressed’, but by alexical item
rather than by another pass through the grammar.

Actually, al these operations do is place the term mentioned on alist of pledged items. This can be
checked in inquiry implementations with the predicate pl edged- p. Most users need not bother with
this possibility.

next [Jup l|previous []contents []index

Next: Inquiries Up: Resource definition formats Previous: Morphological realization constraints

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node320.html (2 von 2) [11.12.2004 21:54:08]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inquiries

next |jup ||previous ||contents ||index

Next: Lexicons Up: Resource definition formats Previous. Choosers

Inquiries

There are two kinds of inquiries, branching inquiries (Q-inquiries) and identifying inquiries (ID-inquiries).
There are also two principal modes of operation for inquiries: implemented and de-implemented (see
Section 7.4.7). A typical Q-inquiry is shown below; as usual, thisisaLisp form that gets evaluated when it is
loaded.

(askoper at or
: name ATTRI BUTE- Q
- domai n KB
: nrode | MPLEMENTED
: paraneters (MODI FYl NGRELATI ONAL)

-english
("Does " MODI FYI NGRELATI ONAL
" represent an attribute, i.e. a nodification wthout an operand?")

: oper at or code ATTRI BUTE- Q- CODE
. par anmet er associ ati ont ypes ( CONCEPT)
. presel ecti ongui dance
( (ADJECTI VAL- GROUP . ATTRI BUTE)
( PREPCSI Tl ONAL- PHRASE . OPERANDRELATI ON))
- answer set (ATTRI BUTE OPERANDRELATI ON))

Therole of aQ-inquiry isto guide generation through a chooser in order that an appropriate grammatical
feature be selected. Thisis normally done, as described below, either by user intervention or an
‘implementation’ of the inquiry.

In deimplemented mode the English version of thisinquiry, as specified in the English dlot, is put to the user.

gif The possible responses to this inquiry are attribute and operandrelation as specified in the answerset
slot. The user must select the response which most nearly corresponds to the intended semantics of the
linguistic unit being generated.

In implemented mode, the operation of an inquiry is more complex. A gloss for above definition would be
something along the lines of : the inquiry called Attribute-Q interrogates the partition of the environment
called the KB (knowledge base, in implemented mode this usually refers to the upper model) by invoking
the Lisp function specified as the operator code (At t r i but e- Q- Code), which isafunction of one
argument (called nodi fyi ngr el ati onal asspecified in the parameters sot) of type concept (as
specified in the "parameterassociationtypes slot.)

When the grammatical feature being considered is subject to a preselection--i.e., the outcome of the
grammatical system choice has already been constrained by an explicit realization statement, then the
preselection guidance slot of an inquiry definition is used to check that any prevailing semantic conditions

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node321.html (1 von 3) [11.12.2004 21:54:17]



Inquiries

(asrevealed by the answersto inquiries) are consistent with the preselection. The preselection guidanceisa
list of pairs, the first element of which isagrammatical feature that may be preselected, the second the
response to the inquiry that is appropriate given the feature preselected. Thisis an old mechanism which
avoids the necessity of a potentially computationally expensive backward-chaining search for entailed paths
through the network and the choosers. The user isinformed automatically if preselection guidanceis
required and what that preselection guidance would be.

When the inquiry function representing the inquiry implementation is called, the value passed to that
function is the “concept-aspect’ of the information associated with the grammatical function used as
parameter--i.e., in this case, MODI FYI NGRELATI ONAL. Information can only be passed to inquiriesin this
way, i.e., via some specified aspect of a grammatical function. Aspects are stored in the function association
table (FaT) and are entered by means of identifying inquiries. The particular information aspects that are
supported currently are:

. concept : the 'semantico-conceptual correlate’ of the grammatical function at issue--for example, its
propositional content.

. nodi ficationspecification:thetextualy specific view of the ssmantic correlate of the
grammatical function--for example, the particular propositional content that has been selected as
sufficient for some concrete referring expression to be used at a given point in atext.

. terns:theset of lexical itemsthat could appropriately realize the grammatical function at issue.

. termtheparticular lexical item selected for the grammatical function at issue.

. functi on: thelabel of the grammatical function at issue.

The use of theseisillustrated in the example id-inquiry definition given below, in which the
cr eat edassoci at i ont ype dlot isused to specify in which field the return result of the inquiry
implementation (the Lisp function di mensi on- i d- code) isto be placed.

(identifyoperator
:name DIMENSTON-TID
:domain KB
:mode TMPLEMENTED
:parameters (PROPERTY1)
:englizh ("What is the dimenszion in termz of which the property "
FROPERTY1 " iz specified?")
:operatorcode DIMENSION-TD-CODE
:paTameteragsociationtypes (CONCEFT)
:createdagsociationtype CONCEPT)

When inquiries are interpreted with respect to spL, the domai n that the inquiry definition specifies
influences where information concerning a hub, or s term, may be found. KB-type knowledge is assumed
to hold constant for the duration of a sentence; it is therefore possible to use KB knowledge about an entity
no matter where in the seL specification it isgiven. However, TP type knowledge refers to the textual
organization of the sentence and so this type of knowledge may change from instance to instance even within
asingle spL specification. For TP inquiries, therefore, the SPL interpreter is only licensed to look in the
immediately local term.

next Jjup ||previous ||contents ||index

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node321.html (2 von 3) [11.12.2004 21:54:17]



Inquiries

Next: Lexicons Up: Resource definition formats Previous: Choosers

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node321.html (3 von 3) [11.12.2004 21:54:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Lexicons

next [Jup ||previous [Jcontents [lindex

Next: Examples Up: Resource definition formats Previous: Inquiries

Lexicons

A typical lexical item is shown below.

(lexical -item

: name FEED

:spelling "feed"

:sanpl e-sentence "The data is fed into the conputer.”

:features (VERB | NFLECTABLE UNI TARYSPELLI NG S- 1 RR PASTFORM
EDPARTI Cl PLEFORM LEXI CAL NOT- CASEPREPGCSI TI ONS
NOT- TOCOVP NOT- QUESTI ONCOVP NOT- MAKECOVP NOT- ADJECTI VECOWP
DOVERB DI SPOSAL EFFECTI VE NOT- SUBJECTCOWVP NOT- PARTI Cl PLECOWP
NOT- BAREI NFI NI TI VECOVP OBJECTPERM TTED
NOT- OBJECTNOTREQUI RED NOT- COPULA PASSI VE | NDI RECTOBJECT
NOT- THATCOWVP)

:properties ((PASTFORM "fed" ) (EDPARTI Cl PLEFORM "fed" ))

:date "Monday the twenty-third of February, 1987; 4:51:40 pni

ceditor "Smth")

The features that appear under the f eat ur es slot depend on the concrete linguistic resources defined to the
system. The information under the pr oper ti es dot isused for holding idiosyncratic exceptions to general
morphological processes. The remaining slots are self-evident.

It isusual that a mapping be provided from sets of lexicogrammatical features to single morphological features
such asthose that appear inthe: pr operti es dot. Thisis necessitated by the fact that property names must
still be single atoms and no logical combinations of |exicogrammatical features are permitted. The mapping
functions then take specified combinations of lexicogrammatical features (e.g., pr esent - f or mandfi r st -
per son- f or m) and produce single property names (e.g., f i r st pr esent f or n) such as appear in lexical
items. The name of the mapping function can be specified for each language variety as indicated in

Section 12.2.2.1. A mapping function must be a function of two parameters: (i) the set of lexical features that

have been applied to the currently considered constituent by realization constraints in the grammar; (ii) aflag

that is used to indicate to the mapping whether the currently considered constituent is a noun or not gif The
function should return the name (a single symbol) that represents the lexical property that corresponds to the
conjunction of the separate lexical features. As an example, the mapping function for English establishes
connections such as:

(Firstperson Singular Presentform) —+ Firstsingularpresentform
(Pastform Plural) —+ Pluralpastform

Lexicon files from a particular language resource directory (see Section 12.1) can aso be loaded
independently of other resource objects by means of the command rooT:<Load Lexicon Files> or by loading

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node322.html (1 von 2) [11.12.2004 21:54:25]



Lexicons

linguistic resources with appropriate object focusing (Section 5.6.1).

The current set of lexicon entries |oaded can be cleared by the command roort:<:Clear Lexicon> .

KpmL provides an additional slot (: st en) for holding morphological information. How thisisused is
described in Section 12.2.5.4.

next |jup l]previous |Jcontents |lindex

Next: Examples Up: Resource definition formats Previous: Inquiries

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node322.html (2 von 2) [11.12.2004 21:54:25]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Examples

next [Jup ||previous [Jcontents [lindex

Next: Punctuation Up: Resource definition formats Previous: Lexicons

Examples

Linguistic resources may come with files containing example sentences. These examples can be used to test
out agrammar without providing semantic specifications or domain models. They also provide a convenient
form for test suites showing the coverage of a set of linguistic resources. Special operations are provided for
using a set of examplesin thisway (see Chapter 10).

Examples are typically of two forms:

. anexamplelogical form, or spL, that generates appropriately given the grammar, domains, and lexicons
that are loaded for a given resource set;

. an example set of inquiry responses, that generates appropriately given just the grammar and lexicons
loaded for a given resource set.

The two can be combined into a single example record. Typically examples of the former kind are kept in files
with extensions ™ . spl ', while examples of the latter kind are kept in fileswith extensions *. ex'. The latter
kind can be created from the former simply by generating the example with the “Update environment record'
option activated (see Section 7.5.2 and Figure 7.3).

A typical example of the former kind is the following:

(example
:name Beshrenz4
:targetform "He 2tudied in Munich in 1890 with Kotzchenrsiter."
:logicalform
(V-581 / (STUDY)
: SPATTAL-LOCATING
(V-585 / (MUNICH THREE-D-LOCATION NAMED-DBJECT OBJECT)
: HAME MUNICH)
: TENFORAL-LOCATING (V¥-587 / (THREE-D-TIME) :HAME [1880])
: INSTRUMENTAL
(V-589 / (KOTSCHENREITER NAMED-DBJECT MALE OBJECT)
: JAME KOTSCHENRETITER)
:ACTOR (V-580 / (BEHRENS NWAMED-DBJIECT MALE OBJIECT)
: JAME BEHRENS)
: TEHSE FAST)))

When this exampleisloaded, Behr ens4 appears in the menus for candidate example generation and, if
selected, the logical form under the slot : | ogi cal f or misused to constrain generation. Since such
expressions can rely freely on domain concepts (e.g., st udy, nuni ch, behr ens, etc.), they can only
successfully generate when the appropriate domain models have been |oaded.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node323.html (1 von 3) [11.12.2004 21:54:31]



Examples

A typical example of the second kind follows; it is the sentence " Yes".

(Exanpl e
- nane EG38
:targetform "yes"
: root node EG38
i ncl udedhubs (EG38)
: sel ecti onexpressions
(( EG88 RESPONSE- PCSI Tl VE POLARI TY
ELLI PTI CAL CLAUSE CLAUSES START))
;edi tor "BATEVAN'
:date "07/14/88 20:12: 42"
- KBenvi r onnent
((EGB8ACT- POLARI TY (POLARI TY-VALUE-Q PCSITIVE) NIL)
(EGB8ACT (POLARITY-1 D EGB8ACT- POLARITY) NIL)
NI L)
: TPenvi r onnent
((-TOP--
(EGB8ACT- POLARI TY
( MODI FI CATI ON- SPECI FI CATI ON- | D EGB8ACT- PCLARI TY- PS)

NI L)
( EG88ACT
( MODI FI CATI ON- SPECI FI CATI ON- | D EGB8ACT- PS)
NI L)
( EGS8
( MODI FI CATI ON- SPECI FI CATI ON- | D EG88- PS)
NI L)
NI L)

(WHERE- AMH | - I D - TOP- -)

(EGB8ACT- POLARI TY
( MODI FI CATI ON- SPECI FI CATI ON- | D EGB8ACT- POLARI TY- PS)
NI L)

(EGB8ACT
( POLARI TY- ANSVER- Q POLARI TYANSVER)
( ANSVEER- Q ANSVEER)
( PROPGCSI TI ONALNESS- Q PROPGSI Tl ONAL)
( MODI FI CATI ON- SPECI FI CATI ON- | D EGB8ACT- PS)
NI L)

(EGB8
( SPEECH ACT- | D EGB8ACT)
( EXI ST- SPEECH ACT- Q SPEECHACT)
(HEARER- | D READER)
( SPEAKER- | D PC)
( SERI QUS- Q SERI QUS)
( MODI FI CATI ON- SPECI FI CATI ON- 1 D EGB38- PS)
NI L)

NI L)

. di scour secont ext
(: speaker |
:hearer YQU

http://www.darmstadt.gmd.de/publish/komet/kpmi-1-doc/node323.html (2 von 3) [11.12.2004 21:54:31]



Examples

: speaki ng-ti nme TI MENOW
:real mof -speech HERE ))

The most important components of this structure are the KBENVI RONIVENT and TPENVI RONVENT. These
partition the knowledge assumed in the environment into the knowledge base and the text plan respectively.
Thisdistinction is also present in the inquiry definitions (section 12.2.7) under the : domai n slot. This
determines which partition the inquiry isto interrogate for its response. Both KB- and TP-environment slots
hold information of the same form: an association list of hub names and the inquiry-inquiry response pairs that
are appropriate for those hubs. For example, the first entry of the TPENVI RONMVENT slot states that when the
inquiry Modification-Specification-1D is asked of the hub eg88ACT-POLARITY then the response appropriate
for this example is eg88ACT-POLARITY-PS,

The: i ncl uded- hubs field maintains arecord of all the hubs that have been realized by rank-level
structures, i.e., clause, nominal-group, etc.; and : sel ect i onexpr essi ons holdsthelists of all the
grammatical features selected for each of those rank-level structures, or grammar network traversals.

An additional dlot, : st ruct ur e, not shown here for reasons of space, holds the structurally rich version of
the generated string that is used to create the mouse-sensitive generated string presentations that appear in the
interface. Thisis also the structure that can be used to good effect by applications that want a more
sophisticated presentation of the generated results than the simple strings that result. The internal structure of
the "'mouseabl e structures' is described in Section 14.5.

Note that for the linguistic resources to generate from such an input specification, they need to be runin de-
implemented mode for this to work (see Chapter 10). Exercise set examples will not run in implemented mode
(the normal mode for generating from semantic specifications) and, similarly, examples that are intended to
run in implemented mode will not succeed in deimplemented mode. The example runner will automatically
switch into de-implemented mode if it is asked to generate an example that does not contain alogical form.

Such example records can either be edited directly or, more usefully, indirectly viathe grammar interface by
setting the Update Example Record flag (see Section 7.5.2). Setting this flag ensures that all relevant
information created during generation is preserved in the appropriate slots of the example record. This can be
used, for example, for converting an example of the first kind introduced above, containing only logical form,
to one of the second kind, where a compl ete record of the grammatical traversal and semantic inquiry

responsesis also available gif Only such complete examples can be used to support the operations for
selecting examples on the basis of which grammatical features or functions they use.

Examples are also multilingual objects, and can be loaded, written, and merged in al the usual modes for

multilingual objects generaly (i.e., monolingual, contrastive, and multilingual) gif

next [Jup [||previous [Jcontents [lindex

Next: Punctuation Up: Resource definition formats Previous. Lexicons

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node323.html (3 von 3) [11.12.2004 21:54:31]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Punctuation

next |jup ||previous ||contents []index

Next: Non-systemic system dependencies Up: Resource definition formats Previous. Examples

Punctuation

KpmL provides the same method of controlling punctuation as does the Penman system; the only
difference being in the definition syntax and the ability of kpmL to maintain different punctuation rule
setsfor different languages. This method allows functionally and structurally motivated punctuation
to be defined drawing on the descriptions generated by a grammar.

The punctuation rules for alanguage variety are kept in thefile punct uat i on. gr am There are
three kinds of rules:

. pre punctuation rules,
. post' punctuation rules,
. post-self' punctuation rules.

All punctuation rules consist of a set of entries of theform: (<grammati cal feature>
<grammati cal function> <punctuation mark>)

The grammatical function identifies the constituent where the
punctuation mark (a string) is to be placed.

For "pre' and "post' punctuation rules, the grammatical feature
applies to a granmatical unit that includes the designated
grammati cal function as a subconstituent. That is, the rule: (NO\W
THEMATI C- DEPENDENT- BETA DEPENDENT ", ")

states that when a grammatical unit is generated using the feature
non-t hemati c- dependent - beta, then the subconstituent Dependent of
that unit should be punctuated by a conma. If the rule is a pre'
rule, then the comma cones before the designated constituent; if it
is a post' rule, then the comma foll ows the designated constituent.
The above rule is responsible for the fact that hypotactically
rel at ed dependent clauses followng their matrix clauses (this is
what the feature non-thematic-dependent-beta in the grammar of
English neans) are separated fromthat matrix clause by a comma. It
i's, accordingly, in the English punctuation rules defined as a pre’
rule, since the structure desired is of the form [|NDEPENDENT ", "
DEPENDENT]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node324.html (1 von 2) [11.12.2004 21:54:35]



Punctuation

For "post-self' punctuation rules, the grammtical feature refers to
the sanme grammatical unit as is indicated by the granmati cal

function. For exanple, the "post-self’' rule: (1NTERROGATI VE SENTENCE
mn ?ll )

states that if a grammatical unit |abelled Sentence (the top node in
a constituent structure) is generated using the grammatical feature
I nterrogative, then it should be followed by the indicated
punctuation. Simlarly, the rule: (I MPERATIVE PRQJECTED "!")

states that the grammatical unit |abelled Projected should be

foll owed by an explanation mark just in the case that it is realized
by a grammatical unit possessing the feature inperative. "~ Post-self’
rules therefore differ from post' rules in the positioning of the
grammati cal feature specified.

Finally, it is possible in "post-self' rules to use a *' as a

wi | dcard for the granmatical function. This neans that it is
possible to indicate that a granmatical unit containing a specified
grammatical feature is to be punctuated regardl ess of what
grammatical function it is realizing.

The syntactic formof the punctuation definitions is sinply:

(define-XZ-punctuation :language :LANGUAGE
:punctuation-rules *(RULE-1
EULE-2

RULE-K) )

where the rules have the formindi cated above and X can be either
pre, post, or post-self.

next |fup |lprevious [Jcontents |]index

Next: Non-systemic system dependencies Up: Resource definition formats Previous. Examples

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node324.html (2 von 2) [11.12.2004 21:54:35]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Non-systemic system dependencies

next |fup [|previous [Jcontents [Jindex

Next: Default orderings Up: Resource definition formats Previous. Punctuation

Non-systemic system dependencies

In the case that multiple systems can be entered during traversal of the network, it is possible to control the
order in which these candidates are in fact entered. Thisinformation in maintained in thefile: or der i ng-
constrai nts. gram The syntax differs again from that used in the Penman system, although
automatic conversion (Penman to kpmL, not vice versa) is provided.

Note: making deliberate use of thisinformation is not recommended, asit compromisesthe
declarativeintegrity of the resour ce definitions.

The form of these specificationsis as follows (adapted from those for the English grammar):

(defines—-dependency-set
:language :english
:name CLAUSE-AREAS
:eystemg-1ist *(ATTITUDE CIRCUMSTANTIAL CLAUSE-COMPLEX CONJUNCTION
CULMINATION DEFENDENCY MOOD NONRELATIONAL-TRANSITIVITY
POLARITY RANKING RELATIONAL-TRANSITIVITY TAG TENSE
THEME VERBAL-GROUP VOICE)

)

(defines—-dependency-set
:language :english
:name DETERMINATTION-AREA
:eystems-1ist ’(SPECIFIC-TYPE PARTIAL-TYPE TOTAL-TYFE)

)

(define-dependency-zet
:language :english
:names LEXVERB-CONFLATIDNS
:eysteme-1ist *(TRANSITIVITY-UNIT VOICE-LEXVERB
LEXVERR-VOI CEDEFENDENT AUXSTEM-LEXVERB
LEXVERB-FINITE)

(define-system—dependencies
:language :english
:dependencies
*((THING-TYPE-AREA MODIFICATION-AREA-T
DETERHINATION-AREA ( QUANTIFICATION ) MODIFICATION-AREA-IT)

I o mm ms o — —

http://www.darmstadt.gmd. de/publlsh/komet/kpml -1-doc/node325.html (1 von 2) [11.12.2004 21:54:45]



Non-systemic system dependencies

W, W, A AL amw A AS A ERAUSSER SLAFAr .S A A WAL A A LFrAN ARAULEER A

DETERMINATION-AREA (QUANTIFICATION) MODIFICATION-AREA-TT)
(THING-TYPE-AREA ... )))

Systems that are potentially candidates for parallel entry are defined by the form

def i ne- dependency- set . Each set of candidates is named. Thus, for example, one candidate set of

systemsisthe DETERM NATI ON- AREA. In this set, the grammatical Systems sPECIFIC-TYPE, PARTIAL-TYPE
and TotaL-TYPE Will become available for entry simultaneously. The specification here requires, however,

that they will actually be entered in the order givenin thelist.

The candiate sets are collected together and are used in the definition system dependencies overal. This
takesplaceintheform def i ne- syst em dependenci es, which specifies the relative ordering of the
sets of candidates. Thus, in the example above, first systems belonging to the group THI NG TYPE-
AREA, then those belong to the group MODI FI CATI ON- AREA- |, and then those of the

DETERM NATI ON- AREA are entered. Unnamed sets of alternatives can aso be used here by enclosing
them in parentheses. The system QUANTI FI CATI ON, for example, is given above as following all system
sof the DETERM NATI ON- AREA and preceding all systems of MODI FI CATI ON- AREA- | | .

