
The KPML documentation

Chapters

Acknowledgements

Differences to the hardcopy

version

Contents

List of Figures

List of Tables

Index

Introduction

Computational Systemic-

Functional Linguistics

Installation and Startup

Notational conventions in

this document

The KPML root interface

windows

The KPML Inspector

Window

The KPML Development

Window

The `old-style' KPML

interface

Resource Verification:

Example Sets and Test Suites

Maintenance: Resource

Patching

Resource Organization and

Definition Formats

Using KPML without the

window interface

Faster Generation

Establishing and using a

generation server

References

Information display modes

and corresponding internal

flags

Data Access Functions used

by Inquiry Operator

Implementations

next

up

previous

contents

index

Next: Contents

KPML Development
Environment

Multilingual linguistic resource
development and sentence

generation

Release 1.0 (September 1996)

Current KPML patch level: 1.0.43 (May 30, 1997).

John Bateman
e-mail: j.a.bateman@stir.ac.uk

KPML versions up to 1.0 were developed at the:
Institut für integrierte Publikations- und Informationssysteme (IPSI)
Project KOMET
German Centre for Information Technology (GMD)
Dolivostr. 15, Darmstadt, Germany.

Further development (1.1 and PC-versions) is continuing at the:
Department of English Studies
University of Stirling
Stirling, FK9 4LA, Scotland

The KPML (Komet-Penman Multilingual) development environment is a system
for developing and maintaining large-scale sets of multilingual systemic-
functional linguistic descriptions (as originally set out in Bateman et al. (),

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (1 von 11) [11.12.2004 14:15:54]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-patches.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=j.a.bateman@stir.ac.uk&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML
http://www.darmstadt.gmd.de/IPSI/
http://www.darmstadt.gmd.de/publish/komet/

The KPML documentation

Knowledge representation

interface functions

About this document ...

Bateman et al. () and Matthiessen et al. ()), and for using such resources for text
generation. More generally, the intended purposes of KPML are:

● to offer generation projects large-scale, general linguistic resources
which:

❍ are well tested and verified in their coverage,
❍ possess standardized input and output specifications,
❍ and are appropriate for practical generation;

● to offer generation projects a basic engine for using such resources for
generation;

● to encourage the development of similarly structured resources for
languages where they do not already exist,

● to provide optimal user-support for undertaking such development and
refining general resources to specific needs;

● to minimise the overhead (and cost) of providing texts in multiple
languages;

● to encourage contrastive functional linguistic work;
● to raise awareness and acceptance of text generation as a useful

endeavor.

This document provides complete instructions for using the system for
developing and maintaining linguistic resources for natural language
generation.

The sources of the current public release of the system can be found in the
KPML directory on the IPSI anonymous ftp server. Use is free for academic
and research purposes. Users are asked to make available any developed
resources for the benefit of others. A linguistic resource development group is
currently being formed.

NOTE: this documentation is also available as a hardcopy manual. Minor
differences may develop between the two versions; these differences will be
added to a special section. In addition, figures and screendumps are
generally replaced in this version by their color versions. This has not yet
been carried out for all screendumps, but is happening.

● Acknowledgements
● Differences to the hardcopy version
● Contents
● List of Figures
● List of Tables
● Index

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (2 von 11) [11.12.2004 14:15:54]

ftp://www.darmstadt.gmd.de/pub/komet/KPML-1.0/

The KPML documentation

● Introduction
❍ The purpose of the system
❍ The functionality of the system
❍ Overview of the interface organization
❍ Overview of the documentation
❍ Availability of the system
❍ Known bugs/problems
❍ Troubleshooting

● Computational Systemic-Functional Linguistics
❍ The linguistic system

■ Depth and Breadth
■ Stratal organization
■ Metafunctions
■ Functional Regions

■ Intra-stratal organization: choice and delicacy; structural
realization

■ Inter-stratal organization: interfaces
❍ A generic computational systemic functional system
❍ A specific instantiation: the Penman-style architecture

■ The generation process: overview
■ Network traversal
■ Accessing semantic information
■ Stopping traversal: bottoming out

❍ Pointers to further information
● Installation and Startup

❍ Installing the KPML system
❍ Installing the Emacs/Mule-interface
❍ Installing the released linguistic resources
❍ KPML system version maintenance: PATCHES
❍ Making an executable image of the system
❍ KPML resource version maintenance: RESOURCE PATCHES

● Notational conventions in this document
● The KPML root interface windows

❍ Introduction
❍ The `new-style' root window: starting up
❍ The root commands: overview
❍ General System Behaviour

■ Environment Directories
■ Flags

❍ General Multilingual Operations and Modes
❍ Focusing Operations

■ Linguistic object focusing
■ Language focusing

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (3 von 11) [11.12.2004 14:15:54]

The KPML documentation

■ Region focusing
❍ Loading existent linguistic resources

■ Simple resource set loading
■ General commands for loading linguistic resources

■ Loading particular kinds of linguistic objects
■ Loading modes: overwriting and merging
■ Loading and the multilingual modes

❍ Resource clearing
❍ Saving and Creating linguistic resources

■ Simple resource set saving
■ General commands for saving linguistic resources

■ Monolingual saving
■ Contrastive saving
■ Multilingual saving

■ Inheriting language definitions
■ Automatic lexical item acquisition and saving
■ Creating unconditionalized linguistic resources
■ Changing the Lisp package of inquiry implementations

❍ Interface suspension, exiting, etc.
■ Quiting the interface
■ Suspending the interface
■ (Re-)Activating the interface
■ Clearing the interface windows

● The KPML Inspector Window
❍ Overview of Commands
❍ Graphing systemic networks

■ Basic graphing options and commands
■ Quit Resource Grapher
■ Printgraph
■ Show examples with collected features
■ Clear Collected Features
■ Display Modes
■ Mail Intention to Work

■ Producing graphs for inclusion as figures in documents
■ Mouse activated resource graph options

■ Showing a full system definition
■ Showing the realization statements of a feature
■ Showing the chooser associated with a system
■ Collecting/Discollecting features
■ Pruning the displayed graph
■ Redisplaying a graph
■ Spawning further graphs

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (4 von 11) [11.12.2004 14:15:54]

The KPML documentation

■ Graphing regions
■ Contrastive and multilingual graphing

■ Monolingual graphing
■ Contrastive graphing
■ Multilingual graphing

❍ Inspecting individual object definitions
■ Introduction
■ Display commands

■ Print System
■ Print Chooser
■ Print Inquiry
■ Print Inquiry Implementation
■ Print Lexical Item
■ Print Concept
■ Print Relation

■ Definition displaying and the multilingual modes
■ Monolingual definition printing
■ Contrastive definition printing
■ Multilingual definition printing

❍ Object selection according to specified criteria
■ `Who has' selections

■ Who has as input
■ Who has as output

■ `Who can' selections
■ Who can lexify
■ Who can inflectify
■ Who can classify
■ Who can insert
■ Who can order
■ Who can partition
■ Who can preselect
■ Who can ask
■ Who can identify
■ Who can pose identifying inquiry

■ Examples Using Features
❍ Direct inspection and information chains

■ Introduction
■ Inspection operations on grammatical systems

■ Printing system definition
■ Print associated chooser
■ Graph Grammar starting from system

■ Inspection operations on grammatical features
■ Displaying usage of grammatical features

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (5 von 11) [11.12.2004 14:15:55]

The KPML documentation

■ Who has as input
■ Who has as output
■ Show path to
■ Show chooser of feature
■ Graph from feature
■ Collect feature
■ Uncollect feature
■ Clear collected features

■ Inspection operations on choosers
■ Print chooser
■ Show inquiries of chooser
■ Systems of chooser

■ Inspection operations on inquiries
■ Print inquiry
■ Print implementation
■ Who can ask
■ Who can pose identifying inquiry

■ Inspection operations on lexical items
■ Inspection operations on SPL terms
■ Inspection operations on examples

❍ Overview of information inspection chains
● The KPML Development Window

❍ Introduction
❍ Window Layout
❍ Overview of commands
❍ Generation: basics

■ Introduction to generation with KPML
■ Starting generation
■ Generation and the multilingual modes

■ Monolingual generation
■ Contrastive generation

■ Semantic defaults and macros
■ Run-time cautions
■ Run-time warnings
■ Running modes
■ Boundary conditions

❍ Tracing and debugging during generation
■ Introduction to generation debugging under KPML
■ Generation tracing modes

■ Show Constituent Starts
■ Show System And Inquiry Activity
■ Show Why System Is Firing

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (6 von 11) [11.12.2004 14:15:55]

The KPML documentation

■ Show Disabled Candidate Systems
■ Show System Entry Dependencies
■ Show Preselections
■ Show Immediate Realizations
■ Show Lexical Selection
■ Show Lexical Features
■ Show Ordering Constraints
■ Show Ordering Events
■ Show Ordering Results
■ Show Associations
■ Show Inquiry Answer Source
■ Show entailed inquiry response