Definitions of thisform can be merged freely during contrastive loading. Multilingual resources use a
dightly different form that smply echoes the internal structure of the values of the variables where the
system dependency information is maintained. Since the frequent use of this kind of information is not
recommended, multilingual support is kept to a minimum.

next |jup [|previous [Jcontents [Jindex

Next: Default orderings Up: Resource definition formats Previous: Punctuation

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node325.html (2 von 2) [11.12.2004 21:54:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Default orderings

next |Jup ||previous |[Jcontents |]index

Next: Domain concepts and links Up: Resource definition formats Previous. Non-systemic system
dependencies

Default orderings

Default orderings are also specified in thefile: or der i ng- const r ai nt s. gr am These orderings take
the form of lists of prefered sequences of grammatical functions. They are defined for a particular language
by specifications of the form:

(define—default-orders :language :DUTCH
;orders * ((SUBJECT NHON-FINITIVE)

(SUBJECT HEGATOR LEXIVERBE QUALITY ...)
(REFRESENTATIVE RSELECTOR FART PSELECTOR ...)
(DEICTIC COMPARATOR QUALITY STANDARDINDICATOR STANDARD)
(PRE-CARDINAL. MILLION THOUSAND HUNDRED SUFRATEN SUBTEN)
(PRE-CARDINAT. TEXPERER APEX)
(PRE-CARDINAL. THOUSANDDIGIT HUNDREDDIGIT TENDIGIT
UNITSDIGIT DIGIT)
(SUBJECT TO-INFINITIVE TEMFDO FINITE REALITY TEMFO1
TEMPOZ2 TEMPO3 VOICE LEXVERB)
(STRUCTURAL TEXTUAL INTERPERSONAT. TOPICAL)
(IDENTIFIED PROCESS IDENTIFIER)))

When the grammatical functions of any sublist occur together at the same rank in a generated structure, then
their order--if not specified otherwise by the explicit ordering constraints present in the grammar--will be as
given in the sublists of the defined default order for the language in question.

Definitions of this form can be merged freely during contrastive loading. Multilingual resources use a
dightly different form that ssimply echoes the internal structure of the values of the variables where the
default ordering information is maintained. Since the frequent use of this kind of information is not
recommended, multilingual support is kept to a minimum.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
% mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node326.html [11.12.2004 21:54:54]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Domain concepts and links with the lexicon

next |jup ||previous ||contents []index

Next: SPL macros and defaults Up: Resource definition formats Previous. Default orderings

Domain concepts and links with the lexicon

The default assumption made by kpmL is that the Loom knowledge representation language is being
used. Domain concepts are then typically defined in Loom and, under the Penman model for

interfacing with a domain, are subordinated to concepts defined in the "upper mode!’ gif Macros are
also provided for linking such domain concepts with lexical items.

A typical domain concept definition is the following:

(defconcept illness
:iz (:and penman-kb: :object :primitive))

This defines the domain concept i | | ness to be a subtype of the upper model concept obj ect .
Upper model concepts are maintained in the Lisp package pennman- kb; domain model concepts can
be placed in any package (including pennman- kb) aslong as the user knows how to manage the
various interactions between Lisp packages and Loom knowledge bases, etc. The simplest
incantantations for setting up conditions for a domain definition file are the following.

Loom 2.0: Loom 2.1:
( in-package "PENMAN-XB") ( in-package "PENMAN-KB")
(in-kb ’penman-kb) (in-context 'ideation-baee-0)

This makes both the Lisp package and the knowledge base be the same as those of the concepts of the
upper model.

Links with the lexicon are then created by the following:

(kpml: :annotate—concept illness
:lex-items
(ziekte krankheit illne=ss))

Theelementsinthe: | ex-i t ens list are names of lexical items as defined by appropriate lexical
item definitions (Section 12.2.8). These names can be conditionalized for individual languagesto give

more specific definitions in the normal way (Section 12.3). A more appropriate version of the above

(which states that the three lexical items zi ekt e, kr ankhei t,andi | | ness areavailable for the
concept regardless of language and regardless of the individual language conditionalizations of these
lexical items) would therefore be:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node327.html (1 von 2) [11.12.2004 21:54:59]



Domain concepts and links with the lexicon

(kpml::annotate-concept illneee
tlex-iteme

(:dutch ziekta

:german krankheit

:englieh illneee))

Lexical annotations are stored internally in the hash-table * concept - annot at i ons*. The keysto
the values are the print names of the concepts, as returned by the knowledge base access function kb-
get concept nane.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node327.html (2 von 2) [11.12.2004 21:54:59]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

SPL macros and defaults

next |jup ||previous ||contents []index

Next: Language variety conditionalization Up: Resource definition formats Previous: Domain
concepts and links

SPL macros and defaults

SPL macros can be used to simplify the input specifications given to the generator gif An SPL
macro definition consists of a macro name followed by possible slot values. The definition provides
for each slot value a set of inquiry and inquiry responses that are to be placed in the SPL where the
SPL macro is used. Coreference of inquiry reponses and parameters isindicated in the inquiry/inquiry
response sets by variables.

An example definition is the following:

(defspl-macro :determiner

((a
:identifiability-g notidentifiable
rmultiplicity—g unitary
: amount—-attention-g minimalattention)
(all

:current-representative-id 7=l

:potential -represzentative-id 7s2
rget-totality-g (781 T=22) total
rmultiplicity-gq multiple

:8ingularity—-g nonsingular
:get-totality-individuality—-g collection

: amount-attention-g nonminimalattention)))

Following evaluation of this definition, it becomes possible in an SPL specification to specify simply,
for example: : det er mi ner al |

This will be expanded into the set of inquiry and inquiry responses
i ndicated in the definition, producing in this case (wth the N gel
grammar of English) a nomnal group with determner "all'.

The use of SPL macros is provided for conpatibility with inputs

desi gned for the Penman system since in a full generation scenario
SPL specifications would thensel ves be generated automatically, the
utility of SPL macros is sonewhat weakened. They can al so too easily
di squi se the purely semantic nature of the SPL input--as in the
above exanple where it nakes it appear that the SPL i nput contains

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node328.html (1 von 3) [11.12.2004 21:55:15]



SPL macros and defaults

rat her syntactic information concerning choice of granmati cal
determ ners, although this is not the case since this is of
necessity expanded into inquiries which are semantic. A further
problemis that it is possible with nore conplex SPLs to choose
macro conbi nations where the inquiries entailed are in parti al
conflict: this problemis hidden fromthe SPL-witer by the macros

t hensel ves, and so can cause consternati on when a nacro suddenly
stops having its usual effect. For these reasons, SPL macros are not
particularly strongly supported or recommended in kewm; they cannot
be conditionalized for particul ar | anguages. Shoul d problens with
macros occur, the user is reconmended to replace the nacros with the
expanded inquiries and to check for possible bad interactions.

A basic set of SPL macros is usually to be found in a set of
resources in the file:
basi c-spl -macros. |isp.

SPL defaults, or default environnents, provide a way of
sinplifying SPL i nput specifications still further. An SPL default
environnent defines a set of inquiries and their responses which are
to be added to all SPL specifications processed while the
environnent is "active'. For exanple, if we wish to specify that,
until further notice, all SPLs given should act as if the
specifications for present tense were also present, then we can use
the definition:

(defzpl-default present-tense
rgpeaking-time—-id
DEFAULT-ST / time
:time-in-relation-to-speaking-time—-id DEFAULT-ET
:same—asg—g (DEFAULT-ST DEFAULT-ET) same
:precede—g (DEFAULT-ST DEFAULT-ET) notprecedes)
:avent -t ime
(DEFAULT-ET / time
:precede—g (DEFAULT-ET DEFAULT-S5T) notprecedes))

This defines a possible SPL default environnent naned present-tense.
The inquiries and responses given are those necessary for specifying
the semantic tenporal relations involved when present tense is used
i n English.

Since it has often been the case that sets of SPL specifications
have been prepared in the context of the Penman system assum ng that
sone set of standard defaults holds, keme provides a way of declaring
that a particular |anguage variety will use a particular set of SPL
default environnments. This is described in Section 12.2. 2.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node328.html (2 von 3) [11.12.2004 21:55:15]



SPL macros and defaults

Note that the kem provision of default environnents is nore
restricted than that of the Penman system since the interactions of
multilinguality and stacked default environnments have not been

i npl emented. The remarks gi ven above for SPL nacros apply simlarly
to SPL default environnents however, and so their use is not
strongly supported in kpwm.

next |fup |lprevious [Jcontents |]index

Next: Language variety conditionalization Up: Resource definition formats Previous: Domain
concepts and links

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node328.html (3 von 3) [11.12.2004 21:55:15]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Language variety conditionalization

next [Jup [lprevious ||contents index

Next: Reguirements for resource definitions Up: Resource Organization and Definition Previous: SPL macros and defaults

Language variety conditionalization

KpmL provides full conditionalization of the linguistic units defined according to language as described in Bateman et al. (). Any component (represented by either a
single symbol or asingle list of symbols or further components) present in the definitions of systems, choosers, inquiries, SPL specifications, lexical items, and lexical
annotations to concepts can be conditionalized to belong to some specified set of named language varieties. Language varieties are named by a Lisp keyword such as
: engl i sh. A sequence of language varieties states that the following component of the specification is applicable to all the language varieties mentioned in the
sequence. The conditionalization applies to the immediately following component only. Thus, the following variation on the definition of the first output feature for the
system APPARENT-REALITY illustrated in Section 12.2.4 above:

:english  :dutch (0.5 REAL)

specifies that the feature [real] isonly relevant for language varieties: engl i sh and : dut ch. If aset of language variety conditionalizationsis to apply to more than a
single component, then the required components are joined by the ™ symbol. Thus, a slightly more cumbersome way of stating the same conditionalization on the feature
[rea] would be:

(:english :dutch 0.5 & REAL)

The conditionalization of an entire unit (i.e., system, chooser, inquiry, example, or lexical item) is achieved by adding the required language varietiesinto the : nane
dlot of the unit. Thus the following would define APPARENT-REALITY to be a system only of the grammar of English.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (1 von 6) [11.12.2004 21:55:29]



Language variety conditionalization

(system
:name (:english APPARENT-REALITY)
: inputsa

)

A more complex exampleis shown in Figure 12.6. This represents the possible features concerning grammatical "gender' as recommended in the working draft of the
Eagles (a European Union, LRE project) report on morphology for European languages (Monachini &\ Calzolari ). Whereas the single definition for 9 languages (it is

stated in the report that no gender features apply to English) may appear complicated, once loaded into kemL such definitions can be readily decomposed and viewed for
subsets of the languages covered. Further, since such definitions can be constructed internally when merging descriptions of different languages, it is possible that no
user ever seeksto view the entire multilingual definition. Individua users could focus on particular languages in the overall set without needing to consider the full set.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (2 von 6) [11.12.2004 21:55:29]



Language variety conditionalization

(eyetem
tname (:italian :german :dutch :epanieh
tfrench :portupnees :zdanieh :zpgresk GENLER)
inpute noun
toutpute
(zepanieh (1 troe)
tdutch (1 femmaec)

E {1 context)

titalian -german -dutch :-epanieh
tfrench portngueere -pgraeek (1 maeculine)

titalian -german :-dutch :-epanieh

tfrench :portngueee spgraek (1 feminine)
titalian -german -dutch :danieh

sportugueee :greek (1 neuter)
titalian :epanieh :portuguees

tdanieh :zpgresk

(:italian :epanieh :portugueese :danieh 1 & common
:preek 1 & masc—fem))

tchoorer GENDER-CHODSER
teelector CHOICE-HASTER
cregion NOUN-TYPES
cmetafunction LOGICAL)

Figure: Example highly multilingual system

Figure 12.7 shows the graphical views of the systems from the noun morphology for Spanish, Danish and French, while Figure 12.8 shows a explicitly contrastive view
of German and Greek; the distinct views afforded of the cenper system shown in Figure 12.6 can be directly compared. Thisis avery direct computational instantiation
of the notion of multilingual “views' inherent in multilingual systemic resources.

7| systemic—resource—qgraph: NOUN—-REGION k 7| systemic—resource—graph: NOUN—-REGION
Print Graph Show Examples With Collected Features Print Graph Show Examples With Collected Features
Quit Resource Grapher  Display Modes Quit Resource Grapher  Display Modes
Maae Sallartnd Cantimann kdnil Intantinn Ta Uhkeds M Fallaadnd Faadsaena L dril landmadi;mes T (ks

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (3 von 6) [11.12.2004 21:55:29]



Language variety conditionalization

LAGON WANIIGL WS O

IYIOUE BRRLER R BF VLN M

LAl LUNIEL L FECdLres iUl INILETITUUT T WWUTTS

Region: NOUN-TYPES: Language: SPANISH

Pl
o,
[l
Feminine
NOUN-REGION|—Nown <
Trns
R T #rope tows

Masculine

Quit Resource Grapher
Clear Collected Features

Corumon—Noun |
=
T il systemic—resource—graph: NOUN-REGION
Print Graph Show Examples With Collected Features

Display Modes
Mail Intention To Work

NOVBER]<<"
NUUN-REGIN—Nown{—[OENDER} <=~
NOUN-TYPE] <

Reqgion: NOUN-TYPES: Lancmage: FRENCH

Pl
Sq
Masculine

Proper-Noun

Common—Noum |

Reqgion: NOUN-TYPES; Language: DANISH

Plurale-Tantum
COUNTABILITY << :
" | Singqul are-Tantum

Mixed

{INFLECTION-TYPEK_ Strong

Weak
Thearide
Indef
Det

xmm—ﬂenitive
Gen

‘Yﬂ
g

Commox

]]EFINITEN'E55|

(OUN-REGTaN] o —{EASE

Neuter

iPruper—Num
Cormon—Noun [ |

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (4 von 6) [11.12.2004 21:55:29]




Language variety conditionalization
= E=

Figure: Distinct views on amultilingual resource (contrastive)

rﬂ systemic—resource—qraph {contrastive): NOUN—-REGION

Print Graph Show Examples With Collected Features
Quit Resource Grapher Display Modes
Clear Collected Features  Mail Intention To Work

Regions: NOUN-TYPES : Languages: GERMAN GREEK

mnmnnu—mﬂ STRONG
MIED

COMMON-NOTUN
PROPER-NOUN

MASCUL INE
FEMININE

MASC-FEM

56
NOUN-REGION

INVARTANT

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (5 von 6) [11.12.2004 21:55:29]




Language variety conditionalization

. INDCL
[COUNTABILITY|

. ‘inmmmﬂu
MASS [

Al

I~

|-

Figure: Distinct views on amultilingual resource (multilingual)

next Jlup ||previous [Jcontents []index

Next: Requirements for resource definitions Up: Resource Organization and Definition Previous: SPL macros and defaults

£ John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬁ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (6 von 6) [11.12.2004 21:55:29]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Requirements for resource definitions

next |jup ||previous ||contents []index

Next: Special inquiries Up: Resource Organization and Definition Previous. Language variety
conditionalization

Requirements for resource definitions

There are afew constraints that hold for all resource definitions. These should either be met or some
action should be taken to defuse the consequences of their not holding.

. Specid inquiries
. Specia semantic concepts and relations

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node330.html [11.12.2004 21:55:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Specia inquiries

next |jup ||previous ||contents []index

Next: Special semantic concepts and Up: Regquirements for resource definitions Previous:
Requirements for resource definitions

Special inquiries

The following inquiries should probably aways be defined.

where-ami-id
Thisinquiry alows the current place in the constituent structure to be ascertained.

termresolve-id
Thisinquiry selectsalexical item matching the lexicogrammatical and semantic constraints
holding for its parameter.

nodi fi cation-specification-id
Thisinquiry provides the connection between the experiential (propositional content)
information maintained in theconcept dlot of an entry in the function association table and
the textual view of that content maintained inthe nodi fi cati onspeci fi cati on dot.

Definitions of these are to be found in the released resources; standardized implementations of the
|atter two are also to be found there in the inquiry implementation files; the implementation of the
former isakpmL-internally defined function.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node331.html [11.12.2004 21:55:38]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Specia semantic concepts and relations

next Jlup [lprevious [Jcontents |[lindex

Next: Accessing external information sources Up: Requirements for resource definitions Previous:
Special inquiries

Special semantic concepts and relations

A few of the upper model concepts are relied upon in internal code; for example, the interpretation of
spL relies upon the distinction between semantic relations (which can stand asrolesin spL expressions)
and objects (which can not). In addition, the spL interpreter uses some upper model concepts for
constructing lists of semantic entities. The upper model concepts/relations which should, therefore,

aways be defined are: gif

um set

refersto a set of objects,
di sjuncti ve- set

refersto adigunctive set of objects,
t wo- pl ace-rel ation

refers to two place relations.

These are described in the upper model documentation. The spL interpreter code does not refer to these
concepts name directly; instead it uses the values of the variables: * spl - set -t ype*, *spl -

di sjunctive-set-type* and*spl -rel ati onal -t ypes* respectively. Thelatter isalist
of concepts/relations which are all taken to root semantic relations.

The set concepts are used in the interpretation of sp. forms of the kind:

. (specl spec2 ...)
. (:and specl spec2 ...)
« (:or specl spec2 ...)

Thefirst two are equivalent to one another and rely on * spl - set - t ype*; thethird relieson * spl -
di sj uncti ve-set-type*.Ineach casean spL term graph (see Appendix B) of the set semantic
type is constructed with the arguments stored as alist under the : synbol slot. Inquiry
implementations that wish to use such spL expressions should therefore be written appropriately if they
are to succeed.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node332.html (1 von 2) [11.12.2004 21:55:42]



Specia semantic concepts and relations

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node332.html (2 von 2) [11.12.2004 21:55:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Accessing external information sources

next |jup ||previous ||contents []index

Next: Semantic information from inquiry Up: No Title Previous. Special semantic concepts and

Accessing external information sources

. Semantic information from inquiry implementations
. Externa information from the lexicon
. Morphologica information from external components

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node333.html [11.12.2004 21:55:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Semantic information from inquiry implementations

next |jup ||previous ||contents []index

Next: External information from the Up: Accessing external information sources Previous:
Accessing external information sources

Semantic information from inquiry
iImplementations

The principal way of interfacing from a body of linguistic resources to external information is by
means of the inquiries and their implementations. There are very many inquiries, which means that
this kind of interface is of necessity of avery broad bandwidth. For (meta-)functionally diverse
resources such as systemic-functional resources, this seems to be essential. There are, however,
severa waysin which thiskind of interfacing is simplified. The most significant of theseisthe
provision of an Upper Model for organizing the experiential semantics that linguistic resources,
particularly grammars, presuppose. The upper model currently used within kpmL is the merged upper
model motivated in Henschel (). A further, generalized upper model is under devel opment.

The most immediate interface to the grammatical component is provided by the Sentence Plan
Language (srL: Kasper ). This notation relies on the existence of an upper model for its interpretation,

but not on any particular upper model. Inquiry implementations as usually defined obtain their
information from an spL expression provided as input. However, inquiry implementors are, of course,
free to write those inquiries so as to obtain information from any source, not just from the spL.

Interfacing with any particular knowledge representation language is simplified by means of avery
restricted set of access functions. These are the functions by which inquiry implementations access spL
Input expressions or underlying upper or domain concepts and relations (currently represented in
Loom). Appendix B contains extracts from Bob Kasper's description in the Penman Reference

Manual concerning these access functions and other internal aspects of the spL implementation.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node334.html [11.12.2004 21:55:49]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

External information from the lexicon

next |jup ||previous ||contents []index

Next: Morphological information from external Up: Accessing external information sources
Previous: Semantic information from inquiry

External information from the lexicon

At present thisis often done (when necessary for, for example, languages with lexically specified
information such aslexical gender) by using inquiry implementations that lift the information from
the lexicon directly. Thisis certainly not particularly elegant, and it also loses the real theoretical
difference between accessing semantic information and moving information around within the
lexicogrammar. Improved mechanisms for this will probably be made available at some stage.

ThekpmL functionaccess- | exi cal - i nf or mat i on takes agrammatical micro-function (such

as ‘Subject’, "Actor’, etc.) as argument gif and returns three values:. the lexical features defined by the
lexical entry, the associated lexical item'sidentifier, and the lexical entry itself.

This permits the ready definition of inquiry implementations such as the following, which checks
whether a particular grammatical function is being realized by alexical item with the lexical feature
[neuter].

(defun neuter-gender-g-code (item)
(multiple-value-bind (features name entry)
(accesg-lexrical-information item)

(if (member ’kpml::neuter features)
‘neut er-gender
'not-neuter-gender)))

Or, of course, following the Common Lisp treatment of multiple values, ssmply:

(defun neuter-gender-g-code (item)
(if (member *kpml::neuter (acceszg-lexical-information item))
*neut er-gend ar

*not-neuter-gender) )

The package of the lexical feature neut er isgiven explicitly because of the possibility provided by
kpML Of moving inquiry implementations across different Lisp packages. The lexical features are
aways in the Penman package and so this information should be preserved. Thisis obviated by the
functions defined below.

Two additional support functions for handling lexical information are the following:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node335.html (1 von 3) [11.12.2004 21:56:06]



External information from the lexicon
. (lexical -feature-present-p Nane Feature)

This checks whether the lexical item of name Nae possesses the feature Feat ur e.
. (lexical -class-ascertai ner Nane Feature-|ist)

Thisreturns the feature of Feat ur e- | i st that thelexical item with name Nane possesses
(if any).

Since the most common kind of lexical accessinquiry by far needs only to access the lexical item
associated with some grammatical function in order to ascertain lexical features that are present, the
following two functions provide a convenient combination of the above two functionsand access-
| exi cal -i nformation.