■ Generation process control options
■ Realize Selectively
■ Realize until constituent number
■ Single Step
■ Enter Debugger on Warnings

■ Generation result focusing modes
■ Cumulate System and Inquiry Activity
■ Update Example Record Fields

■ Viewing focused results
■ The cumulative history window commands
■ Example of use

❍ Activating result focusing and tracing for particular linguistic
objects

■ Activation of tracing
■ Individual system tracing
■ Individual chooser tracing
■ Individual inquiry tracing

■ Clearing tracing selections
❍ Graphical representation of systemic network traversal

■ Traversal and resource graphs
■ Dynamic traversal tracing

❍ Additional generation process control options
■ Disabling and enabling systems
■ Pausing on inquiries
■ Pausing and restarting generation

❍ Inspecting the results of generation: Graph Structure
■ Introduction to structure graphs
■ Structure Grapher Options
■ Operations available on structure constituents

■ Selection expression
■ Preselections

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (7 von 11) [11.12.2004 14:15:55]

The KPML documentation

■ Orderings
■ Lexical constraints
■ Associations
■ All structural constraints

❍ Inspecting the results of generation: Operations on the produced
strings or textual structure displays

❍ Switching Languages
❍ Summary of generation process information chains
❍ How to debug resources: a sketch of a method

● The `old-style' KPML interface
❍ Description of the interface `sub-windows'
❍ Basic Old-Style Interface Operations

■ Clear
■ Flags
■ Pause
■ Quit
■ Resume
■ Reset
■ Show Linguistic Object
■ Generation Display Modes
■ Resource Maintenance
■ Multilingual Operations
■ Graph Grammar
■ Graph Sentence Structure
■ Ready SPL Defaults
■ Generate Again

❍ Further type-in commands
■ Abort
■ Environment Directories
■ Show Path To
■ Evaluate Lisp Expression

❍ Various mouse-click triggered commands
● Static Integrity Checks: Resource maintenance

❍ Background concepts
■ Static tests during resource loading
■ Static tests on whole resource set

● Resource Verification: Example Sets and Test Suites
❍ Example sets and test suites
❍ The example operations

■ Load Examples
■ Write Examples
■ Clear Examples

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (8 von 11) [11.12.2004 14:15:55]

The KPML documentation

■ Generate from example SPL
■ Graph example structure

■ Display generated string
■ Show examples with features
■ Copy examples with new names
■ Delete some examples
■ Example runner

■ Starting the example runner
■ Levels of detail while example running
■ Low detail example running
■ Medium detail example running
■ High detail example running

■ Features used in examples survey
❍ Operations on example strings and textually displayed structures

■ Operations on displayed strings
■ Show corresponding fundle
■ Graph corresponding constituent and below
■ Inspect selection expression
■ Inspect corresponding semantic term
■ Partial re-generation

■ Operations on displayed structures
■ Graph this constituent and below
■ Show selection expression
■ Show corresponding semantic term
■ Generate again up to but not including this

constituent
❍ Full summary of linguistic resource information chains

● Maintenance: Resource Patching
❍ Introduction
❍ Patching and loading linguistic resources
❍ Patching and saving linguistic resources
❍ Some further consequences of using the patching facility
❍ Modifying linguistic resources
❍ Example record versioning
❍ Acquiring lexical items

● Resource Organization and Definition Formats
❍ Directory structure and contents
❍ Resource definition formats

■ Resource definition files
■ General language property declarations

■ Morphology style declarations
■ Standard default environments
■ Language-font associations

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (9 von 11) [11.12.2004 14:15:55]

The KPML documentation

■ Disabling systems
■ Language variety range declarations
■ Systems
■ Realization Statements

■ Introduction
■ Basic realization constraints
■ User-defined realization operators
■ Morphological realization constraints

■ Choosers
■ Inquiries
■ Lexicons
■ Examples
■ Punctuation
■ Non-systemic system dependencies
■ Default orderings
■ Domain concepts and links with the lexicon
■ SPL macros and defaults

❍ Language variety conditionalization
❍ Requirements for resource definitions

■ Special inquiries
■ Special semantic concepts and relations

● Accessing external information sources
❍ Semantic information from inquiry implementations
❍ External information from the lexicon
❍ Morphological information from external components

● Using KPML without the window interface
❍ Blackbox operation as a tactical generator
❍ Bookkeeping functions

■ Switching languages
■ Establishing network connectivity
■ Inquiry default initialization
■ General initialization

❍ Multilingual behaviour flags
❍ Development tools

■ Linguistic Resource Loading Operations
■ Generating the example set
■ Modifying the resources
■ Saving the resources

❍ Using the mouseable structures for mousing and mark-up
■ The structure produced
■ Conditionalization of mouse sensitivity
■ Specifying additional links in the SPL: annotations

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (10 von 11) [11.12.2004 14:15:55]

The KPML documentation

❍ Window startup functions
● Faster Generation

❍ Strictly Monolingual Generation
❍ Knowledge base package reduction
❍ Compilation of inquiry implementations

● Establishing and using a generation server
❍ Creating a KPML generation server
❍ Creating a KPML client from Lisp
❍ An example of a KPML Lisp client: a WWW-KPML server

● References
● Information display modes and corresponding internal flags

❍ More detailed tracing and display modes
❍ Loading and storing modes
❍ Miscellaneous global variables

● Data Access Functions used by Inquiry Operator Implementations
● Knowledge representation interface functions
● About this document ...

next

up

previous

contents

index

Next: Contents

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

file:///E:/Web/kpml-darmstadt/The%20KPML%20documentation.htm (11 von 11) [11.12.2004 14:15:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Differences to the hardcopy version

next

up

previous

contents

index

Next: Contents

Differences to the hardcopy version

The hardcopy documentation for KPML 1.1 is now available in the documentation ftp directory for
KPML 1.0. The functionalities described are available from the patches from 31 January 97 (KPML
1.0.33). The newer documentation is therefore provided there. The online version has not yet been
brought up to date with the newer documentation, but can still serve as the first place to look. The new
documentation is available as compressed (gzip) postscript from the ftp directory.

The currently released version of KPML is still 1.0. To update see the currently available patches.
These are detailed on the KPML patch page.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/diffs.html [11.12.2004 14:16:05]

ftp://ftp.darmstadt.gmd.de/pub/komet/KPML-1.0/documentation
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-patches.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Notational conventions in this document

next

up

previous

contents

index

Next: The KPML root interface Up: No Title Previous: KPML resource version maintenance:

Notational conventions in this
document

In the description of operations available under KPML, we will use the following notation for referring
to commands and KPML operations throughout this document.

Basic KPML commands are shown as <Load linguistic resources> ; these are generally selected by
single mouse-clicks from the appropriate menus. Arguments to such commands are shown in the
following font: RANK. These arguments may either be presented as menu options or by typing when
prompted in the Command Interaction window. Subcommands reached by further menus of options
are shown separated by colons. Several windows offer command menus. Where necessary, the
originating window for a command will be given preceding the command.

For example, the command to show all grammatical systems using a realization statement of
preselection concerning the grammatical function `Thing', which is available in the Inspector window,
will be indicated thus:

INSPECTOR: <Who can ...: ...preselect thing>

This means that the command was given by clicking first on the `Who can...' menu option in the main
command menu of the Inspector window (cf. Figure 6.1), then on `...preselect' in the secondary option
menu that this brought up, and finally by typing `thing' in at the Command Interaction pane of the
Inspector window as prompted.

 The possible windows from which commands can be issued explicitly are: ROOT, INSPECTOR,
DEVELOPMENT, GRAPH, and HISTORY. There are four subtypes of graphing windows: STRUCTURE-GRAPH,
RESOURCE-GRAPH, CHOOSER-GRAPH, and DYNAMIC-TRAVERSAL; and two types of history windows:
GENERATION-HISTORY and CUMULATIVE-HISTORY. The subtypes will often only be distinguished if the

context does not make the intended type of window clear. gif

We will also occasionally use `relative' commands, i.e., commands that assume that the user is already
in the context of some submenu. These will be specified with a root command `...'; thus the following
command description might be used to describe the same command as above, but assuming that we
are already in a discussion about the possible options leading on from the <Who can ...> command.

<...: ... preselect>

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node36.html (1 von 2) [11.12.2004 14:16:25]

Notational conventions in this document

Finally, there are also often alternative forms of commands that can be given directly by typing within
a Command Interaction pane. These will be indicated below by preceding the command name with a
colon. Thus, an alternative to the above sequence of mouse clicks is:

INSPECTOR: <:Who can preselect thing>

This means that the command `Who can preselect' was typed directly. Command completion (up to
the next word in the command) is provided during entry by typing a space.

Generally, all typed input is terminated by typing a carriage return.

Partially typed in or executed commands can be aborted by typing a control-Z.