. (lexical-feature-present-in-association-p Item Feature :yes Yes
: no No)

This combinesthe work of access- | exi cal -i nformati onandl exi cal -f eat ure-
pr esent - p enabling information to be obtained directly from the grammatical function that
istypically provided to alexically concerned inquiry operator as argument.

. (lexical-class-of-association-ascertainer Item Feature-Iist)

This similarly combines the work of access- | exi cal -1 nf or mati on and
| exi cal -cl ass-ascertai ner.

The above example inquiry for neut er - gender - g- code can now, therefore, be ssimplified still
further to the following definition:

(defun neuter-gender-g-code (item)
(lexical—feature—present-in-association—p
item ’neuter :yes ’neuter-gender :no ’not-neuter-gender)

This standard form also supports automatic conversion to other possible forms (e.g., atyped feature
representation) more readily and so is recommended over the use of straight Lisp code.

All four of these support functions use those of their arguments that refer to lexical features asif they
were symbolsinthe kpm package. They can therefore be used in any package and nevertheless

provide the appropriate lexical access gif

next |jup ||previous ||contents []index

Next: Morphological information from external Up: Accessing external information sources
Previous: Semantic information from inquiry

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node335.html (2 von 3) [11.12.2004 21:56:06]



External information from the lexicon

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node335.html (3 von 3) [11.12.2004 21:56:06]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Morphological information from external components

next |jup ||previous ||contents []index

Next: Using KPML without the Up: Accessing external information sources Previous. External
information from the

Morphological information from
external components

It isin principle straightforward to interface a set of grammatical resources with external
morphological components. This does, however, require that the kinds of constraints given in the
grammar (normally interms of classify or inflectify realization statements are directly relatable to the
specifications required by the external component. As with all access to external components, it is
necessary to provide suitable Lisp definitions of the relevant kemL interface functions.

Usersinterested in this possibility are invited to contact the author gif

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node336.html [11.12.2004 21:56:21]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Using KPML without the window interface

next |jup ||previous ||contents []index

Next: Blackbox operation as a Up: No Title Previous: Morphological information from external

Using KPML without the window
Interface

In this section, we describe the Lisp functions that enable kpvL to be driven directly without going via
the commands provided by the window interface. Many of these functions are those that underly the
window interface commands, some are provided additionally to make operation without the window
interface more comfortable. Unless otherwise noted, all symbolsare inthe Kpm Lisp package.

. Blackbox operation as atactical generator
. Bookkeeping functions
o Switching languages
o Establishing network connectivity
Inquiry default initialization
o Genera initialization
. Multilingual behaviour flags
. Development tools
o Linguistic Resource Loading Operations
o Generating the exampl e set
o Modifying the resources
o Saving the resources
. Using the mouseable structures for mousing and mark-up
o The structure produced
o Conditionalization of mouse sensitivity
o Specifying additional linksin the SPL: annotations
. Window startup functions

O

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node337.html (1 von 2) [11.12.2004 21:56:25]



Using KPML without the window interface

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node337.html (2 von 2) [11.12.2004 21:56:25]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Blackbox operation as atactical generator

next |jup ||previous ||contents []index

Next: Bookkeeping functions Up: Using KPML without the Previous: Using KPML without the

Blackbox operation as a tactical
generator

The standard kpvL function for initiating generation issay gif

gay {ogtcal-form-or-name kkey :details :full-structure

:language [function]

Logi cal - f or m or - nane must have as a value either the name (a symbol) of aloaded example
(Section 12.2.9) or an spL semantic specification. Generation proceeds for the language specified by
: | anguage, which defaults to the current language (which is always maintained in the global
variablecur | an).

If : det ai | s istrue, additional information about the generated structure and string are printed (at
the window interfaceif it is present, on * st andar d- out put * if not).

The result of the function dependsontheflag: f ul | - st ruct ur e. If thisflag isfalse, then only the
generated string is returned as result. If the flag is true, then two results are returned. The first isthe
string as before; the second is alist of string and "mouseable structure' pairs. The "mouseable
structure' is a structured representation of the generated string that follows the generated linguistic
structure. Precisely how closely it follows the generated structure can be fine-tuned by setting the
*nmouse-sensitive-constituents* and*nouse-sensitive-term nal s* variables
as described in Section 14.5. For applications with more complex requirements than simply echoing

the generated string, it will generally be the second value that is of more use.

If the systemic network connectivity for the requested language has not been established prior to the
call to say, it will automatically be established for that language before commencing generation (by
calling the functionr eset - syst em net wor k: Section 14.2.2).

If inquiry definitions have been loaded, but no defaults initialized prior to the call of say, default
initialization will be automatically triggered before generation proceeds (by calling the function i -
activat e-def aul t s: Section 14.2.3).

If the language selected by : | anguage represents a switch of language from that previously used
for generation, then the standard language switching actions will be triggered (see Section 7.11).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node338.html (1 von 2) [11.12.2004 21:56:30]



Blackbox operation as atactical generator

next |jup ||previous ||contents []index

Next: Bookkeeping functions Up: Using KPML without the Previous: Using KPML without the

ohn Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node338.html (2 von 2) [11.12.2004 21:56:30]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Bookkeeping functions

next |jup ||previous ||contents []index

Next: Switching languages Up: Using KPML without the Previous: Blackbox operation as a

Bookkeeping functions

. Switching languages

Establishing network connectivity
|nquiry default initialization

. Generd initialization

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node339.html [11.12.2004 21:56:33]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Switching languages

next |jup ||previous ||contents []index

Next: Establishing network connectivity Up: Bookkeeping functions Previous. Bookkeeping
functions

Switching languages

The command peveLoPMENT: <Set Language> isrealized by the Lisp function:

switch-language &key :language :load-patches [fynction]

This changes the current language to be : | anguage and, if : | oad- pat ches istrue, loadsin any
language specific patches for the new current language. Thisincludes inquiry implementations,
default orderings and punctuation. All are triggered by a function of the appropriate name being found
in the resource directory of the specified language.

Note, however, that if an example is defined for a unique language variety, then this language takes
precedence when generation of the example is attempted.

= John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node340.html [11.12.2004 21:56:36]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Establishing network connectivity

next |jup ||previous ||contents []index

Next: Inquiry default initialization Up: Bookkeeping functions Previous: Switching languages

Establishing network connectivity

Prior to using linguistic resources for generation, the connectivity of the defined systemic needsto be
checked and internal data structures representing that connectivity built up. Kemu usually re-
establishes connectivity prior to generation whenever new system definitions have been loaded. The
function to set up connectivity is:

resel-system-network &optional current-language [fynction]

Thecurrent - | anguage parameter, when set, restricts the resetting connectivity operation to the
current language. Otherwise connectivity is established for all languages known to kpmL.

* John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node341.html [11.12.2004 21:56:39]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inquiry default initialization

next |jup ||previous ||contents []index

Next: General initialization Up: Bookkeeping functions Previous: Establishing network connectivity

Inquiry default initialization

The sequence of operations to be performed to activate the necessary defaults for alanguageis as
follows. This can also be used if there is some suspicion that defaults are not being adequately set up
automatically.

1. Load the standard default configuration for the resource set with (| oad- properti es :set-
name) .

2. Load the macro and default definitions for the resource set with
(1 oad- spl -def aul t s- and- macr os :set-name) .

3. Activate those defaults and macroswith (m - act i vat e- def aul t s :language) for each
language present in the resource set for which generation is desired.

e John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node342.html [11.12.2004 21:56:45]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generadl initialization

next |jup ||previous ||contents []index

Next: Multilingual behaviour flags Up: Bookkeeping functions Previous: Inquiry default
initialization

General Initialization

The kpmL function

do-all-kpml-initializations [fynction]

provides a convenient way of performing all initializations that are required without doing any
generation. This could be used, for example, after |oading and before generating when giving a
demonstration.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node343.html [11.12.2004 21:56:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual behaviour flags

next |jup ||previous ||contents []index

Next: Development tools Up: Using KPML without the Previous. General initialization

Multilingual behaviour flags

Theinternal flags for controlling the behaviour of loading and saving operations are:

. *l oadi ng- savi ng- profi | e*: contains the objects that are effected during loading or
saving operations (cf. Section 5.6.2).

. *nl - savi ng- node* : should be either : nonol i ngual ,: contrasti ve,or
:mul tilingual inorderto parameterize the action of the saving functionsin the way
described in Section 5.9.1.

. *m -1 oadi ng- node* : should be either : nonol i ngual ,: contrasti ve,or

:mul tilingual inorderto parameterize the action of the loading functions in the way
described in Section 5.7.

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node344.html [11.12.2004 21:56:53]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Development tools

next |jup ||previous ||contents []index

Next: Linquistic Resource Loading Operations Up: Using KPML without the Previous. Multilingual
behaviour flags

Development tools

In this section some of the internal Lisp function calls for the multilingual operations supported by the
kpML window interface are given. This permits their embedding in further code and their use when the
window interface cannot, for some reason, be used. Unless otherwise noted, all functions and symbols
areinthe Kom Lisp package.

The sequence of operations that will be described are as follows:

1. loading aresource set,

2. generating the example set,

3. modifying the resources,

4. saving the modified resource set.

In the immediately following example, we set out how one can load a set of resources, generate
examples, use the example runner, and save out modified resources. This gives the minimal
information for using the system. In the sections following, more details of each of the available
functionsis given, providing for more sophisticated use approaching that reachable from the window
interface.

In this example, we presume that kemL has been installed, an appropriate set of resources are
accessible (viathevariableuser : : *r oot - of - r esour ces*), and we want to generate examples
in German. In this case, it is sufficient to type:

(in-package “EPMLY)
(load-linguistic-resources :german)

in order to load al the resources associated with the language variety German (including lexicons,
domains, grammar, examples, etc.). If these resources include an example called ‘Behr ens3', then
the function call:

(say ’'behrens3)

Is sufficient to generate this example. All bookkeeping such as establishing defaults and network
connectivity will be triggered automatically.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node345.html (1 von 2) [11.12.2004 21:56:57]



Development tools

. Linguistic Resource Loading Operations
. Generating the example set

. Modifying the resources

. Saving the resources

* John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node345.html (2 von 2) [11.12.2004 21:56:57]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Linguistic Resource Loading Operations

next |jup ||previous ||contents []index

Next: Generating the example set Up: Development tools Previous. Development tools

Linguistic Resource Loading Operations

A set of functionsis provided for loading linguistic resources. With these functions one can either
load an entire resource set or particular types of linguistic objects. The smallest granularity of concern
Is the grammatical region. The structuring of the loading functions can be envisioned thus:

load-linguistic-resources
load-propertises
load-grammar
load-Tregion
load-systems
load-chooaers
load=-inguiries
load-defaul t-orderings
load-punctuation
load-languages-patches
load-inguiry-impl ementations
load-domains
load-lexicons
load-sxamples
load-sgpl-defaults-and-macros
load-kpml -1g-specific-patches

All functions take as first parameter the name of the linguistic resource set from which they want to
load resources; e.g.:

(load-grammar :english) [fynction]

The functions operating on regions (i.e., | oad- r egi on, | oad- syst ens, | oad- chooser s, and
| oad- i nqui ri es) take an obligatory second parameter that identifies the region of concern.

When the loading mode is contrastive, the single variety name must be replaced by alist of variety
names.

Finally, all functions allow three further optional keyword parameters as follows:

load-linguistic-resources waricty-designation kkey
:root=directory :merge
:clear [function]
or

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node346.html (1 von 2) [11.12.2004 21:57:06]



Linguistic Resource Loading Operations

load-Tregion wvaricty-designation TEFiON kkey :root-directory
:merge :clear

The functions thus |oad the designated objects of the set of resources for language(s)

vari et y- desi gnati on (keyword or symbol) from the directory of the same name that is |ocated
under the specifed resourcer oot di r ect or y. The remaining keywords have the following
effects:

. :clear -whenni| noresourcesare cleared;
. . merge-whent resourcesareloaded in merging mode (Section 5.7.2.2); clearing is disabled
when this mode is selected.

The defaults are that resources are cleared and merging is not activated.

Following application of thel oad- | i ngui sti c-resour ces function, the current languageis
left set to the language of the last set of resources |loaded.

7 John Bateman -- GMD/IPS -- Darmstadt, Germany
! | mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node346.html (2 von 2) [11.12.2004 21:57:06]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generating the exampl e set

next |jup ||previous ||contents []index

Next: Modifying the resources Up: Development tools Previous: Linguistic Resource Loading
Operations

Generating the example set

The following function call activates the example runner.

(example-runner Examples-list
:data-file-name File)

This runs through the examples whose names are found in the Exanpl es- | i st writing the results
of generationinthefileFi | e.

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node347.html [11.12.2004 21:57:09]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Modifying the resources

next |jup ||previous ||contents []index

Next: Saving the resources Up: Development tools Previous: Generating the example set

Modifying the resources

Since all the resource definition forms as described in Chapter 12 are also Lisp expressions,

evaluating them in, for example, an Emacs buffer, or loading files containing them is sufficient to
modify the loaded resources accordingly. Note that if the resource patching capability is activated
(Section 11), then all evaluations/loading of systems, choosers, and inquiries successive to acall of

load-linguistic-resources will be marked as patches.

Patching can be activated from Lisp by pushing the symbol : r esour ce- pat ches onto the list
*| oadi ng- savi ng- profil e* and by setting theflag*i n-m -regi on* toT.

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node348.html [11.12.2004 21:57:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Saving the resources

next |jup ||previous ||contents []index

Next: Using the mouseable structures Up: Development tools Previous: Modifying the resources

Saving the resources

A set of functionsis provided for saving linguistic resources. With these functions one can either save
an entire resource set or particular types of linguistic objects. The smallest granularity of concernis
the grammatical region. The structuring of the saving functions can be envisioned thus:

gave-linguistic-resources
save-properties
BAVE—ET AMDAT

gave-Tegion
save-gystems

save—choosers
save-inguiries
gave—-default-orderings
save-punctuation
save-language-patches
save—lexicons
save—sramples
save—gpl-defaults-and-macros

Thisislargely the mirror image of the functions provided for loading, with the exception that
information that is not represented in some kPmL-specific, or systemic, form cannot be automatically
saved. Thusthereisno provision for saving inquiry implementations--since these are straight Lisp--
and nor for the domain model definitions--since these are represented in Loom. Finally, note that none
of these functions performs any other actions on the directory to which they are saving resources. It is
the user's responsibility when using these functions to ensure that new and old resources do not
become mixed.

Aswith loading functions, all saving functions take asfirst parameter the name of the linguistic
resource set from which they want to save resources; e.g.:

(gave-grammar :english)

The functions operating on regions (i.e., save- r egi on, save- syst ens, save- chooser s, and
save-i nqui ri es) take an obligatory second parameter that identifies the region of concern.

When the saving mode is contrastive, the single variety name must be replaced by alist of variety
names.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node349.html (1 von 2) [11.12.2004 21:57:16]



Saving the resources

In addition, all saving functions may take an optional keyword parameter : i nheriti ng-from
This permits the construction of new resource sets that are simply copies of the existing language

definition specified asthei nheri ti ng- f r om reconditionalized for the language given asfirst
parameter. For example,

(save-linguistic-resources :french :inheriting-from :english)

creates a new resource set definition, identical to that for language variety English, but conditionalized
for French. (See Section 5.9.3).

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpmi-1-doc/node349.html (2 von 2) [11.12.2004 21:57:16]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Using the mouseabl e structures for mousing and mark-up

next |jup ||previous ||contents []index

Next: The structure produced Up: Using KPML without the Previous: Saving the resources

Using the mouseable structures for
mousing and mark-up

Whenthe: ful | - structure parameter to say (Section 14.1) isset, alist of pairs of generated
strings and “mouseabl e structures' is produced as second result. These mouseable structures can be
used as the basis for mouse sensitive presentations of the string (as they are in the window interface)
or for establishing hyper-text links, etc. Such structures are also stored into the: st r uct ur e ot of
example records (cf. Section 12.2.9). The value of thisdot isactually alist of such structures,
corresponding to the fact that multiple results could be generated from a single input specification (if,
for example, the final ordering is not sufficiently well constrained to produce a single result).

. The structure produced
. Conditionalization of mouse sensitivity
. Specifying additional linksin the SPL: annotations

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node350.html [11.12.2004 21:57:19]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The structure produced

next |Jup [lprevious [|contents [Jindex

Next: Conditionalization of mouse sensitivity Up: Using the mouseabl e structures Previous: Using the
mouseabl e structures

The structure produced

The general form of a mouseable structure is as follows:

(PRI'N TABLE- CONSTI TUENT

I D a uni que | abel

CONCEPT correspondi ng concept

NCDE- TYPE either NIL or :termnal
ANNOTATI ON user defined
FUNCTI ONS list of grammatical functions
SPELLI NG | i st of subconstituents

The spelling slot's list of subconstituents is nmade up either of
strings, indicating no further represented substructure, or further
printabl e-constituent structures.

Each printable constituent node corresponds to sone node in the
grammati cal structure generated (but not vice versa: see below). The
functions slot contains the grammatical functions describing that
node, and the concept slot contains the semantics (if any) associ ated
with those functions. The annotation slot is intended for associating
arbitrary user provided information with part of the generated

| inguistic result (Section 14.5.3).

An exanpl e of a conplete nouseable structure is shown in Figure 14.1.
gif

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node351.html (1 von 3) [11.12.2004 21:57:35]



The structure produced

(AS(PRINTABLE-CONSTITUENT
CONCEPT LEAD-124525% NODE-TYPE NIL ANNDTATION NIL
FUNCTIDNS (SENTENCE)
SPELLING (#5(PRINTABLE-CONSTITUENT

CONCEPT DIFFER-124541 NOCE-TYPE NIL ANNOTATION NIL

FUNCTIONS (TODPICAL#1 CARRIERM SUBJECTH1)
SPELLING

(AS(PRINTABLE-CONSTITUENT
CONCEPT NIL SPELLING (“The ")
NOLE-TYPE :TERMINAL ANNOTATION NIL
FUNCTIONS (DEICTICR2))
RS(PRINTABLE-CONSTITUENT
CONCEPT DIFFER-124541 SPELLING (“"difference ")
NOLCE-TYPE :TERMIKAL ANNOTATION NIL
FUNCTIONS (THINGR2))))
AS(PRINTABLE-CONSTITUENT
CONCEPT 5T255-124527-124550-124556 SPELLING (“hae ")
NODE-TYPE :TERMINAL ANNOTATION NIL
FUNCTIONS (TEMPO1#1 TEMPDOR1 FINITER1))
A5 (PRINTABLE-CONSTITUENT
CONCEPT LEAD-124525 SPELLING ("led to ")
NODE-TYPE :TERMINAL ANNOTATION NIL
FUNCTIONS (¥OICE#1 TEMPDIDEPENDENT#1 CIRCUMSTANCER1

LEXVERER1 PROCESS#1])
RS (PRINTABLE-CONSTITUENT

CONCEPT BEHAVE-124542
SPELLING
(RS (PRINTABLE-CONSTITUENT
CONCEPT 51300-124543
SPELLING (“"eome ")
KODE-TYPE :TERMIKAL ANNODTATION KNIL
FUNCTIDNS (DEICTICR®3))
RS(PRINTABLE-CONSTITUENT
CONCEPT SCHIZDID-124548
SPELLING
(R5 (PRINTABLE-CONSTITUENT
CONCEPT SCHIZDID-124548
SPELLING ("echizophrenic ")
NOLE-TYPE :TERMINAL AKNNOTATION NIL
FUNCTIONS (QUALITY#43))
KODE-TYPE NIL ANKOTATIDN NIL
FUNCTIDNS (STATUS#3))
#S(PRINTABLE-CONSTITUENT

CONCEPT BEHAVF-124542
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node351.html (2 von 3) [11.12.2004 21:57:35]



The structure produced
HAOLFRIN LIADLE UMD L L LUEN L

CONCEPT BEEHAVE-124542
SPELLING ("behawiour ")
KODE-TYPE :TERMINAL ANNOTATION NIL
FUNCTIONS (THINGR3)))
NODE-TYPE NIL ANNOTATION NIL
FUNCTIDNS (DIRECTCOMPLEMENTR1 ATTRIBUTEM )
L}] - l1} j }

Fi gure: Exanple of nouseable structure for the sentence: "The
difference has |l ead to sone schi zophrenic behavi or'

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node351.html (3 von 3) [11.12.2004 21:57:35]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Conditionalization of mouse sensitivity

next |jup ||previous ||contents []index

Next: Specifying additional linksin Up: Using the mouseable structures Previous: The structure
produced

Conditionalization of mouse sensitivity

The mouseability of the resulting generated strings can be further tuned by the user as follows. Two
variables are provided that provide for conditionalization of mouse sensitivity.

. *nmouse-sensitive-constituents* cancontainalist of systemic features, i.e.,
features that occur in systemic networks. Whenever a constituent is generated possessing a
feature on thislist in its selection expression, then it will be made mouse sensitive.

. *nouse-sensitive-term nal s* cancontainalist of grammatical functions, i.e., the
functional labels of elements of structure. Thisis used for conditionalizing the mouse
sensitivity of terminal elements in the generated structure since these do not have any selection
expression--normally because they are lexical elements directly inserted into structure rather
than by being generated by atraversal through some systemic network.

In addition, both variables may takethevalues: al | or : none. Setting the former variableto: al |
means that all non-terminal constituents, regardless of their selection expressions, will be made mouse
sensitive; setting the latter variableto : al | meansthat all terminals, regardless of which grammatical
function that are realizing, will be made mouse sensitive. The : none options are in both cases
equivalent to setting the variables to the null list.