When descriptions of Lisp functions, macros, etc. are given, the notation of Steele Jr. () will be
adopted for their usage patterns.

next

up

previous

contents

index

Next: The KPML root interface Up: No Title Previous: KPML resource version maintenance:

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node36.html (2 von 2) [11.12.2004 14:16:25]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Acknowledgements

next

up

previous

contents

index

Next: Contents

Acknowledgements

Many people have contributed during the beta releases (0.1-0.9) leading to the current state of KPML,
both in terms of actual code additions/corrections and in terms of critical feedback: particular thanks
go to Markus Fischer (ITRI, Brighton) for the original port to CLIM-2, to Cécile Paris and Keith
Vander Linden (ITRI, Brighton) for various bug fixes, to Richard Whitney (ISI, Los Angeles) for the
code for the Loom 2.1 conversion, to John Wilkinson (Univerisity of Waterloo, Canada) for several
speed-ups, to Tony Hartley (ITRI, Brighton), Cécile Paris, Brigitte Grote (FAW, Ulm), Elke Teich
(IPSI, Darmstadt), Liesbeth Degand (Université Catholique of Louvaine-la-neuve), Bernhard Hauser
(Technische Hochschule, Darmstadt) for providing much feedback throughout the early releases, and
to Melina Alexa (IPSI, Darmstadt) and Fabio Rinaldi (University of Udine and IRST, Trento) for test
driving the current interface and the documentation.

Fabio Rinaldi also receives a special additional vote of thanks for preparing the WWW-versions of
this documention!

Section 2.1 is adapted from Bateman et al. (). Appendix B, concerning the interface between inquiry
implementations and knowledge base, is taken from Bob Kasper's contributions to the Penman
documentation.

The `old-style' KPML interface (Chapter 8) is an outgrowth of a Penman window interface written by
Richard Whitney and Kevin Knight (ISI), which was in turn based on a text planner interface by
Vibhu Mittal and Cécile Paris (ISI). The simpler, non-graphical generation debugging tools and
grammar tracing facilities build on those of the Penman system--particularly those parts concerned
with the grammar. Hence, corresponding parts of this guide are updates of the Nigel Manual (Penman
Project, 1989, ISI), originally prepared by Lynn Poulton, Christian Matthiessen and John Bateman.

The original beta versions of the KPML interface and resource development environment (0.1-0.5)
and its documentation were prepared in the context of a DAAD/British Council cooperation project
(DAAD/ARC-313) between GMD/IPSI and ITRI (University of Brighton). The development of the
Penman system on which the KPML system builds was supported by the U.S. National Science
Foundation Grant IST-8408726, and U.S. Federal Contract numbers MDA903-81-C-0335, MDA903-
87-C-0641, F49620-84-C-0100, and F49620-87-C-0005. The multilingual extensions to the system
have been supported in part by the German Ministry for Research and Technology (BMFT: Project
`INTEGRA') and in part by the Australian Research Council. The development of the stratification
available in the experimental KPML-E versions of the system for supporting text type (genre) networks
and register has been supported by U.S. National Science Foundation Grant IRI-9003087, the
European Union Basic Research Action EP-6665 (`Dandelion'), and the German BMFT Project
`INTEGRA'.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/ack.html (1 von 2) [11.12.2004 14:16:43]

Acknowledgements

next

up

previous

contents

index

Next: Contents

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/ack.html (2 von 2) [11.12.2004 14:16:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contents

next

up

previous

index

Next: List of Figures Up: No Title Previous: No Title

Contents

● List of Figures
● List of Tables
● Index
● Introduction

❍ The purpose of the system
❍ The functionality of the system
❍ Overview of the interface organization
❍ Overview of the documentation
❍ Availability of the system
❍ Known bugs/problems
❍ Troubleshooting

● Computational Systemic-Functional Linguistics
❍ The linguistic system

■ Depth and Breadth
■ Stratal organization
■ Metafunctions
■ Functional Regions

■ Intra-stratal organization: choice and delicacy; structural realization
■ Inter-stratal organization: interfaces

❍ A generic computational systemic functional system
❍ A specific instantiation: the Penman-style architecture

■ The generation process: overview
■ Network traversal
■ Accessing semantic information
■ Stopping traversal: bottoming out

❍ Pointers to further information
● Installation and Startup

❍ Installing the KPML system
❍ Installing the Emacs/Mule-interface
❍ Installing the released linguistic resources
❍ KPML system version maintenance: PATCHES
❍ Making an executable image of the system
❍ KPML resource version maintenance: RESOURCE PATCHES

● Notational conventions in this document
● The KPML root interface windows

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (1 von 10) [11.12.2004 14:17:50]

Contents

❍ Introduction
❍ The `new-style' root window: starting up
❍ The root commands: overview
❍ General System Behaviour

■ Environment Directories
■ Flags

❍ General Multilingual Operations and Modes
❍ Focusing Operations

■ Linguistic object focusing
■ Language focusing
■ Region focusing

❍ Loading existent linguistic resources
■ Simple resource set loading
■ General commands for loading linguistic resources

■ Loading particular kinds of linguistic objects
■ Loading modes: overwriting and merging

■ Overwriting mode
■ Merging mode

■ Loading and the multilingual modes
■ Monolingual loading
■ Contrastive loading
■ Multilingual loading

❍ Resource clearing
❍ Saving and Creating linguistic resources

■ Simple resource set saving
■ General commands for saving linguistic resources

■ Monolingual saving
■ Contrastive saving
■ Multilingual saving

■ Inheriting language definitions
■ Automatic lexical item acquisition and saving
■ Creating unconditionalized linguistic resources
■ Changing the Lisp package of inquiry implementations

❍ Interface suspension, exiting, etc.
■ Quiting the interface
■ Suspending the interface
■ (Re-)Activating the interface
■ Clearing the interface windows

● The KPML Inspector Window
❍ Overview of Commands
❍ Graphing systemic networks

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (2 von 10) [11.12.2004 14:17:50]

Contents

■ Basic graphing options and commands
■ Quit Resource Grapher
■ Printgraph
■ Show examples with collected features
■ Clear Collected Features
■ Display Modes

■ Content-oriented resource graph options
■ Layout and hardcopy oriented resource graph options
■ Continuation options

■ Mail Intention to Work
■ Producing graphs for inclusion as figures in documents
■ Mouse activated resource graph options

■ Showing a full system definition
■ Showing the realization statements of a feature
■ Showing the chooser associated with a system
■ Collecting/Discollecting features
■ Pruning the displayed graph
■ Redisplaying a graph
■ Spawning further graphs

■ Graphing regions
■ Contrastive and multilingual graphing

■ Monolingual graphing
■ Contrastive graphing
■ Multilingual graphing

❍ Inspecting individual object definitions
■ Introduction
■ Display commands

■ Print System
■ Print Chooser
■ Print Inquiry
■ Print Inquiry Implementation
■ Print Lexical Item
■ Print Concept
■ Print Relation

■ Definition displaying and the multilingual modes
■ Monolingual definition printing
■ Contrastive definition printing
■ Multilingual definition printing

❍ Object selection according to specified criteria
■ `Who has' selections

■ Who has as input

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (3 von 10) [11.12.2004 14:17:50]

Contents

■ Who has as output
■ `Who can' selections

■ Who can lexify
■ Who can inflectify
■ Who can classify
■ Who can insert
■ Who can order
■ Who can partition
■ Who can preselect
■ Who can ask
■ Who can identify
■ Who can pose identifying inquiry

■ Examples Using Features
❍ Direct inspection and information chains

■ Introduction
■ Inspection operations on grammatical systems

■ Printing system definition
■ Print associated chooser
■ Graph Grammar starting from system

■ Inspection operations on grammatical features
■ Displaying usage of grammatical features
■ Who has as input
■ Who has as output
■ Show path to
■ Show chooser of feature
■ Graph from feature
■ Collect feature
■ Uncollect feature
■ Clear collected features

■ Inspection operations on choosers
■ Print chooser
■ Show inquiries of chooser
■ Systems of chooser

■ Inspection operations on inquiries
■ Print inquiry
■ Print implementation
■ Who can ask
■ Who can pose identifying inquiry

■ Inspection operations on lexical items
■ Inspection operations on SPL terms
■ Inspection operations on examples

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (4 von 10) [11.12.2004 14:17:50]

Contents

❍ Overview of information inspection chains
● The KPML Development Window

❍ Introduction
❍ Window Layout
❍ Overview of commands
❍ Generation: basics

■ Introduction to generation with KPML
■ Starting generation
■ Generation and the multilingual modes

■ Monolingual generation
■ Contrastive generation

■ Semantic defaults and macros
■ Run-time cautions
■ Run-time warnings
■ Running modes
■ Boundary conditions

❍ Tracing and debugging during generation
■ Introduction to generation debugging under KPML
■ Generation tracing modes