Since the structures supporting mouse senditivity are passed on to the user or application program,
they can form the basis for further mouse-driven options that an application can offer. For this
purpose, it may then be preferred to conditionalize the mouse sensitivity beforehand so that only
pruned structures need be processed by the application. The default setting for linguistic resource
development is that all constituents and terminals are made mouse sensitive.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node352.html [11.12.2004 21:57:38]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Specifying additional links in the SPL: annotations

next |jup ||previous ||contents []index

Next: Window startup functions Up: Using the mouseabl e structures Previous. Conditionalization of
mouse sensitivity

Specifying additional links in the SPL.:
annotations

KprmL providesthe seL keyword : annot at i on for specifying additional links between the generated
strings and user-given information. The value of the: annot at i on keyword for agiven spL termis
placed in the annotation slots of the constituents of the mouseabl e structure corresponding to the
realization of that seL term. This makes it straightforward, for example, to interpret the generated
strings as components of a hypertext, where the annotations specify hyperlink addresses or urLs: the
application need only to traverse the generated mouseabl e structure (Figure 14.1) and insert

appropriate markup when a hyperlink annotation is found on some node.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node353.html [11.12.2004 21:57:42]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Window startup functions

next [[up [lprevious [Jcontents |[index

Next: Faster Generation Up: Using KPML without the Previous: Specifying additional linksin

Window startup functions

Theindividual Lisp functions for starting up the main new-style kpmL interface windows are as follows.
Each takes an optional parameter which, when set (T), causes any existing instances of the relevant
window to be replaced. If unset, a new window is created only when there is no such window already
existing. The default is always that no replacement occurs. Only the first two functions would normally
be of relevance for auser: particularly for restarting interface windows if they become broken.

kEpml-i: :atartup-resource-devel opment-frame Eoptional reset
[function]

Starts up the resource devel opment window as described in Chapter 7.

kEpml-i: :startup-resource-inspsctor-frams Eoptional reset
[function]

Starts up the resource inspector window as described in Chapter 6.

The remaining functions would only be of use for further interface extensions or tighter integration into
applications.

kpml-i: :startup-cumulative-gh-frame Eoptional reset [function]
Starts up a cumulative generation history frame as described in Section 7.5.5.

kpml-i: :startup—fat—frame Eoptional reset [function]
Starts up afunction association table display window as described in Section 7.5.2.13.

Epml-i: :startup-gensration-history-frame &optional reset
[function]

Starts up a generation history window as described in Section 7.5.2.2.

kpml-i: :startup-a-traversal—frame |fnction]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node354.html (1 von 2) [11.12.2004 21:57:48]



Window startup functions

Brings up a dynamic network traversal display window as described in Section 7.7.2. Successive calls to
the function bring up new windows.

kEpml-i: :startup-a-results-vindow [function]

Starts up aresults display window; this contains will show the last generated string if any. Display
respects the normal results of generation flags as described in Section 7.10. Successive calls to the

function bring up new windows.

Finally, the following function starts up the main root kemL window only if one does not already exist.

kpml-i: :startup-resource-managensnt-frame [function]

Forcing the creation of a new window can be done using the standard user startup function (kpni -
| ::startup: Section 5.2).

John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node354.html (2 von 2) [11.12.2004 21:57:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Faster Generation

next Jjup |lprevious [Jcontents []index

Next: Strictly Monolingual Generation Up: No Title Previous. Window startup functions

Faster Generation

KpvL maintains very extensive information during generation which is used for the many options provided for inspecting the
process and results of generation. It aso provides for the interpretation of multilingual resources throughout. These features
result in a certain run-time overhead which reduces the speed of generation. Thisis usually not a problem when debugging
and maintaining resources. However, if the resources are to be used simply for generation and are considered, for some
purpose, sufficiently debugged, then it can be desirable to have as fast a generation process as possible. The ideal solution
here would be to have a dedicated kernel generator for systemic resources that takes the basic generation algorithm (as
described, for example, in Matthiessen & Bateman , pp100-109), implementing this in a run-time efficient manner and
programming language. All of the debugging and maintenance overheads could then be spared. Unfortunately, such a kernel
generator is not yet available.

As an interim solution, however, the methods described in this chapter can be adopted. These significantly increase the speed
of generation with kpmL at the cost of partially disabling the debugging facilities and, for one method, fully disabling
multilinguality. On faster machines short texts of 10-15 sentences can be generated in afew seconds: generally fast enough
for demonstration purposes.

Several different methods can be combined to reduce generation time. These are detailed here since they have differing side-

effects, some of which may be important for particular applications. The main methods are: gif

. deactivation of multilinguality,
. knowledge-base package reduction,
. compilation of the inquiry implementations.

Having the window interface active also brings a small run-time overhead that can be avoided by not bringing the interface
up.

The approximate improvements in generation time that these methods achieve are indicated by examplein Table 15.1. This

table shows the average generation time gif on various machines for the following sentence, which is example Reut er s1
from the 1SI Reuters example set for the Nigel grammar:

“"The European electronics industry has made alot of noise in public about keeping Europe safe from Japanese
competitors, but in private they are saying that if you can't beat them, you should join them."

The particular quirks and side-effects of these speed-up methods are described in the following sections.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node355.html (1 von 3) [11.12.2004 21:57:55]



Faster Generation

KPML Running on machine

configuration || Sparcbook 3 [Ta.clpc-lf_ﬁ Sun Sparc 10

MO | PR | ci || (32Mb RAM; ACL4.2) | (48Mb RAM,; ACL4.2)
— - | - 15.Rs i.bs
-+ - - 16.is b.Wa
- — -+ f.1a
-+ - | + h.1s
- -+ - 11.0s 4.ba
— -+ + 3.8s

Key. MO: KPML running abeiclly mono-
linpually; PR: KFML runoing with packape
reduclion; ¢I: KPML runping wilh compiled
quiries,

Table: Timingsfor differently configured KPML generation

A general speed-up can also be achieved by compiling kemL with non-default values for the compiler flags of the Lisp system
used: for example, by setting the speed flag to 3. When creating a generation server or demo system, for example, where the

resources used are fully debugged, compilation can be redone with the compiler flags set according to: gif
(proclaim' (optimze (speed 3) (safety 1) (space 0) (debug 0)))

Al'l timngs shown in Table 15.1 were made with the default options (safety: 1,
space 1; speed 1; debug 2). An exanple of the speed-up possible for the reurersl
exanpl e sentence is from 13.5s (full nonolingual keme running on a Tadpol e Spar cbook
3, 32MB RAMwith ACL4.3) to 12.2s under the sanme configuration but with the non-
default conpiler flag settings. Conpiling the inquiry inplenmentation with speed at
3 then brings the generation tine down further to around 9s w thout any | oss of

mul tilingual functionality. Invoking the other speedup nethods results in a
generation tinme of around 7.5s.

Simlarly, the German exanpl e Bexrens4, whi ch produces the two strings:

1890 studierte er bei Kotschenreiter in Mienchen und war 1893 ein

M t begruender der Muenchner Sezessi on.

1890 studierte er in Mienchen bei Kotschenreiter und war 1893 ein

M t begruender der Muenchner Sezessi on.

(I'n 1890 he studied with Kotschenreiter in Minich and in 1893 was a co-
founder of the Munich Secession)

i s speeded up under the same change in configuration details from®6.25s to 5. 25s,
sinply by changi ng the speed conpiler flag.

. Strictly Monolingual Generation
. Knowledge base package reduction

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node355.html (2 von 3) [11.12.2004 21:57:55]



Faster Generation

. Compilation of inquiry implementations

next [Jup [lprevious ||contents |]index

Next: Strictly Monolingual Generation Up: No Title Previous: Window startup functions

| John Bateman -- GMD/IPS -- Darmstadt, Ger many
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node355.html (3 von 3) [11.12.2004 21:57:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Strictly Monolingual Generation

next |jup ||previous ||contents []index

Next: Knowledge base package reduction Up: Faster Generation Previous. Faster Generation

Strictly Monolingual Generation

In order for this method to be applied, kPmL must be configured for a single language and the
resources for that language must be loaded. This can also be achieved by setting the variable

al | | anguages to alist containing just the desired language, e.g., (: dut ch) . This establishes an
internal representation where most of the possible language conditionalizations do not occur. Then,
setting theflag *r i gi dl y- nonol i ngual * to anon-nil value (e.g., T) will disable multilingua
conditionalization interpretation. Thiswill, of course, fail gracelessly if attempted with resources
containing multilingual conditionalizations, so it is essential that the above configuration step be

carried out.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node356.html [11.12.2004 21:57:58]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Knowledge base package reduction

next Jlup [lprevious [|contents []index

Next: Compilation of inquiry implementations Up: Faster Generation Previous. Strictly Monolingual
Generation

Knowledge base package reduction

The kpvL access function for checking knowledge base subsumption relationships (kb- super p) that
is provided for Loom allows knowledge base concepts to reside in any Lisp package (as long asthe
function knows which). It's definition includes a considerable number of callsto the Lisp function

I nt er n which isfairly slow. This can be avoided by placing all knowledge base conceptsin asingle
package. Further speed-ups can be achieved by simplifying the kind of concepts that are in fact sought;
John Wilkinson provides the following comment in his speed-up code:

“using evaluate-identifier instead of find-concept or find-relation saves considerable
time by not checking for Loom extended identifiers (identifiers which contain the
context name and concept name, separated by a " *). Some users may desire to use this
feature, so perhaps a parameter should be included which is checked initially to
determine if find-concept should be used instead."

At present no such parameter is provided and so users placing their domain concepts in various
packages should probably inspect their re-definitions of kb- super p to see how much of this speed-
up method can be applied in their bown cases.

This kind of speedup can be installed by calling the function kb- package- r educt i on-
speedup. Note that this is a destructive operation and it is not then possible to return to a non-
speeded-up configuration without restarting kpPmL.

The basic knowledge base package reduction method, which places al known Loom concept and
relation symbolsin the Kpml package, can be activated by calling the function kpml : : updat e- kb-
package-r educt i on. Thisfunction should be called whenever new concepts/relations in differing
packages have been loaded. Note that this function does not exist unless in package reduction mode.

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node357.html [11.12.2004 21:58:01]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Compilation of inquiry implementations

next |jup ||previous ||contents []index

Next: Establishing and using a Up: Faster Generation Previous. Knowledge base package reduction

Compilation of inquiry implementations

Thisisthe ssimplest method: all inquiry implementations used should simply be compiled in the usual
manner and then loaded into the Lisp environment directly from a Lisp listener. Note that kPmL never

loads compiled inquiry implementations itself, since this makes the source definitions of the inquiries
difficult to inspect.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node358.html [11.12.2004 21:58:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Establishing and using a generation server

next |jup ||previous ||contents []index

Next: Creating a KPML generation Up: No Title Previous: Compilation of inquiry implementations

Establishing and using a generation
server

When used with Allegro Common Lisp (version 4.2 and newer under Unix), kpvL includes basic
methods for creating a generation server that can accept input specifications from other processes and
return the generated string to those processes. The basic functions are described here, although it is

still likely that particular applications of these methods will need to be tailored individually ell

This chapter describes the basic method for creating akpvL generation server, basic methods of for
creating a Lisp kpmL client, and an example usage of such aclient: providing semantic generation as a
World Wide Web server.

. Creating a KPML generation server
. Creating aKPML client from Lisp
. Anexampleof aKPML Lisp client: aWWW-KPML server

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node359.html [11.12.2004 21:58:13]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Creating aKPML generation server

next |jup ||previous ||contents []index

Next: Creating a KPML client Up: Establishing and using a Previous: Establishing and using a

Creating a KPML generation server

Starting akpvL server is done by configuring and starting kpmL as required, and then issuing the
function call:

(kpm ::start-kpnl-server)

Thi s establishes a connection to a Unix port: the host and the port
nunber are left in a file identified in the variable kpm::*com
file*. This takes by default the value of the variable

kpm :: *default-comfile*, initially set up as the file:

<user - honme-di rectory>/ Kpm Com t np

This communication file is deleted when the kpm server 1s cl osed;
the exi stence of the file can therefore be used as a test as to
whet her a kpm. server 1S running or not.

Note that for a server it wll normally be the case that the w ndow
interface is not |oaded or started (see the relevant installation
steps in Chapter 3) , and that sone set of the speedups described in
Chapter 15 will have been activated. Oherwi se the server will have
sl ower than necessary response tine.

The server start-up function takes an addition optional paraneter
which, if set (T), initiates |ogging of the server's operations. The
file name is created by appending the date and tine to the string
held in the variable kpm::*kpml -log-file*. This is initially by
default the string "/tnp/kpm -10g”. An exanple is therefore the
follow ng: "/tnp/kpm -1 0g-19960811-140247".

It is also possible to create keme Li sp i mages which are specifically
for acting as servers. This is done by a call to the Lisp function:

kpml: :make-kpml-gerver-image Sefver-name [ fynction]

The function call creates a Lisp inage containing the current
generation functionality. Wen started fresh fromUni x, the
resulting image wll automatically start up a kpme server that is

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node360.html (1 von 2) [11.12.2004 21:58:17]



Creating aKPML generation server

ready to process client requests. The server image as called from
Uni x takes two optional command |ine paraneters:

-f introduces a file nane that is to be used as the

comruni cation file identifying the server host and port nunber
(see above); this sinply sets the value of the variable

kpm ::*comfil e*;

-l specifies that | ogging should proceed; possible val ues of
the paraneter are T (indicating |ogging should proceed to the
default place: see above) or a file nane prefix to be used as
the value of kpm::*kpm -log-file* (see above).

Thus, as an exanple, after issuing fromLisp the function call:
(kpm :: make- kpml -server-image "/tnp/ kpm -server™)
It 1s then possible to give as a Uni x command commands such as:

1. kpml - server

2. kpm -server -f /tnp/ ConFile

3. kpm -server -f /tnp/ConFile -1 T

4. kpm -server -1 /hone/fred/ ny-kpn -1 og

Note that the server inmage wll not | oad any additional patches or
sitel/user-specific information: it is an exact copy of the
functionality of kem at the point when the inmage is created and is
not subsequently altered in any way.

next |jup ||previous ||contents []index

Next: Creating a KPML client Up: Establishing and using a Previous: Establishing and using a

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node360.html (2 von 2) [11.12.2004 21:58:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Creating aKPML client from Lisp

next [fup ||previous ||contents index

Next: An example of a Up: Establishing and using a Previous: Creating a KPML generation

Creating a KPML client from Lisp

This section describes how to establish axpmL client from Allegro Lisp. Clients from other types of
process can be defined in the individual ways each programming environment allows for accessing Unix
ports. The Lisp kpmL client is created by loading into arunning Lisp image the file: <kpmL root directory>
| PROCESSES/ server/client.lisp

No other kpmL-specific files are necessary.
The most basic way of then connecting the client to akpmL server is by issuing the call:
(kpm ::start-kpm -client)

This returns a streamto the port identified in the global variable
kpm ::*comfil e*.

| nformati on can then be sent to this streamusing ipc::send-to-socket--
a function of two argunents, the itemto be sent and the stream The
function returns the value returned fromthe server.

SpL specifications can be sent to the kv server with the function call:
(kpm : :server-say-string <SPL> stream). This returns the string
generated by the server in response to the s, or, if generation failed
for sone reason, the string "t

For nore sophisticated use of the kem server, the following formis
provi ded.

kpml:with-server-access (&key :gtream :com—-file :language :close-stream
:terminals :constituents) &krest body

[ macr o]

Thi s provides a program body wi thin which various kem server-specific
vari abl es are bound, including variables determ ning the | anguage in
which the server is to generate, and the degree of structure preserved
in the resulting strings generated (cf. Section 14.5). The form
normal ly starts a connection to the kv server identified by the com
file (which defaults to the default communication file described above)
and cl oses that connection when the formis finished. The keyword
paraneters :termnals and :constituents allow values to be set for the
gl obal kem. server variabl es *nobuse-sensitive-term nal s* and *nouse-
sensitive-constituents* (Section 14.5.2) respectively.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node361.html (1 von 3) [11.12.2004 21:58:23]



Creating aKPML client from Lisp

The :stream keyword paraneter can be used to maintain a single server
session. A new server session is only started when the :stream
paraneter is nil; otherwi se, this paraneter should contain a stream for
a kpme server. Such a stream can be obtained either by the function

kpm ::start-kpm -client or by setting the :close-stream paraneter for
the with-server-access formto nil. \Wenever this latter paraneter is
not set, the formas a whole returns the server streamused within its
body--regardl ess of this was for a newy created server connection or
was passed in at the outset as the value of :stream

Wthin the scope of the with-server-access form server-based
generation can be triggered by the function kpm :say. This takes one
obligatory argunent, an SPL formfromwhich to generate or an exanple
nane. The result of the function call is the full presentation
structure described in Section 14.5. The declaration of the function is

as foll ows:

Epml:say &key :stream :com—file :language :sgtream :m-terms
:m—-consts [ function]

The default val ues of the keyword paraneters are taken fromthe val ues
established by the with-server-access form Thus, another way of
sending an SPL to a keme server and doing sonmething with the result is
t he fol |l ow ng:

(kpml:with-server-access ()
(print
(kpml: zay <SPL-form>)))

Normal ly there is nore to be done within the scope of the access to the
server than sinply printing out the structure of course; an exanple is
given in the foll ow ng section.

The current | anguage of the server and the presentation structures can
be further altered within the body of the with-server-access form by
the foll owm ng functions:

kpml: get-mouse-sensitive-constituents conststwemt-fist [ ynction]
kpml: set-mouse-sensitive-terminals termenal-fist | fynction]

kpml: set-language {engucge-vericly [function]

It is also possible to interrogate the server concerning the exanpl es
it currently has | oaded and the | anguages for which the server is
configured. The first is retrieved by neans of the function call:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node361.html (2 von 3) [11.12.2004 21:58:23]



Creating aKPML client from Lisp

(kpm : get-kpm -example-list); this returns the full example list. The
second is retrieved simlarly by the function call: kpnl:get-I|anguage-
range.

Finally, the follow ng function provides client access to the full
exanpl e records produced during generation (cf. Section 12.2.9). This

is probably only useful for clients that also attenpt to perform sone
resource devel opnent and/ or nmi ntenance; for normal applications the
results of the kpm :say function should be sufficient.

kpnl: :get~full-szample-structure sp/ &key :language :n-consts
:0-terng :gtreal [ functi on]

The result returned is the structure record structure.

next [fup ||previous ||contents index

Next: An example of a Up: Establishing and using a Previous: Creating a KPML generation

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node361.html (3 von 3) [11.12.2004 21:58:23]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

An example of aKPML Lisp client: aWWW-KPML server

next |jup l|previous [Jcontents |lindex

Next: References Up: Establishing and using a Previous: Creating a KPML client

An example of a KPML Lisp client: a
WWW-KPML server

This section gives a simple example of using the facilities for creating Lisp clientsfor akpmL server.
The exampleis artificially simple, but nevertheless serves as an illustration of certain techniques that could
be applied more generally. The code shown here makes available a World Wide Web-based server for
converting semantic specifications into corresponding strings. The strings are displayed when the user
submits an form containing an SPL expression to the server. The WWW.-facilities are provided by the MIT
Common Lisp hypermedia server (cL-HTTP Mallery ).

We assume that a multilingual kemL server has been established and is running. We call the server kpm -
server.

We assume further that a Lisp image including the cL-HTTP Server is available. Rather than install the entire
CL-HTTP System on top of kpmL, or the entire kpmL System on top of cL-HTTP, we make use of the kPmL
server-client functionality in order to create a small kpmL client that can be loaded into the cL-HTTP server.
The resulting program (which we will call ww\«+ kpm ) provides the service of generating strings from
semantic specifications to the web, but does so by sending requests to the separate kpmL server. This
configuration is shown graphically in Figure “client exampl€'; the file <kpwvL root directory>

| PROCESSES/ ser ver / ww«+ kpmi . | i sp contains the code described below.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (1 von 5) [11.12.2004 21:58:41]



An example of aKPML Lisp client: aWWW-KPML server

KPML

|
WWW browser 1@+ CL-HTTP multic
WWW-KPML € lingual

server

Figure: Program configuration of the example WWW server

The precise functionality of the provided web server is somewhat trivially to accept selections from the
available SPL examplesfor alanguage (in this case German) and to present the generated string back to
the user. The main code is accordingly straightforward and consists of three components: (i) a method that
creates the HTML form which accepts user requests for generation, (ii) aresponse method that is activated
whenever the user submits the generation form, and (iii) a declaration to the web server of where the
generation form isto be located---i.e., which URL the generation form isto have. (N.B., thiscodeis
adapted directly from John Mallery's CL-HTTP dynamic forms examples. The example shown was run
with CL-HTTP version 58.12, ACL 4.2 and Netscape 3.0.).

The first component is the most complicated of the three and is as follows. Most of the content of the
method is concerned with setting up the HTML appropriately for the displayed webpage. The

(def met hod COVPUTE- GENERATI ON- REQUEST ((url url:http-forn) stream
(W t h-successful -response
(stream :htm :expires (url:expiration-universal-time url))
(htm :with-htm -docunent (:stream stream
(htm :w th-docunent-preanble (:stream stream
(htm : decl are-base-reference url :stream strean)
(htm :declare-title "KPM. generation server" :stream stream)
(kpm :w th-server-access (:|anguage :gernman)
(htm :w t h-docunent - body (:stream stream

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (2 von 5) [11.12.2004 21:58:41]



An example of aKPML Lisp client: aWWW-KPML server

(htm :w th-section-heading ("KPM. generation server" :stream stream
(i mage-line :stream strean)
;; Make a formcontaining the avail able exanples as a nenu. .
(htm:with-fillout-form(:post url :stream stream
(htm :w th-paragraph (:stream stream
(wth-rendition (:bold :stream stream
(fresh-line stream
(wite-string "SPL exanples: " stream)
(htm :accept-input
"htm : sel ect-choices
" CHO CES"
:choi ces (mapcar # first (kpm:get-kpm -exanple-list))
s defaul t
*gener ati on-requests* :sequence-p t :stream strean))

;7 When there are exanples to generate, do so..

(htm :w t h-paragraph (:stream stream
(loop for exanple in *generation-requests*
do
(htm :w th-paragraph (:stream stream
(format stream"~A: " exanpl e)
(with-rendition (:bold :stream stream
(wite-string (caar
(kpm : say
(intern
(string-upcase exanpl e)
"PENMAN")))
stream))))
(subm t-and-reset-buttons strean))
(image-line :stream strean)
(cl-http-signature stream))))))

The second component simply picks up the example selections that have been made by the user and
regenerates the web page of the original form:

(def met hod RESPOND- TO- GENERATI ON- REQUEST

((url url:http-form stream query-alist)

( bi nd- query-val ues

(choi ces)

(url query-alist)

(let ((*generation-requests* choices))
;; generate another version of the formw th the new val ues.
(conput e- generati on-request url stream)))

Finally, the generation form and the response method are declared to the web server and allocated a URL.

(export-url #u"/kpm/generation-formhtm"
:htm - conput ed-form
:formfunction # conpute-generation-request
cexpiration ' (:no-expiration-header)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (3 von 5) [11.12.2004 21:58:41]



An example of aKPML Lisp client: aWWW-KPML server

:response-function # respond-to-generation-request
- keywords ' (: kpm :generation :denp)
- docunent ati on "KPM. exanpl e WAWV server deno.")

An example of the generation server in useis given in Figure "WWW exampl€'. This shows the state of the KPML server
web page after the user has selected some examples and clicked on submit.

1 71 Netscape: KPML generation server
File Edit View Go Bookmarkz Oplionz Directory Window He
o | nl @ 2 &l a
Back | Home Frelosd Gpen | Frnt | Find

..................................................................................................................................

Locafion: EIhttp:Hen.nEpE.daHnstadt.grrd. de: 8000/ kanl rgener at i on=f orm. html

Whats Hew?| What's Cool? | Destinations | Net Search| People| Software |

KPML generation server

|MINI-PP1
IMINI-NG2
IMINI-NG1
IMINI-ADV
zEMEDIUM

SPL examples: | IN EXTENT hd

NEBEN: Behrens schuf bedeutende Monumentalb-auten neben
zahlreichen Fabriken .

NACH: Der Grossherzog berief nach Darmstadt Behrens .

INMITTEN: Das eingeschossige Gebaeude liegt inmitten der
Gruenflaechen und der Baumgruppen .

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (4 von 5) [11.12.2004 21:58:41]



An example of aKPML Lisp client: aWWW-KPML server

Figure: Example generation server in use

Clearly, very much more complicated (and useful!) servers could be readily constructed with the client
functions defined above.

John Bateman -- GMD/IPS -- Darmstadt, Ger many
»=v] mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (5 von 5) [11.12.2004 21:58:41]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Information display modes and corresponding internal flags

next |jup ||previous ||contents []index

Next: Modes and internal flags Up: No Title Previous. References

Information display modes and
corresponding internal flags

When running in teletype mode, without the benefit of the window interface, it is necessary to
control the amount of detail given during tracing by means of the actual flags maintained within the
system. These are the flags the mode option menus set internally. The flag names are listed below in
Section A so they can be used directly from aLisp listener. Thevalue ni | isunset, thevaluet set.

All the flag variables are in the Lisp package kpml.

A further list of flags and internal variables useful for some debugging situationsis givenin
Section A.1. Thislatter list includes someinternal flagsthat are not available from a user menu.

These areflagsthat are morefor internal system debugging than resour ce debugging, although
they might prove useful in exceptional circumstances. | n addition, some other resour ce
debugging possibilitiesthat have not yet been incor porated in the user interface are also given
below.

A third list given in Section A.2 contains those internal variables that control the various modes for
loading and storing linguistic resources as described in Section 5.7.2.2.

Finally, Section A.3 lists some of the global variables that might impact on the kPmL user.

. Moredetailed tracing and display modes
. Loading and storing modes
. Miscellaneous global variables

9 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node364.html [11.12.2004 21:58:47]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Modes and internal flags

next Jlup [lprevious [Jcontents |lindex

Next: More detailed tracing and Up: Information display modes and Previous. Information display
modes and

Modes and internal flags

The format of these descriptionsis: first the name of the mode as it appears in the mode menu, then a

brief description of the function of the flag, and finally the name of the flag itself gif

Create Boundary At All Choosers:
Allows manual choice of several convenient debugging tools whenever a chooser is reached.
create-boundary-at-all-choosers-flag

Store Implemented Values | nto Example Record:
Stores implemented value into an example record, queries if example record value aready
exists. domain-implemented-val ue-compare-flag

Make New Choosers:
If an entered system has no chooser allows you to specify one. make-new-choosers-flag

Manual Guidance For Entailed Inquiry Responses:
Allows choice between the entailed response, the environment's response or a new value.
manual-guidance-flag

Realize Selectively:
Allows option of realizing or skipping each grammar constituent. realize-selectively-flag

Show Associations:
Prints the association table at the end of each pass throught the grammar. display-association-
flag

Show Cautions:
Prints Cautions in lisp listener window. show-cautions-flag

Show Constituent Starts:
Prints what function bundle is being realized at the start each pass through grammar. show-
constituent-starts

Show Dependency Choices:
Prints the systems ready for entry and the system entered. show-dependency-choices

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node365.html (1 von 3) [11.12.2004 21:58:54]



Modes and internal flags

Show Disabled Systems:
Prints names of any disabled systems that would have been entered had they not been disabled.
* show-disabled-systems-flag*

Show Hubname Selection-Expression Discr epancy:
Choice of rglecting arun if its values differ from environment, otherwise retains run. show-
hubname-discrepancy-flag

Show Immediate Realizations:
Prints each realization operator asit isinvoked. show-immediate-realizations-flag

Show Lexical Selections:
Prints information on how each lexical item is chosen. show-lexical-selection

Show Ordering Constraints:
Prints ordering constraint information when computing orderings. ordering-dump-flag

Show Ordering Events:
Prints each ordering relation as it isinserted in ordering relations table. show-ordering-events-
flag

Show Ordering Results:
Prints each function structure and its resultant ordering. show-orderings

Show Pledges:
Prints each pledge realization operator asit is invoked. show-pledges-flag

Show Entailed Inquiry Response:
Prints message whenever aresponse to a query operator entailed by preselection is used. show-
preselected-response-flag

Show Preselections:
Prints the preselected grammatical features at the start of each pass through the grammar. show-
preselections-flag

Show Selection Expression:
Prints the grammatical feature selections at the end of each pass through the grammar. show-
sel ection-expression-flag

Show System And Inquiry Activity:

Displays System, System Choice, Inquiry Question, and Inquiry Response Activity. Also the
changing entries in the Function Association Table when running english-trace-flag

Show Why System | s Entered:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node365.html (2 von 3) [11.12.2004 21:58:54]



Modes and internal flags

Prints the feature that caused a particular system to be entered. show-why-system-is-firing-flag

Single Step:
Pauses after each query, prompting the user to hit the end key to continue. stop-action-flag

Realize until constituent number:
Expects a positive integer as value; the system will then pause during generation when a
constituent of the specified number is reached and offer the user the opportunity of setting
generation display flags (either in abreak if the window interface is not present or with the
usual menu as described in Section 7.5.2). The number of a constituent can be read directly

from the output form of the grammatical functions: e.g., the grammatical function FI NI TE45
was generated during the 45th. cycle through the grammar. * trace-this-constituent*

Update Example Record:
Stores user responses to the example record if not in Verify Every Response mode. store-to-
environment-flag

Note that in order to collect the inquiry responses one needs also to set the variable
Domai n- | npl enent ed- Val ue- Conpar e- Fl ag to T. This occurs automatically when
this option is selected in the window interface.

Stop On Warnings:
Invokes the debugger whenever awarning occurs. warning-stop-flag

Verify Every Response:
Asksif an environmental responseis ok or if auser response should be stored to the
environment. manual-response-mode-flag

next Jlup [lprevious [Jcontents |lindex

Next: More detailed tracing and Up: Information display modes and Previous: Information display
modes and

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node365.html (3 von 3) [11.12.2004 21:58:54]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

More detailed tracing and display modes

next [Jup [lprevious ]|contents |Jindex

Next: Loading and storing modes Up: Information display modes and Previous. Modes and internal
flags

More detailed tracing and display
modes

The following variables a so provide enhanced debugging facilities; they may be incorporated at some
stage in general menu options available from the user interface directly.

*traced- syst ens*
- contains alist of systems and provides details during generation for the specified grammatical
system analogous to that produced for all systems when Show System and Inquiry Activity is
Set.

*Inquiries-to-pause-upon*
- contains alist of inquiries; when execution of any inquiry on the list is required, the system
enters the debugger and gives control back to the user.

*show- | exi cal - sel ection-fl ag*
- eithert orni | ;whent moreinformation isgiven during lexical selection, including the
domain concepts investigated for possible sources of lexical information, etc.

*show- nor phol ogy-sel ecti on-fl ag*
-ethert ornil ;whent moreinformation is given during morphological selection, including
the complete constraints given from the grammar and those which are considered relevant for
morphology.

*show- | oadi ng-acti ons*
-ethert ornil ;whent the system reports on each linguistic unit being loaded plus some
diagnostics concerning the status of that loading.

*show- ner gi ng-acti ons*
- either ni | or alist; depending on the members of the list the system reports on its attempts to
merge newly loaded linguistic units with previously existing ones. If the list contains the
symbol : syst ens, then details of merging systems are given,; if the list contains the symbol
: chooser s, then details of merging choosers are given; if the list contains the symbol
;1 nqui ri es, then details of merging inquiries are given; and if the list contains the symbol
. | exenes, then details of merging lexical items are given. These symbols can, of course, be
used in any combination. Information is given as to whether the newly defined unit completely

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node366.html (1 von 2) [11.12.2004 21:59:00]



More detailed tracing and display modes

replaces previoudy existing units, whether language gaps have been created, whether merging
was not possible, etc. This flag can aso be used in conjunction with the following * st ep- by-
st ep- ner gi ng- behavi or * for selectively giving very fine detail.

*st ep- by- st ep- ner gi ng- behavi or *
- eithert or ni | ; intended primarily for internal system debugging since it presents the finest
granularity possible of kpmL merging behaviour. The valuesidentified as
KPML>MERG NG ARG LI ST are the successive parameters that are collected for passing to
theinternal function mer ge- | x. The valuesidentified as KPM_>MERA NG RESULT are the
results of merging for the given parameters. If problems are suspected with the merging, abug
report should be sent containing the values printed with this flag set for the linguistic units
where the result of merging isin doubt.

*exanpl e- di spl ay- desi r ed- node*
- eithert or ni | ; toggles the information displayed in the menu for selecting an spL for
generation brought up by the Generate Sentence command. When t the desired sentenceis
displayed, asgiveninthe: engl i shf or mslot of the example. Otherwise, the actually
generated strings are shown.

*exanpl e-di ff erences- node*
-ethert ornil ;whent only s,.swhose actually generated strings differ from their desired
results (asindicated inthe : engl i shf or mslot) are offered for generation under the Generate
Sentence menu. The comparison is simple string comparison. An example use of thiswould be
to load a set of examples, use the example runner to run through all seLs, and then to inspect
those spLs that did not generate as expected.

suppl enment - presel ections-fl ag
-eithert orni |l ;whent theuserisasked prior to the generation of each grammatical unit
whether additional preselections are to be considered active for that unit.

next [Jup [lprevious J|contents [Jindex

Next: Loading and storing modes Up: Information display modes and Previous. Modes and internal

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node366.html (2 von 2) [11.12.2004 21:59:00]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading and storing modes

next |jup ||previous ||contents []index

Next: Miscellaneous global variables Up: Information display modes and Previous. More detailed
tracing and

Loading and storing modes

*mer gi ng-active*
- eithert orni | ; whent newly loaded resources are merged with existing resources rather
than overwriting them.

*acquire-1lexical-itens-node*
- eithert orni | ;whent undefined lexical itemsmentioned in: | ex or : nane sotsin spL
expressions are created on the fly (cf. Section 5.9.4). Such newly created lexical items are

recorded onthelist * new-| exi cal -i tens*.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node367.html [11.12.2004 21:59:04]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Miscellaneous global variables

next |jup ||previous ||contents []index

Next: Data Access Functions used Up: Information display modes and Previous: Loading and storing

modes

Miscellaneous global variables

There are several global variables functioning as flags and switches for controlling the behaviour of
kPML that are in addition to the tracing and debugging flags shown above. Many of these are not
available directly from menus. This section gives alist of those that might occasionally impact on the
user of kpmL, including those that enable the system's behaviour to be customized somewhat
according to individual preferences or needs.

Thefollowing variables are inthe user Lisp package.

*root - of - resour ces*
Maintains the directory that currently serves as the root of all linguistic resource definitions for
the language varieties being developed or used.

*kpm - pat hnane- def aul t *
Maintains the root directory of the kPmL system.

*| oom pat hnanme-defaul t*
Maintains the root directory of the Loom knowledge representation system (which must have
been previously compiled if it isto be used). Loom 2.0 and 2.1 are supported as default by the
present release of kPML.

*kpm - bi nari es-root*
Maintains the root directory for the placement of binaries produced when kpmL is compiled.
Thisisnormally set by the installation process transparently to the user, but can be usefully
manipulated if required. A value given to thisvariable prior to installing kemL will take
precedence over the kpvL default.

Thefollowing variablesareinthe kpm Lisp package.

conpl exi ty- maxi num
This contains an integer that limits the number of constituents that will be generated for a
given call to the generator. Its purpose isto avoid erroneous infinite regressions. It's default
value for Penman releases was 40; for kpmL releases this has been increased to 100 since when
morphology isincluded it is very easy to have more than 40 constituents present.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node368.html (1 von 3) [11.12.2004 21:59:10]



Miscellaneous global variables

al | _| anguages
Maintains the list of language varieties that kemL knows about at any time. If language varieties
not on this list are encountered in resource definitions, those resource definitions will probably
cause an error.

curl an
Maintains the current language for which kpmL is providing information or generating.

*deno- node*
When set T suppresses all warnings during generation.

*I'n-m -regi on*
When set T default language conditionalizations are merged into any resources eval uated;
when not set, no default language conditionalizations are considered.

*new- | exi cal -itens*
Holdsthe list of newly created lexical items when the auto-create flag for lexical itemsis set
(cf. Section 5.9.4).

*package-for-inquiry-inplenentations*
Must be set to either a string denoting the package or a (dotted pair) association list of
languages (as specified inal | _| anguages) and such strings; used for changing packages
for inquiry implementations in inquiry definitions when saving resources (Section 5.9.6).

Thefollowing variablesareinthekpm - i Lisp package.

*auto-print*
When T, postscript files depicting resource graphs, etc. are immediately sent to a printer when
first created.

*gl obal -font-sw t chi ng*
When T, changes in language may change the font for the main kemL windows--particular the
Interaction results panes.

*har dcopy-structure-orientation*
Controls the orientation of graphs; may be either : verti cal or: hori zont al .

*show- col | ect eds*
When : al ways, always puts a pane showing the list of collected features in aresource graph;
when ni | , never put a collected features pane in aresource graph; and when T, put a collected
features pane in only when there are collected features.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node368.html (2 von 3) [11.12.2004 21:59:10]



Miscellaneous global variables

next |jup ||previous ||contents []index

Next: Data Access Functions used Up: Information display modes and Previous: Loading and storing

modes

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node368.html (3 von 3) [11.12.2004 21:59:10]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Data Access Functions used by Inquiry Operator |mplementations

next |jup ||previous ||contents []index

Next: Term-Graph structures Up: No Title Previous: Miscellaneous global variables

Data Access Functions used by Inquiry
Operator Implementations

(Extract from Bob Kasper's description in the Penman Reference Manual: references to Penman and
to English generalize in the kpmL context to kpmL and all supported language resources.)

The design of Penman allows the devel opers of applications to define their own implementations of
Penman's inquiry operators. Although many applications should be able to use the inquiry operator
implementations that are provided with Penman, some applications may achieve the best results by
customizing some of the inquiry operator implementations according to the kind of knowledge that is
available. Customization may be appropriate for several reasons.

. the application uses a knowledge representation framework that is significantly different from
that assumed by Penman;

. the application has very specific kinds of knowledge that can be used to answer Penman's
inquiries (i.e., kinds of knowledge that might not be used in other applications to answer the
same inquiries);

. the application developer would like to use some features of English in away that is
inconsistent with Penman's standard implementation of an inquiry.

The inquiry implementations provided by Penman are written as Lisp functions. Althoughiitis
possible to use any Lisp code, most implementations use a small collection of access functions to find
information contained in the spL specification or the application’'s knowledge-base. These access
functions can (and should) be used in developing customized inquiry implementations, or equivalent
functions can be written if the application requires using a different programming language, instead of

Lisp.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node369.html [11.12.2004 21:59:13]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Term-Graph structures

next |jup ||previous ||contents []index

Next: Other Access Functions Up: Data Access Functions used Previous. Data Access Functions
used

Term-Graph structures

When Penman isinvoked using an spL sentence plan, the plan is parsed and stored in internal data
structures. Each term of an spL plan is stored in astructure called at er m gr aph. The following
functions can be used to access individual fields of at er m gr aph structure:

(termgraph-id termgraph)
(term graph-synbol termgraph)
(termgraph-type term graph)
(termgraph-features termgraph)
(term graph-parent termgraph)

Eacht er m gr aph hasaunique identifier (stored asitst er m gr aph-i d), whichisaLisp symbol
that yieldsthet er m gr aph when evaluated. Such term-id symbols are generally returned as the
responses to Penman's identifying inquiries. Thet er m gr aph- synbol field of the structure
contains the actual variable or constant that appearsin the spL plan; the values in thisfield may then
be EQ across severa t er m gr aph structures when the plan has co-referential terms. When atermis
aset, thisfield will contain alist of the elements of the set. Thet er m gr aph-t ype fieldisa
knowledge-base concept or alist of such concepts. Thet er m gr aph- f eat ur es fieldisan
association-list in which the keys are feature names, and the values are (typically) t er m gr aph
structures. Thet er m gr aph- par ent field isa pointer back to the term in which this term was
embedded, or NI L for terms occurring at the top-level of an spL plan.

Note: some aspects of SPL interpretation rely on particular concepts being availablein the
version of the upper model that isloaded. Thisenablesthe SPL interpreter to state that it has
recognized, for example, "sets, and to distinguish upper model ‘relations from inquiry
preselections. Changing the upper model so that it does not include the following concepts can,
therefore, lead to unexpected consequences. The required concepts are: um set ,

di sjunctive-set, two-place-rel ation: seeSection124.2.

i John Bateman -- GMD/IPS -- Darmstadt, Germany
) ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node370.html [11.12.2004 21:59:18]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Other Access Functions

next [fup ||previous |]contents index

Next: Knowledge representation interface functions Up: Data Access Functions used Previous. Term-
Graph structures

Other Access Functions

The following functions are aso used to gain access to various kinds of information with respect to spL
term-graph structures.

(fetch-atom c-feature feature-nane termid)

Returns the symbol that isthe value of thef eat ur e- nane featureof t er m 1 d. It isused with
features, such as: | ex, which have atomic values. (f et ch-feature feature-nane term

i d)

Returnsthet er m gr aph- i d of theterm that isthe value of the f eat ur e- nane featureof t er m
i d.

(fetch-feature-synbol feature-nane termid)
Returnsthet er m gr aph- synbol of theterm that isthe value of thef eat ur e- nane feature of
termid.

(fetch-mninmal-relation relation-nane termid)

Returns either the value of ther el at i on- nane featureof t er m i d, or areified relation of type
rel ati on- nanme fromthevalueof the: r el ati ons featureof t er m i d. Only reified relations
which have a minimal set of features (nothing other than : domai n and : r ange) arereturned. The
caller will not know whether the returned value is the relation’'s range or areified relation.

(fetch-non-mnimal-reified-relation relation-nane termid)

Returns areified relation of typer el at i on- nanme fromthe: rel ati ons featureof t er m i d.
Only reified relations which have anon-minimal set of features (something in addition to : domai n
and : r ange) arereturned.

(fetch-reified-relation relation-nane termid)
Returns areified relation (either minimal or non-minimal) of typer el at i on- nane from the
:relationsfeatureof termi d.

(fetch-relation relation-nane termid)

Returns either the value of ther el at i on- nane featureof t er m i d, or areified relation of type
rel ati on- nanme fromthevalueof the: r el ati ons featureof t er m i d. The caller will not
know whether the returned value is the relation’'s range or areified relation.

(fetch-relation-spec termid relation-nane new-termid)
Returns areified relation of typer el at i on- nane, reifying anon-reified relation if necessary. The
relation may be found either

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node371.html (1 von 3) [11.12.2004 21:59:25]



Other Access Functions

. non-reified: asther el ati on- nane featureof term i d, or
. reified: asavaueofthe: rel ati ons featureof t ermyi d.

When anon-reified relation is found, then new- t er m i d provides an identifier to be used for a
newly constructed reified relation.

(fetch-relation-range rel ati on-nane termid)
Returns either the value of ther el at i on- nane featureof t er m i d, or thevalue of the: r ange
feature of areified relation of typer el at i on- nane fromthe: r el ati ons featureof t er m i d.