■ Show Constituent Starts
■ Show System And Inquiry Activity
■ Show Why System Is Firing
■ Show Disabled Candidate Systems
■ Show System Entry Dependencies
■ Show Preselections
■ Show Immediate Realizations
■ Show Lexical Selection
■ Show Lexical Features
■ Show Ordering Constraints
■ Show Ordering Events
■ Show Ordering Results
■ Show Associations
■ Show Inquiry Answer Source
■ Show entailed inquiry response

■ Generation process control options
■ Realize Selectively
■ Realize until constituent number
■ Single Step
■ Enter Debugger on Warnings

■ Generation result focusing modes
■ Cumulate System and Inquiry Activity

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (5 von 10) [11.12.2004 14:17:50]

Contents

■ Update Example Record Fields
■ Viewing focused results

■ The cumulative history window commands
■ Redisplay
■ Clear history
■ Display options
■ Quit

■ Example of use
❍ Activating result focusing and tracing for particular linguistic objects

■ Activation of tracing
■ Individual system tracing
■ Individual chooser tracing
■ Individual inquiry tracing

■ Clearing tracing selections
❍ Graphical representation of systemic network traversal

■ Traversal and resource graphs
■ Dynamic traversal tracing

❍ Additional generation process control options
■ Disabling and enabling systems
■ Pausing on inquiries
■ Pausing and restarting generation

❍ Inspecting the results of generation: Graph Structure
■ Introduction to structure graphs
■ Structure Grapher Options
■ Operations available on structure constituents

■ Selection expression
■ Preselections
■ Orderings
■ Lexical constraints
■ Associations
■ All structural constraints

❍ Inspecting the results of generation: Operations on the produced strings or textual
structure displays

❍ Switching Languages
❍ Summary of generation process information chains
❍ How to debug resources: a sketch of a method

● The `old-style' KPML interface
❍ Description of the interface `sub-windows'
❍ Basic Old-Style Interface Operations

■ Clear
■ Flags

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (6 von 10) [11.12.2004 14:17:50]

Contents

■ Pause
■ Quit
■ Resume
■ Reset
■ Show Linguistic Object
■ Generation Display Modes
■ Resource Maintenance
■ Multilingual Operations
■ Graph Grammar
■ Graph Sentence Structure
■ Ready SPL Defaults
■ Generate Again

❍ Further type-in commands
■ Abort
■ Environment Directories
■ Show Path To
■ Evaluate Lisp Expression

❍ Various mouse-click triggered commands
● Static Integrity Checks: Resource maintenance

❍ Background concepts
■ Static tests during resource loading
■ Static tests on whole resource set

● Resource Verification: Example Sets and Test Suites
❍ Example sets and test suites
❍ The example operations

■ Load Examples
■ Write Examples
■ Clear Examples
■ Generate from example SPL
■ Graph example structure

■ Display generated string
■ Show examples with features
■ Copy examples with new names
■ Delete some examples
■ Example runner

■ Starting the example runner
■ Levels of detail while example running
■ Low detail example running
■ Medium detail example running
■ High detail example running

■ Features used in examples survey

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (7 von 10) [11.12.2004 14:17:50]

Contents

❍ Operations on example strings and textually displayed structures
■ Operations on displayed strings

■ Show corresponding fundle
■ Graph corresponding constituent and below
■ Inspect selection expression
■ Inspect corresponding semantic term
■ Partial re-generation

■ Operations on displayed structures
■ Graph this constituent and below
■ Show selection expression
■ Show corresponding semantic term
■ Generate again up to but not including this constituent

❍ Full summary of linguistic resource information chains
● Maintenance: Resource Patching

❍ Introduction
❍ Patching and loading linguistic resources
❍ Patching and saving linguistic resources
❍ Some further consequences of using the patching facility
❍ Modifying linguistic resources
❍ Example record versioning
❍ Acquiring lexical items

● Resource Organization and Definition Formats
❍ Directory structure and contents
❍ Resource definition formats

■ Resource definition files
■ General language property declarations

■ Morphology style declarations
■ Standard default environments
■ Language-font associations
■ Disabling systems

■ Language variety range declarations
■ Systems
■ Realization Statements

■ Introduction
■ Basic realization constraints
■ User-defined realization operators
■ Morphological realization constraints

■ Choosers
■ Inquiries
■ Lexicons
■ Examples

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (8 von 10) [11.12.2004 14:17:50]

Contents

■ Punctuation
■ Non-systemic system dependencies
■ Default orderings
■ Domain concepts and links with the lexicon
■ SPL macros and defaults

❍ Language variety conditionalization
❍ Requirements for resource definitions

■ Special inquiries
■ Special semantic concepts and relations

● Accessing external information sources
❍ Semantic information from inquiry implementations
❍ External information from the lexicon
❍ Morphological information from external components

● Using KPML without the window interface
❍ Blackbox operation as a tactical generator
❍ Bookkeeping functions

■ Switching languages
■ Establishing network connectivity
■ Inquiry default initialization
■ General initialization

❍ Multilingual behaviour flags
❍ Development tools

■ Linguistic Resource Loading Operations
■ Generating the example set
■ Modifying the resources
■ Saving the resources

❍ Using the mouseable structures for mousing and mark-up
■ The structure produced
■ Conditionalization of mouse sensitivity
■ Specifying additional links in the SPL: annotations

❍ Window startup functions
● Faster Generation

❍ Strictly Monolingual Generation
❍ Knowledge base package reduction
❍ Compilation of inquiry implementations

● Establishing and using a generation server
❍ Creating a KPML generation server
❍ Creating a KPML client from Lisp
❍ An example of a KPML Lisp client: a WWW-KPML server

● References
● Information display modes and corresponding internal flags

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (9 von 10) [11.12.2004 14:17:50]

Contents

❍ More detailed tracing and display modes
❍ Loading and storing modes
❍ Miscellaneous global variables

● Data Access Functions used by Inquiry Operator Implementations
● Knowledge representation interface functions
● About this document ...

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node1.html (10 von 10) [11.12.2004 14:17:50]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

List of Figures

next

up

previous

contents

index

Next: List of Tables Up: No Title Previous: Contents

List of Figures

● Internal KPML components
● Stratal organization of linguistic resources
● Constituency and the rank scale: English lexicogrammar
● Meta-stratal organization of the computational systemic functional account
● Penman-style architecture for lexicogrammar, semantics, and their interrelationships
● Further documentation map
● Example configuration dialogue
● The KPML root interface
● Example non-interface trace of generation
● The KPML inspector window
● Dependency region (extract)
● Extract from Dependency region with links to other regions shown
● Example of EPS figure showing systemic resources
● Pruned extract from the Dependency region
● Example of region graphing: the region TAG
● Example of multilingual (monochrome) graphing
● Multilingual graphs with and without preservation of grammatical system integrity
● Graphical display of a chooser
● Graphical chooser display included in this document as an EPS file
● Mouse sensitive objects within a textual display
● Summary of information chain possibilities: resources
● KPML development environment window
● Example structural result of generation
● Generation tracing and result focusing modes
● Generation History Window
● Example of using the cumulative generation history
● Example of graphed chooser showing generation path
● Example of generation path tracing
● Successive views of the features selected during network traversal
● Example of selective traversal tracing by collecting features
● Example of structure graphing
● Successive structural snapshots during generation indicating `last' generated node
● Summary of actualization process information chains
● Old-style top level interface window
● The relation of the generation process to example records

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node2.html (1 von 2) [11.12.2004 14:18:12]

List of Figures

● Reducing constituent discrimination in example structure graphs
● Using collected features and example string displays
● Information chain possibilities: potential and realizations
● Selective patching according to language
● Contrastive generation in English and Greek using font associations for Greek pop-up

generated result windows
● Generated structure graph using font associations for Greek
● Use of Mule for extended character displays
● Use of Mule for showing grammatical structures filled by Mule-compatible lexeme definitions
● Example definition of a morphological realization operator
● Example highly multilingual system
● Distinct views on a multilingual resource (contrastive)
● Distinct views on a multilingual resource (multilingual)
● Example of mouseable structure for the sentence: `The difference has lead to some

schizophrenic behavior'
● Program configuration of the example WWW server
● Example WWW generation server in use

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node2.html (2 von 2) [11.12.2004 14:18:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

List of Tables

next

up

previous

contents

index

Next: Index Up: No Title Previous: List of Figures

List of Tables

● Comparison of representation schemes
● Realization statements and systemic notation
● Timings for differently configured KPML generation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node3.html [11.12.2004 14:18:20]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index Root for KPML

...A

...B

...C

...D

...E

...F

...G

...H

...I

...J

...K

...L

...M

...N

...O

...P

...Q

...R

...S

...T

...U

...V

...W

...X

...Y

...Z

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node4.html [11.12.2004 14:18:28]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next

up

previous

contents

index

Next: The purpose of the Up: No Title Previous: Prerequisites

Introduction

● The purpose of the system
● The functionality of the system
● Overview of the interface organization
● Overview of the documentation
● Availability of the system
● Known bugs/problems
● Troubleshooting

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node6.html [11.12.2004 14:18:37]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Computational Systemic-Functional Linguistics

next

up

previous

contents

index

Next: The linguistic system Up: No Title Previous: Troubleshooting

Computational Systemic-Functional
Linguistics

This chapter offers a generic overview of computational systemic functional linguistics. It first
presents how the linguistic system as a whole is conceived; this is the model for all aspects of the
generic system and so is the foundation on which all decisions, including many `implementational'
decisions, are made. Following this, it introduces an organization for thinking about the relationship
between theory, description, and implementation. This should make it easier to see where one should
look for details of particular aspects of the generic system.

● The linguistic system
❍ Depth and Breadth

■ Stratal organization
■ Metafunctions
■ Functional Regions

❍ Intra-stratal organization: choice and delicacy; structural realization
❍ Inter-stratal organization: interfaces

● A generic computational systemic functional system
● A specific instantiation: the Penman-style architecture

❍ The generation process: overview
■ Network traversal
■ Accessing semantic information
■ Stopping traversal: bottoming out

● Pointers to further information

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node14.html [11.12.2004 14:18:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The purpose of the system

next

up

previous

contents

index

Next: The functionality of the Up: Introduction Previous: Introduction

The purpose of the system
The KPML (Komet-Penman Multilingual) development environment is a system for developing and
maintaining large-scale sets of multilingual systemic-functional linguistic descriptions (as originally
set out in Bateman et al. (), Bateman et al. () and Matthiessen et al. ()), and for using such resources
for text generation. More generally, the intended purposes of KPML are:

● to offer generation projects large-scale, general linguistic resources which:
❍ are well tested and verified in their coverage,
❍ possess standardized input and output specifications,
❍ and are appropriate for practical generation;

● to offer generation projects a basic engine for using such resources for generation;
● to encourage the development of similarly structured resources for languages where they do

not already exist,
● to provide optimal user-support for undertaking such development and refining general

resources to specific needs;
● to minimise the overhead (and cost) of providing texts in multiple languages;
● to encourage contrastive functional linguistic work;
● to raise awareness and acceptance of text generation as a useful endeavor.

A fundamental tenet of the approach followed with KPML is that it is often mistaken to simplify the
generation task by simplifying or restricting the linguistic resources employed, just because resource
development or coverage is not a primary concern. KPML attempts to simplify the generation task by
improving access and handleability of large-scale resources. This should prompt projects to work with
large-scale resources, even when the main aims are elsewhere. The benefits of this are that fragmented
solutions that do not scale up are more easily avoided, and that proof-of-concept demonstrations can
draw on a more realistic strategic generation capability. KPML seeks to offer a stable development and
generation environment that can be used for application-near text generation and demonstration.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node7.html [11.12.2004 14:18:54]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The functionality of the system

next

up

previous

contents

index

Next: Overview of the interface Up: Introduction Previous: The purpose of the

The functionality of the system
The KPML development environment provides a convenient platform for the construction and maintenance of multilingual
linguistic resources. Interaction with the system is predominantly by combined mouse-click and graphical/textual information
presentation. User commands are offered for loading definitions of (multilingual and monolingual) linguistic resources in systemic
form, displaying these resources in a variety of ways useful for development and maintenance, performing static integrity checks
on the systemic network defined by the resources loaded, and using the resources for generation. It is also possible to use the
system as a blackbox tactical generator. The environment takes over and extends the functionality of the Penman text generation
system (Mann , Mann & Matthiessen , Penman Project), going beyond that system in terms of ease of use, development support,

and multilingual design. gif The internal components of KPML and their functionality and communication channels are shown in
the block diagram in Figure 1.1.

Figure: Internal KPML components

Particular points of emphasis of the system include:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node8.html (1 von 2) [11.12.2004 14:19:05]

The functionality of the system

● an integrated view of examples and linguistic resources: resource maintenance is supported by extensive test suites which
are interlinked with the resource definitions providing example-based on-line `documentation';

● the possibility of combining graphical views of the linguistic resources with particular details of the generation process:
generation debugging is graphically driven;

● a very high degree of modularity in the linguistic resource definitions;
● very extensive graphical and textual inspection of all aspects of the linguistic resources and their use;
● automatic resource management, including patch facilities for extending linguistic resources;
● provision of `fast generation' modes;
● provision of structured and annotated `string' generation to support hyperlinks and other application specific mouse-driven

functionalities;
● multilinguality throughout.

The view of multilingual resources supported by KPML defines a very fine granularity of language-specific conditionalization.
In Bateman et al. () and
Bateman et al. () we claim that this organization generalizes substantially beyond all previous approaches to multilinguality. The
development environment is also released with sizeable examples of multilingual linguistic resources; the most substantial of these
being the English grammar Nigel, originally developed within the Penman project , and the KOMET grammars for German and

Dutch. gif

The basic units manipulated by the system are grammatical systems, choosers, inquiries, lexical units, punctuation rules, and
examples (the latter including Penman-style SPL input specifications: Kasper). All of these are potentially multilingual in that
their contributing elements may be conditionalized to apply in specific languages. Using these object-types as the basic units that
the system manages allows KPML to offer fully automatic merging and dynamic extraction of monolingual and contrastive views of
those objects. That is, given that a system of a given name is defined as having various forms depending on the language in which
it is used, KPML can freely merge such descriptions and subsequently take them apart. As argued in Bateman et al. () and elsewhere,
this is a useful approach to managing multilinguality since it constructs multilingual descriptions around the paradigmatic unit
rather than the structural: functional equivalences are therefore more likely to be preserved.

Building on this functionality, monolingual language descriptions can be freely and automatically merged to produce multilingual
specifications and, from these, further monolingual or contrastive resource sets can be automatically extracted. Dynamic
contrastive browsing of the resource sets is also supported, as well as contrastive generation and special features for the rapid
development of resources for languages not previously handled.

next

up

previous

contents

index

Next: Overview of the interface Up: Introduction Previous: The purpose of the

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node8.html (2 von 2) [11.12.2004 14:19:05]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

References

next

up

previous

contents

index

Next: Information display modes and Up: No Title Previous: An example of a

References

-
Bateman, J. A. (1991), Language as constraint and language as resource: a convergence of
metaphors in systemic-functional grammar, Technical report, Gesellschaft für Mathematik und
Datenverarbeitung - Institut für Integrierte Publikations- und Informationssysteme, Darmstadt,
Germany. Written version of paper presented at the International Workshop on Constraint-
based Formalisms for Natural Language Generation, November 27-30, 1990, Bad Teinach.

-
Bateman, J. A., Emele, M. & Momma, S. (1992), The nondirectional representation of
Systemic Functional Grammars and Semantics as Typed Feature Structures, in `Proceedings of
COLING-92', Nantes, France.

-
Bateman, J. A., Matthiessen, C. M., Nanri, K. & Zeng, L. (1991a), Multilingual text
generation: an architecture based on functional typology, in `International Conference on
Current Issues in Computational Linguistics', Penang, Malaysia. Also available as technical
report of the department of Linguistics, University of Sydney.

-
Bateman, J. A., Matthiessen, C. M., Nanri, K. & Zeng, L. (1991b), The re-use of linguistic
resources across languages in multilingual generation components, in `Proceedings of the 1991
International Joint Conference on Artificial Intelligence, Sydney, Australia', Vol. 2, Morgan
Kaufmann Publishers, pp. 966 - 971.

-
Bateman, J. A., Matthiessen, C. M. & Zeng, L. (in preparation), A general architecture for
multilingual resources for natural language processing, Technical report, GMD/IPSI,
Darmstadt and University of Sydney.

-
Bateman, J. A. & Teich, E. (1995), `Selective information presentation in an integrated
publication system: an application of genre-driven text generation', Information Processing
and Management: an international journal; Special Issue on Summarizing Text 31(5), 753-
768.

-
Brachman, R. J. & Schmolze, J. (1985), `An overview of the KL-ONE knowledge representation
system', Cognitive Science 9(2).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (1 von 6) [11.12.2004 14:19:37]

References

-
Brew, C. (1991), `Systemic Classification and its Efficiency', Computational Linguistics
17(4), 375 - 408.

-
Carpenter, B. (1992), The Logic of Typed Feature Structures, Cambridge University Press,
Cambridge, England.

-
Degand, L. (1993), Dutch grammar documentation, Technical report, GMD/Institut für
Integrierte Publikations- und Informationssysteme, Darmstadt, Germany.

-
Devlin, K. (1990), Infons and types in an information-based logic, in R. Cooper, K. Mukai &
J. Perry, eds, `Situation Theory and its applications', Vol. I, CSLI: Center for the Study of
Language and Information, Stanford University, California, pp. 79 - 96. CSLI Lecture Notes
Number 22.