(fetch-subc-feature feature-nane termid)

Returnsthet er m gr aph- i d of theterm that isthe value of thef eat ur e- nane featureof t er m
I d, or any feature which specializesf eat ur e- nane. If t er m i d isnot bound, look for f eat ur e-
name in some co-referential term.

(get-global-terns termid)
Returnstheids of all termsfrom * pl an- gr aphs* (the current sentence plan) that are co-referential
withtermi d.

(get-synbol -termtermid)
Returnstheid for aterm that is co-referential witht er m i d.

(gl obal -fetch-feature feature-nane termid)
Returns the value of afeature of typef eat ur e- nane fromt er m i d, or from some term that is co-
referential witht er m i d, if no such featureisfoundint ermi d.

(termeqg-p ternl ternR)
Predicateistrueif t er mlL andt er n2 are co-referential (i.e., either they are identical atoms, or they
are terms having the samet er m gr aph- synbol ).

(termrole-ptermidl termid2 role)
Predicateistrueif t er m i d2 participatesinar ol e relation witht er m i d1.

(termtype-p termid given-type optional (non-local-test? t))
Predicateistrueif gi ven-t ype isthe same as or asuperc of thetypeof t er m i d. When non-
| ocal -t est ? istrue, then look also at the types of any terms that are co-referential witht er m i d.

next [Jup ||previous |]contents index

Next: Knowledge representation interface functions Up: Data Access Functions used Previous. Term-
Graph structures

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node371.html (2 von 3) [11.12.2004 21:59:25]



Other Access Functions

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node371.html (3 von 3) [11.12.2004 21:59:25]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Knowledge representation interface functions

next |jup ||previous ||contents []index

Next: About this document Up: No Title Previous. Other Access Functions

Knowledge representation interface
functions

All interaction between kpvL and a supporting knowledge representation language is managed viathe
following interface functions. Using a knowledge representation other than Loom therefore requires

these functions to be redefined gif A version of the upper model should then also be prepared in the
target knowledge representation.

L oom makes a distinction between concepts and relations; if an alternative knowledge representation
language does not make this distinction, then the corresponding pair of functions k b-

get namedconcept and kb- get nanmedr el at i on can receive the same implementation. The
linking between domain concepts and lexical items described above (Section 12.2.13) is defined

solely in terms of these interface functions and so does not need additional adjustment.
. KB-CONCEPTDISIOINT?, Function (C1 C2)

Returnstrue if concepts C1 and C2 belong to digjoint classes.
. KB-ENTITY?, Function (INSTANCE)

Returnstrueif i nst ance isaknowledge representation instance.
. KB-GETCONCEPTNAME, Function (CONCEPT)

Returns a print name for the knowledge representation concept concept .
. KB-GETNAMEDCONCEPT, Function (CONCEPT)

Returns the knowledge representation concept that has the print name concept .
. KB-GETNAMEDRELATION, Function (RELATION)

Returns the knowledge representation relation that has the print namer el at i on.
. KB-IMMEDIATESUBCS, Function (CONCEPT)

Returns the immediate subconcepts of the concept concept (ignoring any internal system-
defined concepts that may appear).
. KB-IMMEDIATESUPERCS, Function (CONCEPT)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node372.html (1 von 2) [11.12.2004 21:59:29]



Knowledge representation interface functions

Returns the immediate superconcepts of the concept concept (ignoring any internal system-
defined concepts that may appear).
. KB-PACKAGE, Function

Returns for Loom 2.0, the Lisp package of the current knowledge base and for Loom 2.1, the

current knowledge base context name. This simply ensures that the concept access functions

try placing any symbols with which they are presented as arguments in appropriate packages.
. KB-SUPERP, Function (C1 C2)

Returns true if the concepts or relations C1 and C2 stand in a super-type relationship.

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node372.html (2 von 2) [11.12.2004 21:59:29]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

About this document ...

next [lup [|previous ||contents index

Up: No Title Previous. Knowledge representation interface functions

About this document ...

This document was originally generated using the LaT eX2HTM. translator Version 96.1 (Feb 5,
1996) Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based L earning Unit,
University of Leeds.

The command line arguments were:
latex2html kpm - doc. t ex.

The trandation was initiated by Fabio Rinaldi on Tue Aug 20 16:43:46 MET DST 1996.
The HTML was then massaged by hand by Fabio Rinaldi and John Bateman.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node373.html [11.12.2004 21:59:32]


http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

KPML documentation

next |lup ||previous ||contents |index

Next: Contents

KPML Development Environment

Multilingual linguistic resource
development and sentence generation

Release 1.0 (September 1996)

Current KPML patch level: 1.0.43 (May 30, 1997).

John Bateman
email: | . a. bateman@tir. ac. uk

KPML versions up to 1.0 were developed at the:

Institut fUr integrierte Publikations- und | nformationssysteme (IPSI)
Project KOMET

German Centre for Information Technology (GMD)

Dolivostr. 15, Darmstadt, Germany.

Further development (1.1 and PC-versions) is continuing at the:
Department of English Studies

University of Stirling

Stirling, FK9 4L A, Scotland

The KPML (Komet-Penman Multilingual) development environment is a system for developing and

maintaining large-scale sets of multilingual systemic-functional linguistic descriptions (as originally
set out in Bateman et al. (), Bateman et al. () and Matthiessen et al. ()), and for using such resources
for text generation. More generally, the intended purposes of kpmL are:

. to offer generation projects large-scale, general linguistic resources which:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (1 von 11) [11.12.2004 21:59:49]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-patches.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=j.a.bateman@stir.ac.uk&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML
http://www.darmstadt.gmd.de/IPSI/
http://www.darmstadt.gmd.de/publish/komet/

KPML documentation

o arewell tested and verified in their coverage,
o possess standardized input and output specifications,
o and are appropriate for practical generation;
. to offer generation projects a basic engine for using such resources for generation;
. to encourage the development of similarly structured resources for languages where they do
not already exist,
. to provide optimal user-support for undertaking such development and refining general
resources to specific needs;
. to minimise the overhead (and cost) of providing textsin multiple languages,
. to encourage contrastive functional linguistic work;
. toraise awareness and acceptance of text generation as a useful endeavor.

This document provides complete instructions for using the system for devel oping and maintaining
linguistic resources for natural language generation.

The sources of the current public release of the system can be found in the KPML directory on the
IPSI anonymous ftp server. Useis free for academic and research purposes. Users are asked to make
available any developed resources for the benefit of others. A linguistic resource development group
Is currently being formed.

NOTE: thisdocumentation is also available as a hardcopy manual. Minor differences may
develop between the two versions; these differences will be added to a special section. In
addition, figures and screendumps are generally replaced in this version by their color versions.
Thishasnot yet been carried out for all screendumps, but ishappening.

. Acknowledgements
. Differencesto the hardcopy version
. Contents
. List of Figures
. Listof Tables
. Index
. Introduction
o The purpose of the system
o Thefunctionality of the system
o Overview of the interface organization
o Overview of the documentation
o Avallability of the system
o Known bugs/problems
o Troubleshooting
. Computational Systemic-Functional Linguistics

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (2 von 11) [11.12.2004 21:59:50]


ftp://www.darmstadt.gmd.de/pub/komet/KPML-1.0/

KPML documentation

o Thelinguistic system
« Depth and Breadth
« Stratal organization
« Metafunctions
« Functional Regions
« Intra-stratal organization: choice and delicacy; structural realization
« Inter-stratal organization: interfaces
o A generic computational systemic functional system
o A specific instantiation: the Penman-style architecture
= The generation process. overview
« Network traversa
» Accessing semantic information
« Stopping traversal: bottoming out
o Pointersto further information
. Installation and Startup
o Installing the KPML system
o Installing the Emacs/Mule-interface
o Installing the released linguistic resources
o KPML system version maintenance: PATCHES
o Making an executable image of the system
o KPML resource version maintenance: RESOURCE PATCHES
. Notational conventionsin this document
. The KPML root interface windows
o Introduction
o The new-style' root window: starting up
o Theroot commands. overview
o General System Behaviour
« Environment Directories
« Hags
o General Multilingual Operations and Modes
o Focusing Operations
« Linguistic object focusing
= Language focusing
« Region focusing
o Loading existent linguistic resources
= Simple resource set |loading
« General commands for loading linguistic resources
« Loading particular kinds of linguistic objects
« Loading modes:. overwriting and merging
« Loading and the multilingual modes
o Resource clearing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (3 von 11) [11.12.2004 21:59:50]



KPML documentation

o Saving and Creating linguistic resources
Simple resource set saving
Genera commands for saving linguistic resources
« Monolingual saving
« Contrastive saving
« Multilingual saving
« |nheriting language definitions
« Automatic lexical item acquisition and saving
« Creating unconditionalized linguistic resources
« Changing the Lisp package of inquiry implementations
o Interface suspension, exiting, etc.
Quiting the interface
Suspending the interface
« (Re)Activating the interface
« Clearing the interface windows
. The KPML Inspector Window
o Overview of Commands
o Graphing systemic networks
« Basic graphing options and commands
« Quit Resource Grapher
« Printgraph
« Show examples with collected features
« Clear Collected Features
« Display Modes
« Mail Intention to Work
« Producing graphsfor inclusion as figures in documents
= Mouse activated resource graph options
« Showing afull system definition
« Showing the realization statements of afeature
= Showing the chooser associated with a system
« Collecting/Discollecting features
« Pruning the displayed graph
« Redisplaying agraph
« Spawning further graphs
« Graphing regions
« Contrastive and multilingual graphing
« Monolingual graphing
« Contrastive graphing
« Multilingual graphing
o Inspecting individual object definitions
« Introduction

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (4 von 11) [11.12.2004 21:59:50]



KPML documentation

« Display commands
« Print System
« Print Chooser
« Print Inquiry
« Print Inquiry Implementation
« Print Lexical Item
« Print Concept
« Print Relation
« Definition displaying and the multilingual modes
=« Monolingua definition printing
« Contrastive definition printing
« Multilingual definition printing
o Object selection according to specified criteria
« Who has' selections
« Who has asinput
« Who has as output
« Who can' selections
« Who can lexify
« Who can inflectify
« Who can classify
« Who can insert
« Who can order
« Who can partition
« Who can preselect
« Who can ask
« Who can identify
« Who can pose identifying inquiry
« Examples Using Features
o Direct inspection and information chains
= Introduction
= |Inspection operations on grammatical systems
« Printing system definition
« Print associated chooser
« Graph Grammar starting from system
= |nspection operations on grammatical features
« Displaying usage of grammatical features
« Who has asinput
« Who has as output
« Show path to
« Show chooser of feature
« Graph from feature

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (5 von 11) [11.12.2004 21:59:50]



KPML documentation

« Collect feature
« Uncollect feature
« Clear collected features
| nspection operations on choosers
« Print chooser
« Show inquiries of chooser
« Systems of chooser
« |nspection operations on inquiries
« Printinquiry
« Print implementation
« Who can ask
« Who can pose identifying inquiry
« |Nnspection operations on lexical items
= |nspection operations on SPL terms
« Inspection operations on examples
o Overview of information inspection chains
. The KPML Development Window
o Introduction
o Window Layout
o Overview of commands
o Generation: basics
« Introduction to generation with kpmL
« Starting generation
« Generation and the multilingual modes
« Monolingual generation
« Contrastive generation
= Semantic defaults and macros
« Run-time cautions
« Run-time warnings
= Running modes
« Boundary conditions
o Tracing and debugging during generation
« Introduction to generation debugging under kPmL
« Generation tracing modes
« Show Constituent Starts
« Show System And Inquiry Activity
« Show Why System Is Firing
« Show Disabled Candidate Systems
« Show System Entry Dependencies
« Show Preselections
« Show Immediate Readlizations

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (6 von 11) [11.12.2004 21:59:50]



KPML documentation

« Show Lexical Selection
« Show Lexical Features
« Show Ordering Constraints
« Show Ordering Events
« Show Ordering Results
» Show Associations
« Show Inquiry Answer Source
« Show entailed inquiry response
= Generation process control options
« Redlize Selectively
« Redize until constituent number
« Single Step
« Enter Debugger on Warnings
« Generation result focusing modes
« Cumulate System and Inquiry Activity
« Update Example Record Fields
« Viewing focused results
« Thecumulative history window commands
« Example of use
Activating result focusing and tracing for particular linguistic objects
« Activation of tracing
« Individual system tracing
« Individual chooser tracing
« Individua inquiry tracing
« Clearing tracing selections
o Graphical representation of systemic network traversal
« Traversal and resource graphs
« Dynamic traversal tracing
o Additional generation process control options
« Disabling and enabling systems
« Pausing on inquiries
« Pausing and restarting generation
o Inspecting the results of generation: Graph Structure
« Introduction to structure graphs
« Structure Grapher Options
= Operations available on structure constituents
« Selection expression
« Preselections
Orderings
« Lexica constraints
Associations

O

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (7 von 11) [11.12.2004 21:59:50]



KPML documentation

« All structural constraints
o Inspecting the results of generation: Operations on the produced strings or textual

structure displays
o Switching Languages
o Summary of generation process information chains
o How to debug resources: a sketch of a method
. The old-style KPML interface
o Description of the interface “sub-windows
o Basic Old-Style Interface Operations
« Clear
« Flags
» Pause
« Quit
= Resume
» Reset
« Show Linguistic Object
« Generation Display Modes
= Resource Maintenance
« Multilingual Operations
« Graph Grammar
= Graph Sentence Structure
« Ready SPL Defaults
« Generate Again
o Further type-in commands
= Abort
« Environment Directories
« Show Path To
« Evauate Lisp Expression
o Various mouse-click triggered commands
. Static Integrity Checks. Resource maintenance
o Background concepts
« Static tests during resource loading
= Static tests on whole resource set
. Resource Verification: Example Sets and Test Suites
o Example sets and test suites
o The example operations
« Load Examples
« Write Examples
« Clear Examples
« Generate from example SPL
« Graph example structure

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (8 von 11) [11.12.2004 21:59:51]



KPML documentation

« Display generated string
= Show examples with features
Copy examples with new names
Delete some examples
Example runner
« Starting the example runner
« Levelsof detall while example running
« Low detail example running
« Medium detail example running
« High detaill example running
« Features used in examples survey
o Operations on example strings and textually displayed structures
« Operations on displayed strings
« Show corresponding fundle
« Graph corresponding constituent and below
« Inspect selection expression
« Inspect corresponding semantic term
« Partial re-generation
« Operations on displayed structures
« Graph this constituent and below
« Show selection expression
« Show corresponding semantic term
« Generate again up to but not including this constituent
o Full summary of linquistic resource information chains
. Maintenance: Resource Patching
o Introduction
o Patching and loading linguistic resources
o Patching and saving linguistic resources
o Some further consequences of using the patching facility
o Modifying linguistic resources
o Examplerecord versioning
o Acquiring lexical items
. Resource Organization and Definition Formats
o Directory structure and contents
o Resource definition formats
« Resource definition files
« Genera language property declarations
« Morphology style declarations
« Standard default environments
« Language-font associations
« Disabling systems

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (9 von 11) [11.12.2004 21:59:51]



KPML documentation

« Language variety range declarations
= Systems
« Redlization Statements
« Introduction
« Basic redization constraints
« User-defined realization operators
« Morphological redlization constraints
« Choosers
« Inquiries
« Lexicons
- Examples
= Punctuation
« Non-systemic system dependencies
« Default orderings
« Domain concepts and links with the lexicon
« SPL macros and defaults
o Language variety conditionalization
o Requirements for resource definitions
« Specid inquiries
= Specia semantic concepts and relations
. Accessing external information sources
o Semantic information from inquiry implementations
o External information from the lexicon
o Morphological information from external components
. Using KPML without the window interface
o Blackbox operation as atactical generator
o Bookkeeping functions
« Switching languages
« Establishing network connectivity
« Inguiry default initialization
« Generd initialization
o Multilingual behaviour flags
o Development tools
« Linguistic Resource Loading Operations
« Generating the example set
« Modifying the resources
« Saving the resources
o Using the mouseabl e structures for mousing and mark-up
= The structure produced
« Conditionalization of mouse sensitivity
= Specifying additional linksin the SPL: annotations

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (10 von 11) [11.12.2004 21:59:51]



KPML documentation

o Window startup functions
. Faster Generation
o Strictly Monolingual Generation
o Knowledge base package reduction
o Compilation of inquiry implementations
. Establishing and using a generation server
o Creating aKPML generation server
o Creating aKPML client from Lisp
o An example of aKPML Lisp client: a WWW-KPML server
. References
. Information display modes and corresponding internal flags
o More detailed tracing and display modes
o Loading and storing modes
o Miscellaneous global variables
. Data Access Functions used by Inquiry Operator | mplementations
. Knowledge representation interface functions
. About this document ...

next |lup ||previous ||contents |index

Next: Contents

_* John Bateman -- GMD/IPS -- Darmstadt, Ger many
' ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (11 von 11) [11.12.2004 21:59:51]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: B

IJohn Bateman -- GMD/IPSI --
'‘Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-B.html [11.12.2004 22:00:49]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: D

.C.D.E.F..

|®
|T
s
| =
I~
I
|z
|O
i
o
1o
1%
|-
|C
<
1=

N

,

defi ne-| anguage-font -requi renent s (macro)
L anguage-font associations
def i ne-| anguage- nor phol ogy-r equi r enent s (macro)
Morphology style declarations
def i ne-| anguage- st andar d- def aul t s (macro)
Standard default environments
Delicacy
|ntra-stratal organization: choice and
di sabl e- syst em(lisp function)
Disabling systems
:Disable system (KPML command)
Show Disabled Candidate Systems, Disabling and enabling systems
Disabling systems
Disabling and enabling systems
Display and contrastive mode
Contrastive definition printing
Display and multilingual mode
Multilingual definition printing
:Display generated string (KPML command)
Starting generation, Display generated string
:Display modes (KPML command)
Graphing systemic networks, Printgraph, Traversal and resource graphs, Display Modes
:Display options (KPML command)
Display options, Individual chooser tracing
Dutch
The functionality of the
Dynamic tracing
Dynamic traversal tracing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-D.html (1 von 2) [11.12.2004 22:00:55]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-D.html (2 von 2) [11.12.2004 22:00:55]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: E

N

E

Emacs

|nstalling the Emacs/Mule-interface, Modifying linguistic resources
Emacs (interaction)

Modifying linguistic resources
:Enable system (KPML command)

Show Disabled Candidate Systems

Enabling systems
Disabling and enabling systems
end- r egi on (macro)
Resource definition files
ensur e- | anguage- r ange (macro)
L anguage variety range declarations
:Environment directories (KPML command)
Environment Directories, Simple resource set loading, Monolingual saving, Multilingual
saving, Printgraph, Starting the example runner, Directory structure and contents
Environment domains
Inquiries, Examples
:Example Operations (KPML command)
The example operations
o Clear examples: Resource clearing, Clear Examples
o Copy examples with new names. Copy examples with new
o delete some examples: Delete some examples
o Example runner: Monolingual generation, Starting the example runner
o Examples using features. Show examples with features, definition: Examples Using

.C.D.E.F.G.H.l.J.K.L.M.N.O.P.Q.R.S.T.U..V.W.X.

Features
o Feature survey: Features used in examples
o Generate from example SPL: Generate from example SPL
o Graph example structure: Graph exampl e structure
o Load examples: Loading particular kinds of , Load Examples
o Show examples with features: Show examples with features

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-E.html (1 von 2) [11.12.2004 22:01:03]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

o Write examples: Simple resource set saving, Write Examples

Example records

o definition: Examples

o general: |nspection operations on examples, Running modes, Inspecting the results of ,
Example sets and test , Example sets and test , Graph example structure, Examples

o mouseable structures: Using the mouseabl e structures

o updating: Update Example Record Fields, Example sets and test , Modes and internal
flags, Modes and internal flags

o versions: Copy examples with new , Example record versioning

Examples

Examples, Examples Using Features

Exiting

Quiting the interface

Example runner

IN 3>

genera: Example runner

level of detail: Levels of detail while

errors. Starting the example runner

features used: Features used in examples
flags. Starting the example runner

starting from lisp: Generating the example set
high detail: High detail example running
implementation modes:

Examples
low detail: Low detail example running

medium detail:Medium detail example running

new lexical items. Automatic |lexical item acquisition

results directory: Environment Directories, Starting the example runner
useage: Example sets and test

.C.D.E.F.G..

| T

ol J.K.L.M.N.O.P.Q.R.S.T.U..V.W.X.Y

ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-E.html (2 von 2) [11.12.2004 22:01:03]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: F

.C.D..

N>
Im
P
[9)
|T
8
ke
|
Iz
=
|O
I
fe)
|70
n

F

Fast generation methods
o compiling inquiries. Compilation of inquiry implementations
o monolingual generation: Strictly Monolingual Generation
o overview: Faster Generation
o package reduction: Knowledge base package reduction
FAT (function association table)
Show Associations, Show Associations, Choosers, Inquiries
Features
Term-Graph structures
fetch-atom c-feat ure (lispfunction)
Other Access Functions
f et ch-f eat ur e (lisp-function)
Other Access Functions
fet ch-feature-synbol (lispfunction)
Other Access Functions
fetch-m nimal -rel ati on (lisp function)
Other Access Functions
fetch-non-m nimal -reified-rel ation (lispfunction)
Other Access Functions
fetch-reified-relation (lispfunction)
Other Access Functions
fetch-rel ati on (lisp function)
Other Access Functions
fetch-rel ati on-range (lisp function)
Other Access Functions
fetch-rel ati on-spec (lisp function)
Other Access Functions
f et ch- subc- f eat ur e (lisp function)
Other Access Functions
:Flags (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-F.html (1 von 2) [11.12.2004 22:01:10]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Flags, The root commands: overview, Automatic lexical item acquisition , Print Chooser,
Starting generation, Starting generation, Starting generation, Inspecting the results of , Levels
of detail while, Operations on displayed strings, Inspect selection expression, Operations on
displayed structures, Show selection expression, Acquiring lexical items
:Focusing operations (KPML command>
o genera: The root commands. overview, Introduction
o definition: Focusing Operations
o examples: Loading particular kinds of
o language focusing: Language focusing
o linguistic object focusing: Linguistic object focusing
o releasing object focusing: Linguistic object focusing
Force a choice and continue
Boundary conditions
Function bundle (fundle)
Realize Selectively, Introduction to structure graphs, Show Constituent Starts, Introduction

.C.D.E.F.G.H.l.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.X.Y

IN 3>

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-F.html (2 von 2) [11.12.2004 22:01:10]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: G

.C.D.E..