-
Emele, M., Heid, U., Momma, S. & Zajac, R. (1992), `Interactions between linguistic
constraints: Procedural vs. declarative approaches', Machine Translation 6(1). (Special edition
on the role of text generation in MT).

-
Finkler, W. & Neumann, G. (1988), MORPHIX: A fast realization of a classification-based
approach to morphology, in `Proceedings of the 4th. ÖGAI: Wiener Workshop
Wissensbasierte Sprachverarbeitung', number 176 in `Informatik Fachberichte', Springer
Verlag, Berlin.

-
Götz, T. & Meurers, W. (1995), Compiling HPSG type constraints into definite clause programs,
in `Proceedings of the 33rd. Annual Meeting of the Association for Computational Linguistics'.

-
Halliday, M. A. (1961), `Categories of the theory of grammar', Word 17, 241-292. Reprinted in
abbreviated form in Halliday (1976) edited by Gunther R. Kress, pp 52-72.

-
Halliday, M. A. (1976), The English verbal group, in G. R. Kress, ed., `Halliday: system and
function in language', Oxford University Press, London.

-
Halliday, M. A. (1978), Language as social semiotic, Edward Arnold, London.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (2 von 6) [11.12.2004 14:19:37]

References

-
Halliday, M. A. (1985), An Introduction to Functional Grammar, Edward Arnold, London.

-
Henschel, R. (1992), A proposal for merging the english and german upper models, Technical
report, GMD/Institut für Integrierte Publikations- und Informationssysteme, Darmstadt, West
Germany, Darmstadt, Germany.

-
Henschel, R. (1994), Declarative representation and processing of systemic grammars, in
C. Martin-Vide, ed., `Current Issues in Mathematical Linguistics', Elsevier Science Publisher
B.V., Amsterdam, pp. 363-371.

-
Henschel, R. (1995), Traversing the Labyrinth of Feature Logics for a Declarative
Implementation of Large Scale Systemic Grammars, in Suresh Manandhar, ed., `Proceedings
of the CLNLP 95'. April 1995, South Queensferry.

-
Kameyama, M., Ochitani, R. & Peters, S. (1991), Resolving translation mismatches with
information flow, in `Annual Meeting of the Assocation of Computational Linguistics',
Association of Computational Linguistics, Berkeley, California, pp. 193-200.

-
Kasper, R. T. (1987), Systemic grammar and functional unification grammar, in J. D. Benson
& W. S. Greaves, eds, `Systemic Perspectives on Discourse, Volume 1', Ablex, Norwood, New
Jersey. Also available as USC/Information Sciences Institute, Reprint Report ISI/RS-87-179,
1987.

-
Kasper, R. T. (1989), A flexible interface for linking applications to PENMAN's sentence
generator, in `Proceedings of the DARPA Workshop on Speech and Natural Language'.
Available from USC/Information Sciences Institute, Marina del Rey, CA.

-
Kasper, R. T. & O'Donnell, M. (1990), Representing the Nigel grammar and semantics in
LOOM, Technical report, USC/Information Sciences Institute, Marina del Rey, California.

-
Kay, M. (1979), Functional grammar, in `Proceedings of the 5th meeting of the Berkeley
Linguistics Society', Berkeley Linguistics Society, pp. 142 - 158.

-
Mallery, J. C. (1994), A common lisp hypermedia server, in `Proceedings of the 1st.
International Conference on the World-Wide Web', CERN, Geneva.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (3 von 6) [11.12.2004 14:19:37]

References

-
Mann, W. C. (1983a), `The anatomy of a systemic choice', Discourse Processes . Also
available as USC/Information Sciences Institute, Research Report ISI/RR-82-104, 1982.

-
Mann, W. C. (1983b), An overview of the PENMAN text generation system, in `Proceedings of
the National Conference on Artificial Intelligence', AAAI, pp. 261-265. Also appears as
USC/Information Sciences Institute, RR-83-114.

-
Mann, W. C. (1985), `The anatomy of a systemic choice', Discourse Processes 8(1), 53-74.
Also available as ISI/RR-82-104.

-
Mann, W. C. & Matthiessen, C. M. (1985), Demonstration of the Nigel text generation
computer program, in J. D. Benson & W. S. Greaves, eds, `Systemic Perspectives on
Discourse, Volume 1', Ablex, Norwood, New Jersey, pp. 50-83.

-
Matthiessen, C. M. (1984), Choosing tense in English, Technical Report ISI/RR-84-143,
USC/Information Sciences Institute, Marina del Rey, CA.

-
Matthiessen, C. M. (1987), Notes on the organization of the environment of a text generation
grammar, in G. Kempen, ed., `Natural Language Generation: Recent Advances in Artificial
Intelligence, Psychology, and Linguistics', Kluwer Academic Publishers, Boston/Dordrecht.
Paper presented at the Third International Workshop on Natural Language Generation, August
1986, Nijmegen, The Netherlands.

-
Matthiessen, C. M. (1995), Lexicogrammatical cartography: English systems, International
Language Science Publishers, Tokyo, Taipei and Dallas.

-
Matthiessen, C. M. & Bateman, J. A. (1991), Text generation and systemic-functional
linguistics: experiences from English and Japanese, Frances Pinter Publishers and St. Martin's
Press, London and New York.

-
Matthiessen, C. M., Nanri, K. & Zeng, L. (1991), Multilingual resources in text generation:
ideational focus, in `Proceedings of the 2nd Japan-Australia Joint Symposium on Natural
Language Processing', Kyushu Institute of Technology, Kyushu, Japan.

-

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (4 von 6) [11.12.2004 14:19:37]

References

Mellish, C. S. (1988), `Implementing systemic classification by unification', Journal of
Computational Linguistics 14(1), 40-51.

-
Monachini, M. & Calzolari, N. (1994), Synopsis and comparison of morphosyntactic
phenomena encoded in lexicons and corpora. a common proposal and applications to European
languages, Technical report, Istituto di Linguistica Computazionale. Draft version of EU-LRE
Project Eagles deliverable EAG-LSG/IR-T4.6/CSG-T3.2.

-
Nerbonne, J. (1992), `Representing grammar, meaning and knowledge'. (Papers from KIT-
FAST Workshop, Technical University Berlin, October 9th - 11th 1991).

-
Penman Project (1989), PENMAN documentation: the Primer, the User Guide, the Reference
Manual, and the Nigel manual, Technical report, USC/Information Sciences Institute, Marina
del Rey, California.

-
Pollard, C. & Sag, I. A. (1987), Information-based syntax and semantics: volume 1, Chicago
University Press, Chicago. Center for the Study of Language and Information; Lecture Notes
Number 13.

-
Rösner, D. & Stede, M. (1994), Generating multilingual documents from a knowledge base:
the TECHDOC project, in `Proceedings of the 15th. International Conference on Computational
Linguistics (COLING 94)', Vol. I, Kyoto, Japan, pp. 339 - 346.

-
Sefton, P. M. (1990), Making plans for Nigel (or defining interfaces between computational
representations of linguistic structure and output systems: Adding intonation, punctuation and
typography systems to the PENMAN system), Technical report, Linguistic Department,
University of Sydney, Sydney, Australia. Batchelor's Honours Thesis.

-
Steele Jr., G. L. (1990), Common Lisp: the language, (2nd. edition) edn, Digital Press.

-
Teich, E. (1992), Komet: grammar documentation, Technical report, GMD/Institut für
Integrierte Publikations- und Informationssysteme, Darmstadt, West Germany.

-
Tomita, M. & Carbonell, J. G. (1986), Another stride towards knowledge-based machine
translation, in `Proceedings of COLING 86', pp. 633-638. 11th. International Conference on
Computational Linguistics; Bonn, August.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (5 von 6) [11.12.2004 14:19:37]

References

-
Uszkoreit, H. (1991), Strategies for adding control information to declarative grammars, in
`Proceedings of the 1991 Meeting of the Association for Computational Linguistics',
Association for Computational Linguistics, Berkeley, California.

-
Zajac, R. (1992a), `Inheritance and constraint-based grammar formalisms', Computational
Linguistics 18(2), 159 - 182. (Special issue on inheritance: 1).

-
Zajac, R. (1992b), Towards computer-aided linguistic engineering, in `Proceedings of
COLING-92', Vol. II, pp. 828 - 834.

-
Zeng, L. (1992), ML-Penman: implementation notes, Technical report, GMD/IPSI and
University of Sydney.

#1#

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node363.html (6 von 6) [11.12.2004 14:19:37]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of the interface organization

next

up

previous

contents

index

Next: Overview of the documentation Up: Introduction Previous: The functionality of the

Overview of the interface organization
The user interface for KPML provides specialized windows for three distinct kinds of work that are
typically involved in linguistic resource development and maintenance. These are:

● Loading and saving sets of linguistic resources and determining overall system behavior.
● Developing, maintaining and debugging sets of resources by generation.
● Inspecting linguistic resources and objects.