NS
[T
()
|T
i
| =
|~
|I=
|Z
|O
Ve
|70
1%
|~
|C
1<
1=
[ ><

@

Gates
Graphing systemic networks

:Generate again (KPML command)
Pause, Starting gener ation, example: Copy examples with new
:Generate from example SPL (KPML command)
Graph example structure
:Generate sentence (KPML command)
Simpleresour ce set loading, Starting gener ation, Overview of commands, Monolingual

generation, Contrastive generation, Running modes, Pause, Generate from example SPL,
Graph example structure, example: Copy examples with new
Generation server
Establishing and using a
German
The functionality of the
get - gl obal -t er s (lisp function)
Other Access Functions
get - synbol -t er m(lisp function)
Other Access Functions
global-fetch-feature, lisp function
Other Access Functions
:Grammar consistency tests (KPML command)
Static tests on whole

Graph
Graph from feature
o contrastive mode: Contrastive graphing

o example:
Graph example structure

o generation path: Graphical representation of systemic
o multilingual mode:
Multilingual graphing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-G.html (1 von 2) [11.12.2004 22:01:17]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

o graphing modes:
Basic graphing options and
o graphing modes (content):
Content-oriented resource graph options
o graphing modes (layout): Layout and hardcopy oriented
o monolingual mode: Monolingual graphing
o .graphing networks. Graphing systemic networks
o print: Printgraph
o printing epsfiles: Producing graphs for inclusion
o graph pruning: Pruning the displayed graph
o graphing region: Graphing systemic networks, Graphing regions
o graphing grammatical structure: Introduction to structure graphs
o graphing grammatical structure (options): Structure Grapher Options
:Graph grammar (KPML command)
Graphing systemic networks, Graph Grammar starting from , Traversal and resource graphs,
Graph Grammar
:Graph region (KPML command)
Graphing regions, Graphing systemic networks
:Graph structure (KPML command)
Introduction to structure graphs, How to debug resources.

.C.D.E.F.G.H.l.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.X.Y

IN 3>

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-G.html (2 von 2) [11.12.2004 22:01:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: H

.C.D.E.F.G.H.l.J.K.L.M.N.O.P.Q.R..S.T.U..V.W.X.Y

IN 3>

I

Hubs (semantic)
Display options, Accessing semantic information, Show Associations, Example sets and test
Examples

Hyperlinks
Specifying additional linksin input

= John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-H.html [11.12.2004 22:01:21]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: |

.C.D.E.F.G..

NS
|T
L
| <
|~
E
=
Ie)
(o)
Yo}
|70

- i d (term-graph slot)
Term-Graph structures

ID-inquiry (identifying inquiry)
I nquiries, Choosers

| deation base
M etafunctions

| deational metafunction
Metafunctions, Inquiries

Images (KPML standal one executabl es)
Making an executable image
I mplementation modes (inquiries)
Generate from example SPL
o deimplemented: Running modes

o implemented:
Running modes, Starting generation

I n- | anguage (macro)

Resource definition files
| n-regi on (macro)

Resource definition files
Inheriting linguistic resources

| nheriting language definitions
Input completion

| ntroduction
Inquiries

o defaults: Semantic defaults and macros
o definition: Inter-stratal organization: interfaces, Inquiries
o editing:Modifying linguistic resources
o printing: Print Inquiry
Inquiry implementations
o definition:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-1.html (1 von 2) [11.12.2004 22:01:27]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Running modes

o editing: Modifying linguistic resources, Modifying linguistic resources

o Lisp packages. Changing the Lisp package
o printing: Print Inquiry Implementation
i nqui ry-inplenentations.|isp(file)
Directory structure and contents
i nquiry-increnment.|isp (file)
Directory structure and contents
Interaction base
M etafunctions
Interpersonal metafunction
M etafunctions

.C.D.E.F.G.H.l..

NI
|
| <
|~
E
B
Ie)
o)
Fe)
|70

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-1.html (2 von 2) [11.12.2004 22:01:27]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: J

== John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-J.html [11.12.2004 22:01:32]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: K

IN 3>

7\

KB (knowledge base information source)
Inquiries, Inquiries, Examples
Knowledge representation
Data Access Functions used
Komet
The functionality of the
KPML client
An example of a
kpm - kb (Lisp package)
Changing the Lisp package , Changing the Lisp package
kpm : say (Lisp function from KPML client)
Creating a KPML client

.C.D.E.F.G.H.l.J.K.L.M.N.O.P.Q..

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-K.html [11.12.2004 22:01:37]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: L

N

L

Language range
L anguage variety range declarations
L anguage focusing
L anguage focusing
L anguage focusing (clearing)
L anguage focusing
Language conditionalization
The functionality of the , Language variety conditionalization

n declarations
Resource definition files, Simple resource set loading

:Launch development windows (KPML command)
The root commands: overview, The root commands: overview

Lexical features
L exicons

Lexical items
o automatic creation: Automatic |exical item acquisition
o definition: Lexicons
o editing: Modifying linguistic resources
o printing: Print Lexical ltem
Linguistic object focusing
Linguistic object focusing
Linguistic object focusing (clearing)
Linguistic object focusing
Linguistic resources
Installing the released linguistic
Lisp listener
Introduction, The “new-styl€e' root window:

:Load examples (KPML command)
Directory structure and contents

:Load lexicon files (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-L.html (1 von 2) [11.12.2004 22:01:43]

.C.D.E.F.G.H.l.J.K.L.M.N.O.P.Q.R.S..


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Lexicons

:Load linguistic resources (KPML command)
Simple resour ce set loading, Linguistic object focusing, Notational conventionsin this,

Monolingual loading, Contrastive loading, Monolingual saving, Contrastive saving,
Multilingua saving, Semantic defaults and macros, Patching and loading linguistic , Patching

and loading linguistic , Directory structure and contents, Directory structure and contents
| oad- kpml - pat ches (Lisp function)
Making an executable image

Loading (focusing on selected linguistic objects)
Loading particular kinds of

Loading linguistic resources
L oading existent linguistic resources

Loom (knowledge representation system)
Installing the KPML system

Lucid Li
Af/pai lability of the system, Known bugs/problems, Known bugs/problems, Known
bugs/problems, Installation and Startup, Installing the KPML system, Making an executable
image , Quiting the interface, The “old-style' KPML interface, Various mouse-click triggered
commands

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-L.html (2 von 2) [11.12.2004 22:01:43]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: M

.C.D.E.F.G.H.Jl.J.K.L.M.N.O.P.Q.R.S.T.U..V.W.X..

N

M

Marked-up generation output
Using the mouseable structures
Merging mode (loading)
o merging: Merging mode
o overwriting:
Overwriting mode

Make no choice and continue (boundary condition)
Boundary conditions

Metafunction
M etaf unctions
Metastrata
A generic computational systemic
nodi fi cati on-specification-id(inquiry)
Specid inquiries
Morphol ogy
Morphology style declarations, Morphological realization constraints

Mule (multilingual editor)
Installing the Emacs/M ule-interface, Modifying linguistic resources, L anquage-font

associations

:Multilingual behaviour modes (KPML command)
General Multilingual Oper ations, Contrastive loading, General Multilingual Operations,
The root commands: overview

Multilingual behaviour modes (example)
L oading particular kinds of

Multilingual modes
General Multilingual Operations and

Multilingual modes (contrastive)
o definition:General Multilingual Operations and

o generation: Contrastive generation
o graphing: Contrastive graphing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-M.html (1 von 2) [11.12.2004 22:01:48]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

o loading: Contrastive loading
o printing: Contrastive definition printing
o saving: Contrastive saving
Multilingual modes (monolingual)
General Multilingual Operations and

o generation: Monolingual generation
o graphing: Monolingual graphing
o loading resources:Monolingual loading
o printing: Monolingual definition printing
o Saving resources.
Simple resource set saving, Monolingual saving

Multilingual modes (multilingual)
General Multilingual Operations and

o graphing: Multilingual graphing

o loading (flag): Multilingual behaviour flags
o loading resources. Multilingual loading

o printing: Multilingual definition printing

o saving (flag): Multilingual behaviour flags
o saving resources:. Multilingual saving

- John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-M.html (2 von 2) [11.12.2004 22:01:48]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: N

IN 3>

Z

Nigel grammar (English)
The functionality of the

.C.D.E.F.G.H.l.J.K.L.M.N..O.P..Q..

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-N.html [11.12.2004 22:01:53]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: O

IN 3>

O

Old style user interface

The "old-style' KPML interface
operator code (of inquiries)

Show Inguiry Answer Source
Ordering

o defaults: Non-systemic system dependencies, Default orderings

o loading from Lisp:Linguistic Resource Loading Operations

o patching: Patching and saving linguistic

o realization statements: Basic realization constraints

o saving from Lisp: Saving the resources

o tracing: Show Ordering Constraints, Show Ordering Events, Show Ordering Results,
Orderings, Modes and internal flags, Modes and internal flags, Modes and internal flags

g John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-O.html [11.12.2004 22:01:58]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: P

.C.D..

NS
Im
[T
[9)
|T
e
| <
|
1=
=
Ie
-
le)
|70
1%
1<
|C

P

Packages (Lisp)
o inquiry implementations: Changing the Lisp package
o KPML system: Installing the KPML system
o kpm - kb: Changing the Lisp package , Changing the Lisp package

o penman: Installing the KPML system
o penman- kb: Changing the Lisp package
o upper and domain model: Domain concepts and links
Paradigmatic relations
Intra-stratal organization: choice and
. par ent (term-graph structure slot)
Term-Graph structures
Patching KPML
KPML system version maintenance:
Patching linguistic resources
| ntroduction
Path augmentation
Show Preselections

:Pause (KPML command)
Pausing and restarting generation, Resume
:Pause on inquiry (KPML command)
Pausing on inquiries
PC version of KPML
Availability of the system
penman (Lisp package)
Installing the KPML system
penman- kb (Lisp package)
Changing the Lisp package
Penman Text Generation System
The functionality of the
:Print (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-P.html (1 von 2) [11.12.2004 22:02:03]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

| ntroduction
:Print graph (KPML command)
Producing graphs for inclusion

:Print chooser (KPML command)
Showing the chooser associated , Print associated chooser, Show chooser of feature, Print

chooser, Individual chooser tracing, Choosers
:Print graph (KPML command)

Printgraph, Print Chooser, Introduction to structure graphs
:Print inquiry (KPML command)

Print inquiry
Printing

o chooser: Print Chooser
o concept: Print Concept
o inquiry: Print Inquiry
o Inquiry implementation: Print Inquiry Implementation
o lexical item: Print Lexical ltem
o System: Print System
Punctuation rules
Punctuation

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-P.html (2 von 2) [11.12.2004 22:02:03]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: Q

IN 3>

Q

Q-inquiry (branching inquiry)
Choosers, Inquiries
Q-inquiry (example)
Inquiries
:Quit (KPML command)
Quiting the interface, Quit, Introduction to structure graphs
:Quit resource grapher (KPML command)
Quit Resource Grapher

.C.D.E.F.G.H.l.J.K.L.M.N..O.P.Q..

* John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ_ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-Q.html [11.12.2004 22:02:07]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous |[contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: R

N

Py

.C..

D..

E.F.G.H.].J.K.L.M.N..O.P.Q.R..

Rank (definition)

Intra-stratal organization: choice and

Realization statements

I ntra-stratal organization: choiceand , Introduction

agreement: Basic realization constraints

ask (who can): Who can ask

classify (definition): Basic realization constraints
classify (who can): Who can classify

conflate (definition): Basic realization constraints
display modes. Basic realization constraints

expand (definition): Basic realization constraints
inflectify (definition): Basic realization constraints
inflectify (who can): Who can inflectify

insert (definition): Basic realization constraints
insert (who can): : Who can insert, Who can insert
lexify (definition): Basic realization constraints
lexify (who can): Who can |exify

morphology: Morphological realization constraints
order (definition): Basic realization constraints
order (who can) : Who can order

orderatend (definition): Basic realization constraints
orderatfront (definition): Basic realization constraints
outclassify (definition): Basic realization constraints
partition (definition): Basic realization constraints
partition (who can): Who can partition

preselect (definition): Basic realization constraints
preselect (who can): Who can preselect

showing realizations: Showing the realization statements

‘Redisplay (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-R.html (1 von 2) [11.12.2004 22:02:12]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Region (functional regions)
o declaration: Resource definition files, Systems
o definition: Functional Regions
o from Lisp: Linguistic Resource L oading Operations
o graphing: Graphing systemic networks, Graphing regions
o resource organisation: Directory structure and contents
o focusing: Region focusing
:Reset generation modes (KPML command)
| ntr oduction to generation debugging , Generation Display Modes
Resource merging
Merging mode
Resource loading
L oading existent linguistic resources
Resource versioning
Simple resource set saving
‘Resume (KPML command)
Pausing and restarting generation
Root of resources
Simple resource set |oading

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-R.html (2 von 2) [11.12.2004 22:02:12]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: S

.C.D.E.F.G.H.J].J.K.L.M.N..O.P.Q.R.S.T.U.V.W.X.Y

N

S

Selection expression

Network traversal, Introduction to structure graphs
Semantic term

| nspect corresponding semantic term
Server communication file

Creating a KPML generation

:Set default language (KPML command)
General Multilingual Operationsand , General M ultilingual Operations, Creating

unconditionalized linguistic resources, Patching and loading linquistic , Patching and loading
linguistic , Modifying linguistic resources
:Set language (KPML command)
Switching L anguages, Language-font associations, Switching languages
:Show cumulative history (KPML command)
Viewing focused results, Activation of tracing, Individual chooser tracing
:Show examples with collected features (KPML command)
Show examples with collected , Traversal and resource graphs, Display generated string
:Show path to (KPML command)
Show path to, Basic realization constraints
site-specifics.lisp(file
Making an executable image
SPL defaults
Semantic defaults and macros, Semantic defaults and macros, Standard default environments
SPL defaults (declaration)
SPL macros and defaults
SPL defaults (limitations)
Known bugs/problems
SPL macros
SPL macros and defaults
Starting up the KPML interface
The "new-styl€' root window:
:Stop pausing on inquiry (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-S.html (1 von 2) [11.12.2004 22:02:17]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Pausing on inquiries

:Store linguistic resources (KPML command)
Linguistic object focusing, Simple resource set saving, Directory structure and contents,
Resource definition files

:suspend (KPML command)
Suspending the interface

- synbol (term-graph structure slot)
Term-Graph structures

Syntagmatic relations
Intra-stratal organization: choice and
System integrity in multilingual graphs
Multilingual graphing
Systems (grammatical)
o definition: Systems
n disabling: Disabling and enabling systems
o editing: Modifying linguistic resources
graphing
Graph Grammar starting from
printing: Print System, Showing afull system

O

O

John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-S.html (2 von 2) [11.12.2004 22:02:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: T

.C.D..

NS
[m
[T
|®
|T
1
| =
I~
I
=
Ie
o)
KO
|70
1%

L
|C
1<

T

Tactical generator
Blackbox operation as a

t erm eq- p (Lisp function)
Other Access Functions

t er m gr aph (data structure)
Term-Graph structures

t erm gr aph-f eat ur es (sot accessor function)
Term-Graph structures

term graph-i d (slot accessor function)
Term-Graph structures

t er m gr aph- par ent (slot accessor function)
Term-Graph structures

t erm gr aph- synbol (slot accessor function)
Term-Graph structures

term graph-type (dot accessor function)
Term-Graph structures

termresol ve-id (inquiry)
Specia inquiries

term r ol e- p (Lisp function)
Other Access Functions

termtype-p (Lisp function)
Other Access Functions

Test suites

o definition: The functionality of the , Resource Verification: Example Sets

o example runner: Flags
o examples: Examples
Text base
Metafunctions
Textual metafunction
Metafunctions, Inquiries

TP

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-T.html (1 von 2) [11.12.2004 22:02:23]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Inquiries, Examples

:Trace inquiries of chooser (KPML command)
Individual chooser tracing

‘Trace inquiry (KPML command)
Individual inquiry tracing

‘Trace system (KPML command)
Individua system tracing

Tracing

activation: Activation of tracing

choosers: Individual chooser tracing, Summary of generation process

clearing: Clearing tracing selections

focusing: Introduction to generation debugging

generation: Introduction to generation debugging , Generation tracing modes, Summary

of generation process

generation path: Traversal and resource graphs, Traversal and resource graphs,
Summary of generation process

inquiries: Individual inquiry tracing, Summary of generation process
last generated node: Structure Grapher Options

overview: Summary of generation process

systems: Individual system tracing, Summary of generation process

tty tracing: Installing the KPML system, Information display modes and

Traversal cycle
Realize until constituent number, Show corresponding fundle

Traversal cycle (use)
Partial re-generation

‘Traversal graph (KPML command)
Dynamic traversal tracing

Types

Term-Graph structures

e John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-T.html (2 von 2) [11.12.2004 22:02:23]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: U

N

C

Unconditionalized resources
Installing the KPML system, Creating unconditionalized linguistic resources
:Untrace inquiries of chooser (KPML command)
|ndividual chooser tracing
:Untrace inquiry (KPML command)
Individual inquiry tracing
:Untrace system (KPML command)
|ndividual system tracing
Upper model
Accessing semantic information
User model
M etafunctions
user-specifics.lisp(file)
Making an executable image

.C.D.E.F.G.H.J].J.K.L.M.N..O.P.Q..R.S.T..U..

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-U.html [11.12.2004 22:02:30]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: V

CALCLDLELFL.GLHLLLILKLLL.MLUN.O.P.Q.R.S.T.U.V.W.X.

|<

|[John Bateman -- GMD/IPSI --
‘Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-V.html [11.12.2004 22:02:35]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: W

IN 3>

W

Warnings
Run-time warnings
where-ami -id (inquiry)
Specia inquiries
:"Who can' commands (KPML command)
see: here
:"Who has' commands (KPML command)
see: here
Window types
Notational conventionsin this
‘Write lexicon file (KPML command)
Simple resource set saving
WWW
An example of a WWW generation server

.C.D.E.F.G.H.l.J.K.L.M.N.O.P..Q..

) John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-W.html [11.12.2004 22:02:39]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: X

.C.D.E.F.G..

IN 3>
IT

NO ENTRIES UNDER X.

but I'm working on it... :-)

John Bateman -- GMD/IPS -- Darmstadt, Germany
: ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-X.html [11.12.2004 22:02:49]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: Y

John Bateman -- GMD/IPS -- Darmstadt, Germany
i ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-Y.html [11.12.2004 22:02:54]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next |Jup ||previous ||contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: Z

N[>
e}
1O
Im
[T
[9)
|T
e
| <
|
1=
=
Ie
Rs)
KO
|70
1%
|-
|C
<
1=

| <
| <

John Bateman -- GMD/IPS -- Darmstadt, Germany
| mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-Z.html [11.12.2004 22:03:12]


http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Installation and Startup

next |jup ||previous ||contents []index

Next: Installing the KPML system Up: No Title Previous. Pointers to further information

Installation and Startup

The current release version of the kemL system will normally be made available as asingle
compressed Unix t ar file containing the software of the system. Sets of linguistic resources for the
system are available as separate tar-files. It is possible to update the system without affecting locally
devel oped resources and to obtain linguistic resource updates without having to reinstall the system.
The system and the resources should be seen as two conceptually independent components.

Note: the current instructions and released version is compatible for installation with Allegro
Common Lisp versions 4.2 and 4.3 with Clim 2.0 and 2.1, and (with reduced eventual
functionality: see Chapter 8) Lucid Common Lisp versions4.1 and 4.2.1 with Clim 1.0 and 2.0.
Only the Allegrorelease isfully supported at the time this document was produced. For newer
Allegro or Clim releases consult the ftp-directory for a help filethat may contain revised
instructionsfor loading.

. Instaling the KPML system

. Installing the Emacs/M ule-interface

. Installing the released linguistic resources

. KPML system version maintenance. PATCHES

. Making an executable image of the system

. KPML resource version maintenance: RESOURCE PATCHES

3 John Bateman -- GMD/IPS -- Darmstadt, Germany
; ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node29.html [11.12.2004 22:03:58]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Installing the KPML system

next |jup ||previous ||contents []index

Next: Installing the Emacs/Mule-interface Up: Installation and Startup Previous: Installation and
Startup

Installing the KPML system

The software of the system isto befound in afile KPM.. tar. Z'.

Restoring the contents of this file will produce a directory structure rooted in the directory KPM.. One
filein that directory-- KPM.- | NSTALLATI ON. | i sp--should be edited in order to inform the
system of its current placement within the user's directory structure: thisis done by changing the
pathnames assigned to three global variables. The pointsto changein "KPM.-

| NSTALLATI ON. | i sp' areclearly marked. Thefirst gives the address of the kpvL system in its new
installation, the second gives the address where Loom can be found (see below), and the third gives
where the linguistic resources are maintained. The latter directory can aso be given when kpmL is
running by using the Environment Directories command from the kemL window interface (see
Sections 5.4.1 and 12.1).

Note: thekpmL system assumesthat it isusing the Loom knowledge representation system; this

should therefore also beinstalled prior to attempting installation of kpmL gif Loom isavailable
free of charge from USC/ISI; the versions of Loom currently supported are both Loom 2.0 and 2.1.
kPML can then be started with or without aloaded version of Loom present in the Lisp world; if itis
not present, the standard kpmL startup functions will attempt to load it, assuming that there is already a

compiled version to be found gif The version of Loom taken will be either the one in the image, or
the one reached by the specified pathname (see next paragraph); no additional information needsto be
given to KPmL.

Various additional files may be included in the top level KPML directory; these should typically be left
there. Of these files the following are essential:

. def sys. || sp: thiscontains the system definitions (modules and their component files) for
KPML,

. kpml - package- def . | i sp: thiscontains the definition of the Lisp package used for most
of the kpmL source code. The main packageiskpmi , which, for historical reasons, isa
nickname of the package penman.

. emacs-si de-interaction. el : thiscontains EmacsMule commands for interacting
with kpmL from Emacs/Mule (cf. Section 3.2).

After making the required changes, loading the file KPML- | NSTALLATI ON. | i sp asksthe user

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node30.html (1 von 4) [11.12.2004 22:04:09]



Installing the KPML system

whether the system is to be compiled. If the system is being newly installed, the answer to this
guestion should be yes ('y"). Subsequently, when the compiled version of the system has been
established, thisis no longer necessary. Compiling and loading should be done from a Common Lisp
process, ideally where both Loom and cLim (Version 1.0 or 2.0) have already been loaded. For Lucid
Common Lisp itisaso necessary to use the Lisp development system rather than the production

system gif

During compilation of kpvL, the user is asked to decide which components of the system overall
should be compiled. This takes place in a short dialogue where the user is asked to answer y or n to
several guestions. Following compilation, the user is asked if kpmL should be loaded.

During loading of kpmvL, the user is asked to configure the particular instantiation of the system to be
constructed. The decisions here concern whether the window interface is to be included, what set of
languages are to be expected, etc. The answers required should be clear from the questions posed. The
following configuration paths are possible:

. Setup window interface?: if yes, then aversion of the kemL window interface will be
compiled/loaded.

o Load new style interface?. Thisisonly an option if kpvL is being compiled/|oaded
under Allegro Common Lisp (at least version 4.2) with CLIM 2.0 present. If thisis not
the case, this question will not be asked and the old-style interface will be loaded.

Opting not to load the window interface means that the system will provide all output and
tracing information directly to the standard output stream asif it were asimple teletype.
Chapter 14 describes how to use much of the generation functionality of kemL without the
window interface.

. Load general upper model?: Since most users will need the upper model in place regardless of
the linguistic resources they are using, it is possible to load the upper model at this
configuration stage. The current upper model is usually to be found in the Semant i cs
subdirectory of the GENERAL language variety of the current release of the kPmL resources.
Thisis necessary for interpretation of the semantic input specifications for the grammatical
resources unless the user has redefined the interpretation processes in some way.

. Load general inquiry implementations?: The inquiry implementations are also mostly shared
across language resources; therefore, it is also possible to load the general inquiry
implementations at this stage. The general inquiry implementations will usually be found in the
| nqui ry-i npl enent at i ons subdirectory of the GENERAL language variety of the
current release of the kpvL resources.

. What range of languages is to be maintained?: provides the initial multilinguality
configuration for kPmL.

The consequences of this question and its answer are as follows. At any time kpmL isonly
aware of some finite set of named language varieties. This set is used to define the maximal
range of applicability for language resources which have no language conditionalization (see
Section 12.3 for details of conditionalization). When language conditionalization is not

present, a specification is assumed to hold for all languages, where “all' is defined to be the
current set of language varieties known. Therefore, if theinitial configuration sets up the

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node30.html (2 von 4) [11.12.2004 22:04:09]



Installing the KPML system

known varieties to be English and German, and then an unconditionalized language resource is
loaded, this resource will be declared applicable for English and German only. If then the
languages known to kpmL are extended to include French (for example by creating a new
language resource by inheritance--Section 5.9.3), the original unconditionalized resources will
not then be considered applicable to French. If, however, the original configuration included
French, then when the unconditionalized resources are |oaded, they would be considered
applicable to French.

An example interaction is shown in Figure 3.1.

CONFIGURING: THE KPHL LDAL IMAGE

Set up the window interface (thie requiree CLIMIT y
Load new etyle interface™ y

Load general upper model? y
Load general inquiry implementatione? y

What ie the range of languagee to be maintained?
(Thie ehould be a liet, e.g., (:englieh :german}, the firet lanpgnage
ie then tzken ae the current language; nil defaulte to (:englieh).)
: (zenglieh :german :dutch :french :japaneea)
Languagee to be maintained: (ENGLISH GERMAN LUTCH FRENCH JAPANESE) ;
Current language: ENGLISH

Confipguration complete...

(User inpui prompled by guestion marks or colons. )

Figure: Example configuration dialogue
Following successful loading, the user can make an image of the system asis, or can select particular

sets of linguistic resources to be included in such an image using the multilingual operations described
below (Sections 5.7 and 5.9.1).

The recommended sequence for a new installation is therefore as follows.

1. Edit pathnamesin "KPM_- | NSTALLATI ON. | i sp'.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node30.html (3 von 4) [11.12.2004 22:04:09]



Installing the KPML system

2. Enter an appropriate Lisp system with cLo gif and cLim aready loaded (Loom may aso be
pre-loaded without ill effect.)

3. Load KPML- | NSTALLATI ON. I i sp.

4. Answer "yes to the question should the kpmL system be compiled.

5. Configure the system compilation as required.

6. Answer "yes to the question should the kpmL system be loaded gif

7. Configure the system as required.

8. (For CLIM-1: If the window interface is being loaded, answer when prompted whether the
display is monochrome or color.)

9. Set the current Lisp packageto kpmi , with (i n- package : kpm ).

10. Start up the window interface with (kpmi -i : : startup).

11. (For CLIM-2: answer when prompted whether the display is monochrome or color.)

12. If no linguistic resources and no upper model have been specified in the configuration stage,
then an upper model should normally be loaded; most resources released will rely on some
version of an upper model being present.

13. Load desired set of linguistic resources.

14. Make an image of the system for subsequent use (kpmL provides its own function for this as
described below).

next |jup ||previous ||contents [}index

Next: Installing the Emacs/Mule-interface Up: Installation and Startup Previous: Installation and
Startup

John Bateman -- GMD/IPS -- Darmstadt, Germany

{ ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node30.html (4 von 4) [11.12.2004 22:04:09]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Installing the Emacs/Mule-interface

next |[up ||previous |]contents |lindex

Next: Installing the released linguistic Up: Installation and Startup Previous: Installing the KPML
system

Installing the Emacs/Mule-interface

KevL under Allegro Common Lisp (4.2 and newer) can provide direct editing facilities using GNU
Emacs or GNU Mule (cf. Section 11.5). To do this, the appropriate Emacs commands must be defined.
The kpvL release directory contains an additional file called: emacs- si de-i nteracti on. el .
This must be loaded into Emacs/Mule to provide the necessary commands.

This can either be done explicitly as required with the Emacs command Meta-X load-file, or

automatically whenever Emacsiis started by placing an appropriate (| oad
“.../lemacs-side-interaction") intothe Emacsinitiaization file (. emacs); thisis
typicaly found in the user's home directory. No further action on the kemL-side is required.

Alternatively, the commands can be loaded into Emacs/Mule by issuing the kevL function call (kpm -
I ;> editing-on) fromthekpmL Lisp listener (i.e., an Allegro Lisp listener). This aso loads the
necessary Emacs command.

4 John Bateman -- GMD/IPS -- Darmstadt, Ger many
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node31.html [11.12.2004 22:04:14]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Installing the released linguistic resources

next Jjup ||previous |[|contents |[lindex

Next: KPML system version maintenance: Up: Installation and Startup Previous: Installing the
Emacs/Mule-interface

Installing the released linguistic
resources

The currently released multilingual resources for use with kemL areto befoundinafile 'Rn. tar. Z'.
Where Rn isR1, R2, etc. depending on the current release of the kpmL resource set.

Restoring the contents of thisfile will produce a directory structure rooted in the directory Rn. This
directory should be placed appropriately with respect to the directory given by the value of the * r oot -
of - resour ces* global variable edited in

KPML- | NSTALLATI ON. | i sp. Aslong asthis constraint is satisfied, no changes are necessary to the
resource files themselves.

Thet ar filefor the complete resource set is quite large and it may not always be the case that all
languages of the resource set are of interest to any particular user. It is possible to select particular
language sets and combinations directly from the resource descriptions reachable from the kPme WWW
home page:

URL="htt p://ww. dar nst adt . gnd. de/ publ i sh/ konmet / kpm . ht m .

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node32.html [11.12.2004 22:04:17]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

KPML system version maintenance: PATCHES

next |jup ||previous ||contents []index

Next: Making an executable image Up: Installation and Startup Previous:. Installing the released
linguistic

KPML system version maintenance:
PATCHES

From time to time patches will be issued that correct bugs that have been found in the system or
which make new facilities available prior to anew full release. Patches will be placed in the ftp
directory for the appropriate kpvL release; they will also be accessible from the World-Wide Web
with details of the patches included. In all cases, patches are obtained by retrieving acompressed t ar
file and placing thisin the kpmL installation top directory. No further action isrequired. When akpvL
image is started, it will automatically install and load the latest patch file that it finds in the top
directory. The patch file itself is then removed and subsequent restarts of the image simply load the
installed patches.

Patch files all have names of the form:
kpml - pat chesYYYYMVDD. tar . Z

The YYYYMVDD gives the date of release of the patch file; new patch files completely replace
previous patch files. The new patch file always includes all previous patches as well as the new ones.

gif

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node33.html [11.12.2004 22:04:25]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Making an executable image of the system

next |jup ||previous ||contents []index

Next: KPML resource version maintenance: Up: Installation and Startup Previous. KPML system
Version maintenance:

Making an executable image of the
system

The kpmL function make- kpm - i mage isavailable under Allegro and Lucid Common Lisps. In
each case, this function makes an appropriate executable image and leaves it in the file whose nameis
given (as a string) as argument to the function. Images made in this way will automatically load any
released patches on start up, will display the configured state of the system, and enter the window
interface if present. The image can aso be started as a Lisp subprocess under GNU Emacs, whichis
the recommended way of working with kpmL.

Under any other Lisp, the user should ensure that an up to date version of the patches file has been
placed in the kpmL top directory. These can beinstalled (if necessary) and loaded by issuing the kpvmL
functioncall (kpm : : | oad- kpnl - pat ches) . This should be done following loading of the kpmL
system and prior to working with it (including bringing up the window interface).

Following loading of the kpmL-patches, site-specific patches/additions may be automatically loaded
when starting up an image made with ( make- kpmni - i mage) . For thisto occur, the additions must
beplacedin afilesi t e- speci fi cs. | i sp inthetop-level kpmL directory. Finally, user-specific
additions, customizations, default working environments, etc. can also be automatically loaded by
including afilekpml - user - speci fi cs. i sp inthe user'shome directory.

NOTE: it remainstheresponsibility of the user to ensurethat all such additions are compatible
with kpmL-updates.

John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ' mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node34.html [11.12.2004 22:04:29]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

KPML resource version maintenance: RESOURCE PATCHES

next |jup ||previous ||contents []index

Next: Notational conventionsin this Up: Installation and Startup Previous: Making an executable
image

KPML resource version maintenance:
RESOURCE PATCHES

KpwvL provides methods for maintaining patch levels for a set of linguistic resources and for
constructing patch files automatically on the basis of changes made to linguistic resources during a
session with the system. The details of this mechanism are described in Chapter 11 below.

7 John Bateman -- GMD/IPS -- Darmstadt, Germany
ﬂ mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node35.html [11.12.2004 22:04:32]


http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

	DOCUMENT HOME
	The KPML documentation

	www.darmstadt.gmd.de
	Differences to the hardcopy version
	Notational conventions in this document
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Index
	Introduction
	Computational Systemic-Functional Linguistics
	The purpose of the system
	The functionality of the system
	References
	Overview of the interface organization
	Overview of the documentation
	Availability of the system
	Known bugs/problems
	Troubleshooting
	The linguistic system
	Depth and Breadth
	Stratal organization
	Metafunctions
	Intra-stratal organization: choice and delicacy; structural realization
	Functional Regions
	Inter-stratal organization: interfaces
	A generic computational systemic functional system
	A specific instantiation: the Penman-style architecture
	The generation process: overview
	Network traversal
	Accessing semantic information
	Stopping traversal: bottoming out
	Pointers to further information
	Footnotes
	The KPML root interface windows
	Introduction
	The `new-style' root window: starting up
	The root commands: overview
	General System Behaviour
	Environment Directories
	Flags
	General Multilingual Operations and Modes
	Focusing Operations
	Linguistic object focusing
	Language focusing
	Region focusing
	Loading existent linguistic resources
	Simple resource set loading
	General commands for loading linguistic resources
	Loading particular kinds of linguistic objects
	Loading modes: overwriting and merging
	Overwriting mode
	Merging mode
	Loading and the multilingual modes
	Monolingual loading
	Contrastive loading
	Multilingual loading
	Resource clearing
	Saving and Creating linguistic resources
	Simple resource set saving
	General commands for saving linguistic resources
	Monolingual saving
	Contrastive saving
	Multilingual saving
	Inheriting language definitions
	Automatic lexical item acquisition and saving
	Creating unconditionalized linguistic resources
	Changing the Lisp package of inquiry implementations
	Interface suspension, exiting, etc.
	Quiting the interface
	Suspending the interface
	(Re-)Activating the interface
	Clearing the interface windows
	The KPML Inspector Window
	Overview of Commands
	Graphing systemic networks
	Basic graphing options and commands
	Quit Resource Grapher
	Printgraph
	Show examples with collected features
	Clear Collected Features
	Display Modes
	Content-oriented resource graph options
	Layout and hardcopy oriented resource graph options
	Continuation options
	Mail Intention to Work
	Producing graphs for inclusion as figures in documents
	Mouse activated resource graph options
	Showing a full system definition
	Showing the realization statements of a feature
	Showing the chooser associated with a system
	Collecting/Discollecting features
	Pruning the displayed graph
	Redisplaying a graph
	Spawning further graphs
	Graphing regions
	Contrastive and multilingual graphing
	Monolingual graphing
	Contrastive graphing
	Multilingual graphing
	Index: A
	Index: A
	Inspecting individual object definitions
	Introduction
	Display commands
	Print System
	Print Chooser
	Print Inquiry
	Print Inquiry Implementation
	Print Lexical Item
	Print Concept
	Print Relation
	Definition displaying and the multilingual modes
	Monolingual definition printing
	Contrastive definition printing
	Multilingual definition printing
	Object selection according to specified criteria
	`Who has' selections
	Who has as input
	Who has as output
	`Who can' selections
	Who can lexify
	Who can inflectify
	Who can classify
	Who can insert
	Who can order
	Who can partition
	Who can preselect
	Who can ask
	Who can identify
	Who can pose identifying inquiry
	Examples Using Features
	Direct inspection and information chains
	Introduction
	Inspection operations on grammatical systems
	Printing system definition
	Print associated chooser
	Graph Grammar starting from system
	Inspection operations on grammatical features
	Displaying usage of grammatical features
	Who has as input
	Who has as output
	Show path to
	Show chooser of feature
	Graph from feature
	Collect feature
	Uncollect feature
	Clear collected features
	Inspection operations on choosers
	Print chooser
	Show inquiries of chooser
	Systems of chooser
	Inspection operations on inquiries
	Print inquiry
	Print implementation
	Who can ask
	Who can pose identifying inquiry
	Inspection operations on lexical items
	Inspection operations on SPL terms
	Inspection operations on examples
	Overview of information inspection chains
	The KPML Development Window
	Introduction
	Window Layout
	Overview of commands
	Generation: basics
	Introduction to generation with KPML
	Starting generation
	Generation and the multilingual modes
	Monolingual generation
	Contrastive generation
	Semantic defaults and macros
	Run-time cautions
	Run-time warnings
	Running modes
	Boundary conditions
	Tracing and debugging during generation
	Introduction to generation debugging under KPML
	Generation tracing modes
	Show Constituent Starts
	Show System And Inquiry Activity
	Show Why System Is Firing
	Show Disabled Candidate Systems
	Show System Entry Dependencies
	Show Preselections
	Show Immediate Realizations
	Show Lexical Selection
	Show Lexical Features
	Show Ordering Constraints
	Show Ordering Events
	Show Ordering Results
	Show Associations
	Show Inquiry Answer Source
	Show entailed inquiry response
	Generation process control options
	Realize Selectively
	Realize until constituent number
	Single Step
	Enter Debugger on Warnings
	Generation result focusing modes
	Cumulate System and Inquiry Activity
	Update Example Record Fields
	Viewing focused results
	The cumulative history window commands
	Redisplay
	Clear history
	Display options
	Quit
	Example of use
	Activating result focusing and tracing for particular linguistic objects
	Activation of tracing
	Individual system tracing
	Individual chooser tracing
	Individual inquiry tracing
	Clearing tracing selections
	Graphical representation of systemic network traversal
	Traversal and resource graphs
	Dynamic traversal tracing
	Additional generation process control options
	Disabling and enabling systems
	Pausing on inquiries
	Pausing and restarting generation
	Inspecting the results of generation: Graph Structure
	Introduction to structure graphs
	Structure Grapher Options
	Operations available on structure constituents
	Selection expression
	Preselections
	Orderings
	Lexical constraints
	Associations
	All structural constraints
	Inspecting the results of generation: Operations on the produced strings or textual structure displays
	Switching Languages
	Summary of generation process information chains
	How to debug resources: a sketch of a method
	The `old-style' KPML interface
	Description of the interface `sub-windows'
	Basic Old-Style Interface Operations
	Clear
	Flags
	Pause
	Quit
	Resume
	Reset
	Show Linguistic Object
	Generation Display Modes
	Resource Maintenance
	Multilingual Operations
	Graph Grammar
	Graph Sentence Structure
	Ready SPL Defaults
	Generate Again
	Further type-in commands
	Abort
	Environment Directories
	Show Path To
	Evaluate Lisp Expression
	Various mouse-click triggered commands
	Static Integrity Checks: Resource maintenance
	Background concepts
	Static tests during resource loading
	Static tests on whole resource set
	Resource Verification: Example Sets and Test Suites
	Example sets and test suites
	The example operations
	Load Examples
	Write Examples
	Clear Examples
	Generate from example SPL
	Graph example structure
	Display generated string
	Show examples with features
	Copy examples with new names
	Delete some examples
	Example runner
	Starting the example runner
	Levels of detail while example running
	Low detail example running
	Medium detail example running
	High detail example running
	Features used in examples survey
	Operations on example strings and textually displayed structures
	Operations on displayed strings
	Show corresponding fundle
	Graph corresponding constituent and below
	Inspect selection expression
	Inspect corresponding semantic term
	Partial re-generation
	Operations on displayed structures
	Graph this constituent and below
	Show selection expression
	Show corresponding semantic term
	Generate again up to but not including this constituent
	Full summary of linguistic resource information chains
	Maintenance: Resource Patching
	Introduction
	Patching and loading linguistic resources
	Patching and saving linguistic resources
	Some further consequences of using the patching facility
	Modifying linguistic resources
	Example record versioning
	Acquiring lexical items
	Resource Organization and Definition Formats
	Directory structure and contents
	Resource definition formats
	Resource definition files
	General language property declarations
	Morphology style declarations
	Standard default environments
	Language-font associations
	Disabling systems
	Language variety range declarations
	Systems
	Realization Statements
	Introduction
	Basic realization constraints
	User-defined realization operators
	Morphological realization constraints
	Choosers
	Inquiries
	Lexicons
	Examples
	Punctuation
	Non-systemic system dependencies
	Default orderings
	Domain concepts and links with the lexicon
	SPL macros and defaults
	Language variety conditionalization
	Requirements for resource definitions
	Special inquiries
	Special semantic concepts and relations
	Accessing external information sources
	Semantic information from inquiry implementations
	External information from the lexicon
	Morphological information from external components
	Using KPML without the window interface
	Blackbox operation as a tactical generator
	Bookkeeping functions
	Switching languages
	Establishing network connectivity
	Inquiry default initialization
	General initialization
	Multilingual behaviour flags
	Development tools
	Linguistic Resource Loading Operations
	Generating the example set
	Modifying the resources
	Saving the resources
	Using the mouseable structures for mousing and mark-up
	The structure produced
	Conditionalization of mouse sensitivity
	Specifying additional links in the SPL: annotations
	Window startup functions
	Faster Generation
	Strictly Monolingual Generation
	Knowledge base package reduction
	Compilation of inquiry implementations
	Establishing and using a generation server
	Creating a KPML generation server
	Creating a KPML client from Lisp
	An example of a KPML Lisp client: a WWW-KPML server
	Information display modes and corresponding internal flags
	Modes and internal flags
	More detailed tracing and display modes
	Loading and storing modes
	Miscellaneous global variables
	Data Access Functions used by Inquiry Operator Implementations
	Term-Graph structures
	Other Access Functions
	Knowledge representation interface functions
	About this document ... 
	KPML documentation
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Installation and Startup
	Installing the KPML system
	Installing the Emacs/Mule-interface
	Installing the released linguistic resources
	KPML system version maintenance: PATCHES
	Making an executable image of the system
	KPML resource version maintenance: RESOURCE PATCHES