Each of these activities requires different commands and are conceptually separate. The
documentation reflects this separation and describes the functionalities offered to support each activity
in distinct chapters.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node9.html [11.12.2004 14:19:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of the documentation

next

up

previous

contents

index

Next: Availability of the system Up: Introduction Previous: Overview of the interface

Overview of the documentation
This user guide is primarily concerned with enabling a user to use KPML for resource development and
multilingual text generation. Particular sections provide details on:

● installing and loading the release version of the KPML system (Chapter 3),
● loading released versions of linguistic resources into the system for inspection or generation

(Section 5.7),
● inspecting the organization of loaded resources (Chapter 6),
● testing the integrity of resources and using them for generation (Chapters 9 and 10),
● creating new resources (Section 5.9.1).
● using the system in blackbox generation mode as a tactical generator (Section 14.1),
● using the system directly from other Lisp programmes (Section 14.4) and from other

processes/machines (Chapter 16).

Finally, although this document assumes a general familiarity with systemic-functional linguistic
representations, a brief abstract overview is given in Section 2.1, and a set of pointers to further
information is given in Section 2.4.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node10.html [11.12.2004 14:19:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Availability of the system

next

up

previous

contents

index

Next: Known bugs/problems Up: Introduction Previous: Overview of the documentation

Availability of the system
KPML is freely available for research purposes; the latest public release can be found on the IPSI ftp-
server, ftp.darmstadt.gmd.de, under the directory /pub/komet. The system is written in
Common Lisp, using CLOS and CLIM. The resources also assume the presence of the knowledge
representation language LOOM, available free from ISI, Los Angeles, for some of their semantic
specifications. Use of other knowledge representation systems is straightforward (see Appendix C).

Note: the full functionality of KPML is now dependent on Allegro Common Lisp 4.2 or newer
with CLIM 2.0 or newer.

 The system will run with reduced functionality (approximately that of KPML 0.8) on other
Common Lisp configurations; in particular with:

● Lucid Common Lisp 4.1 with and without CLIM 1 (SunOS 4)
● Lucid Common Lisp 4.2 with and without CLIM 2 (SunOS 5.3/Solaris 2.3)

Note that due to ongoing code changes that are bringing KPML into accordance with Common Lisp the
Language, second edition (Steele Jr.) and the ANSI standard, KPML is no longer available for any
Lisps prior to the versions given above. Moreover, the version for Allegro Common Lisp/CLIM is the

only version that is currently being fully supported. gif Standalone versions of the system can be
made available for Solaris 2.3 and up.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node11.html [11.12.2004 14:20:03]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Known bugs/problems

next

up

previous

contents

index

Next: Troubleshooting Up: Introduction Previous: Availability of the system

Known bugs/problems
The following are known to be problematic or missing at the time of the present release of KPML.

● The multilingual interaction of stacked SPL default environments from differing languages
simultaneously is not yet supported. Since it appears that virtually no one knows that one can
use stacked SPL default environments anyway, this is probably not overly problematic at this
time.

● The argument completion facility can be fairly slow if large resource sets have been loaded and
the machine being run on is not the fastest.

The following problems can be encountered with non-Allegro use of the system.

● Some CLIM releases (e.g., Lucid CLIM) produce a header for hardcopy postscript files that may
not be directly appropriate for printing. Lucid CLIM produces

%! nonconforming
%%Creator: CLIM 1.0
%%DocumentFonts: (atend)

The first line of this should be simply edited to make it palatable for a printer, e.g.:

%!PS-Adobe-2.0
%%Creator: CLIM 1.0
%%DocumentFonts: (atend)

● There are some occasional incompatibilities left in the Lucid CLIM-2 version that can result in
the window manager throwing control to the Lisp debugger: the abort option offered in the
Lisp listener generally allows one to continue.

● The entire window interface can freeze under Lucid CLIM-1 (SunOS 4). This behaviour has
not been traceable to any particular cause. Use of the system with this somewhat aged
configuration is, however, certainly not recommended.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node12.html [11.12.2004 14:20:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Troubleshooting

next

up

previous

contents

index

Next: Computational Systemic-Functional Linguistics Up: Introduction Previous: Known
bugs/problems

Troubleshooting
If serious errors occur during the loading of Loom, check that Loom has been previously compiled.
KPML will not try to compile Loom itself, but loading a noncompiled Loom version will fail.

If installation appears to have been completed successfully, but examples do not generate the intended
strings, then some component of the lingusitic resources has not been loaded appropriately. There are
some systematic failures that can be indicative of particular causes. Most typical is that all SPL inputs
result only in nominal phrases being generated: this is usually due to the Upper Model not having
been loaded during the configuration phase.

If Emacs and Allegro Common Lisp are not being used, then error conditions can cause more than
one process to use the originating Lisp listener simultaneously! The user must ensure that the required
input makes it way to the appropriate process (e.g., by repeating it until accepted).

If the interface is up and running but after selection of some command it stops reacting, then check:

1. that all of the KPML windows are `open' or `expanded'--if a window is `closed' or `iconized',
menus dependent on that window will not be brought up until the window is open;

2. that no error condition (e.g., a network or X-server fault) has thrown control back to the calling
Lisp process.

It is possible that some unfortunately syntactically misformed resource definitions that escape
detection on loading can bring the interface to a halt if a request is made to inspect them. Since
inspection can only take place in the Inspector window (Chapter 6), it is generally only this window
that is affected. Should this occur, there is no available option for continuing, and control-Z from the
interface fails to abort, then the Inspector can be restarted by typing at the originating Lisp listener (cf.
Section 14.6):

(kpml-i::startup-resource-inspector-frame T)

next

up

previous

contents

index

Next: Computational Systemic-Functional Linguistics Up: Introduction Previous: Known
bugs/problems

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node13.html (1 von 2) [11.12.2004 14:20:21]

Troubleshooting

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node13.html (2 von 2) [11.12.2004 14:20:21]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The linguistic system

next

up

previous

contents

index

Next: Depth and Breadth Up: Computational Systemic-Functional Linguistics Previous:
Computational Systemic-Functional Linguistics

The linguistic system

This generic account of computational systemic-functional linguistic (SFL) systems begins with the
structure and organization of the linguistic system. This is crucial for understanding every aspect of
the computational system. We also use it below to more finely articulate what levels of description are
available to us computationally.

● Depth and Breadth
❍ Stratal organization
❍ Metafunctions
❍ Functional Regions

● Intra-stratal organization: choice and delicacy; structural realization
● Inter-stratal organization: interfaces

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node15.html [11.12.2004 14:20:34]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Depth and Breadth

next

up

previous

contents

index

Next: Stratal organization Up: The linguistic system Previous: The linguistic system

Depth and Breadth

SFL conceives of language as a resource for making and expressing meanings--a potential for making
meaning, or `meaning potential' for short. This resource is interpreted (i) as a multi-functional system
and (ii) as a multi-stratal system of systems; we describe what this entails for a linguistic account in
the following two subsections. We then go on to illustrate how linguistic descriptions are represented
in SFL and show how this is particularly suited for use as a resource for uncovering the kinds of
information and processes that are necessary for controlling linguistic resources.

● Stratal organization
● Metafunctions
● Functional Regions

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node16.html [11.12.2004 14:20:39]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Stratal organization

next

up

previous

contents

index

Next: Metafunctions Up: Depth and Breadth Previous: Depth and Breadth

Stratal organization

The context-embedded system of language as a whole is in SFL organized as a resource for making and
exchanging meanings. It is organized in such a way that it can construe the symbolic `gap' between
high-level communicative goals in the context of communication and expressions in speech or
writing; it construes this `gap' through organization into a series of stratified subsystems -- from the
most abstract stratum of semantics to the least abstract level of expression, the resources for
expressing the grammar's wordings in writing (graphology) or speech (phonology). Each stratal
subsystem is organized in such a way that it can relate to its immediate stratal environment: it is
organized as inter-related strategic options available to the next higher stratum. Thus, any given
stratum is contextualized by the immediately higher stratum -- the higher stratum provides the
functional motivation for the lower one; and the lower one provides the resources to realize the higher
stratum. This is crucial in the design of a multilingual system: languages may have a fair amount of
functional commonality at one stratum but diverge with respect to the realization at the stratum next
below.

So far three levels of abstraction in the resources that make up language have received extensive
computational treatments -- a higher level that supports processing global to a text, a lower level that
supports more local text processing, and an intermediate level that serves as an interface between the
former two. These three levels constitute three strata in a stratal theory of language in context such as
systemic functional theory or stratificational theory:

● the highest stratum -- the semantic environment: higher-level meanings that provide the
semantic environment for any text, and the principal means of relating to context;

● the intermediate stratum -- the semantic interface: the semantic interface resources for relating
these higher-level meanings to the grammar;

● the lowest stratum -- the lexicogrammar: the grammatical resources for wording the meanings,
for expressing them lexically and structurally.

We therefore prefer a rather more finely differentiated stratification than that typical in computational
linguistics and give full stratal status to the relations defined between semantics and grammar. This is
both linguistically necessary and practically useful. Emele et al. () demonstrate that the sheer diversity
of interactions between distinct kinds of linguistic information is guaranteed to defeat any staged
approach to generation/understanding that successively maps between levels of representation. A
highly differentiated scheme of stratification then simplifies inter-stratal mappings and provides
maximal support for the necessarily simultaneous resolution of constraints drawn from multiple levels
of representation. This becomes increasingly important the further one moves away from toy research
prototypes.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node17.html (1 von 2) [11.12.2004 14:20:50]

Stratal organization

next

up

previous

contents

index

Next: Metafunctions Up: Depth and Breadth Previous: Depth and Breadth

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node17.html (2 von 2) [11.12.2004 14:20:50]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Metafunctions

next

up

previous

contents

index

Next: Functional Regions Up: Depth and Breadth Previous: Stratal organization

Metafunctions

 All three of these strata are concerned with meaning. This is reflected in their functional organization in various ways. Most
generally, this can be seen in the functional diversity of the resources associated with each stratum. SFL traditionally diversifies
the functional spectrum into three highly generalized metafunctions, to which any use of language is necessarily simultaneously
responsive. They constitute fundamental principles of linguistic organization and are thus embodied in the linguistic system.
Each makes its own contribution. The three metafunctions, the ideational, the interpersonal, and the textual, have been
described extensively in the SFL literature (e.g., Halliday , Halliday) but, for present purposes, may be simply glossed as
follows.

● Ideational: the means we have of representing the world to ourselves; it largely corresponds to what has been termed
`propositional content'. It is, as the name suggests, concerned with `ideation'. It provides the speaker with the resources
for interpreting and representing `reality'. There are two ideational subtypes, the `experiential' metafunction and the
`logical' one. The former is a mode of ideation that construes experience in terms of particular components and
subcomponents. It is the mode of organization of, e.g., the TRANSITIVITY structure of the clause (configurations of
transitivity functions, such as Actor (she) + Process (gave) + Recipient (to the poor). The latter is a highly generalized
mode of ideation that operates in terms of very general relations such as modification. It is the mode of organization for
creating complexes of various kinds, such as coordinate and appositional structures, which are chains of interdependent
elements (rather than configurations of constituent components).

● Interpersonal: the range of meaning concerned with the expression of social relationships and speakers' attitudes and
evaluations. It provides the speaker with the resources for creating and maintaining interpersonal relations with the
listener, e.g., by assigning speech roles such as questioner and (intended) answerer and by intruding into the speech
situation by giving or demanding comments on what is being said. These resources are represented in the grammar of
the clause as MOOD, MODALITY, and other types of interpersonal assessments. For instance, independent clauses in
English are organized into Mood (e.g., he will) + Residue (e.g., leave tomorrow). The Mood element consists of Subject
and Finite verbal element and reflects MOOD selections; thus Subject preceding Finite realizes the selection of declarative
(he will), whereas Finite before Subject realizes yes-no interrogative (will he).

● Textual: the resources responsible for making language appropriate to its particular context of use, including resources
that support the connectivity and coherence of text. It provides the speaker with the resources for contextualizing the
ideational and interpersonal information to be presented. We will see extensive illustrations of the particular resources
available below.

These three metafunctional components within lexicogrammar and the semantic interface relate to three functionally distinct
bases of support within the highest stratum. The semantic environmental manifestations of the metafunctions are the ideation
base, the interaction base, and the text base. We use the term `ideation' base in preference to the traditional `knowledge base'
since it makes the functional position, or `address' (i.e., the intersection of the semantic stratum with the ideational
metafunction, which we shall write as `semanticsideational') of the base explicit. The interaction base (semanticsinterpersonal)
is then concerned, among other things, with the social and epistemic relationship between speaker and listener; it subsumes the
notion of `user model'. The text base (semanticstextual) is concerned with, among other things, rhetorical relations,
newsworthiness, identifiability and thematic progression in text; it subsumes the notion of `discourse model'. In more detail, the
semantic environment of the lexicogrammar is organized into:

the ideation base, which is a theory of `reality' -- what one might call a semanticization of the world. gif This is
a part of the context that supports `ideation' and hence the ideational component of the lexicogrammar, i.e., a particular
interpretation of the world. The phenomena of the world are ranked and are organized into networks -- taxonomies of
sequences, process configurations, and simple phenomena. They are interpreted as units with a functional type of
structure. For instance, process configurations are configurations of a nuclear process, participants, and circumstances --
processes of doing and happening, of sensing, of saying, and of being and having.

● The interaction base, which is a theory of (symbolic) interaction and role relationships. This is the part of the context
that supports linguistic interaction or exchange and hence the interpersonal component of the grammar, i.e., the
speaker's assignment of linguistic role-relationships, the speaker's evaluations, attitudes, and so on. In some respects, we
can think of the interaction base as different interpersonal colourings superimposed on the ideation base.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node18.html (1 von 2) [11.12.2004 14:21:04]

Metafunctions

● The text base, which is a theory of information as text. This is the part of the context that supports the presentation of
information from the ideation base and the interaction base as text in context.

The contents of the linguistic system are thus cross-classified along two dimensions: stratal `height' and metafunctional
`breadth'; this is summarized in Figure 2.1.

Figure: Stratal organization of linguistic resources

next

up

previous

contents

index

Next: Functional Regions Up: Depth and Breadth Previous: Stratal organization

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node18.html (2 von 2) [11.12.2004 14:21:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Intra-stratal organization: choice and delicacy; structural realization

next

up

previous

contents

index

Next: Inter-stratal organization: interfaces Up: The linguistic system Previous: Functional Regions

Intra-stratal organization: choice and delicacy; structural
realization

All stratal subsystems have the same general principles of organization. Since these principles always reoccur, at all the
differing scales, or strata, in the system, we refer to them as fractal principles. The fundamental fractal principle is that of
taxonomic choice. This has often been obscured by the fact that different `notations' are usually used for the ideation or
knowledge base and for the lexicogrammar -- for example, frame-based inheritance networks such as those found in KL-ONE
and the systemic networks of systemic grammar. We emphasize the similarity in the organization because any solution to the
problem of integrating multiple languages in the resources that has been worked out for one stratal subsystem has
implications for the others. That is, the issue of how to represent commonality and difference in choice is general across the
whole system of language in context, including for example, the ideation base and the grammar. To bring out the
commonalities, we will first characterize the common organization principle without committing to any particular notational
representation for encoding the information in the ideation base or the grammar.

Both the ideation base and the grammar are organized as a network of types that form a taxonomic hierarchy (known
variously as a concept hierarchy, subsumption lattice or system network). These types are related by Boolean operators: a
given type may be a subtype of a single type, a conjunction of other types or a disjunction of other types. For our purposes
here, types are distinguished in terms of structural properties: each type may have structural consequences -- a configuration
of roles (slots, attributes, functions). Each role may be restricted as to what type can serve that role (value restriction, type,
preselection). The table in Table 2.1 summarizes the manifestation of the general organization just sketched in frame-based
inheritance networks used for representing `knowledge' and in system networks used for representing lexical and
grammatical information.

Table: Comparison of representation schemes

We adopt the system network representation as our general representation medium and have extended the notation for
multilingual representation--it now captures what is required of a multilingual representation generally. Our selection of
multilingual system networks as the basic representational resource mirrors corresponding attempts to use a single formalism,
such as typed feature structures (cf. Carpenter) or `infons' (cf. Devlin), for all types of linguistic information (as done in, for
example, Pollard & Sag (), Zajac (), Kameyama et al. (), Nerbonne () and others). We draw a distinction, however, between
the linguistic theoretical level of description (at which systemic networks appear) and the representation theoretical level (at
which typed feature structures or infons appear). We present this in more detail below.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node20.html (1 von 3) [11.12.2004 14:21:28]

Intra-stratal organization: choice and delicacy; structural realization

The specification of taxonomically organized choices as a hierarchy of alternative types constitutes a potential. Any type may
be instantiated as a token -- an actual concept or an actual grammatical unit such as a clause. In the ideation base of a
generation system, tokens are stored as `instantial knowledge' (or assertional knowledge, contrasting with the type of
knowledge sometimes called terminological; see, e.g., Brachman & Schmolze () for a standard description) -- particular facts
about particular individuals at particular times, etc. In the grammar, tokens are not stored -- they are only created in the
process of generation/understanding: particular paths through the taxonomic hierarchy and instantial wordings. That is, the

system stores instantial meaning in the ideation base but not in the grammar. gif

We can now describe the fractal dimensions of the linguistic theoretical level in more detail. The most important are axis,
rank and delicacy.

 The dimension of axis separates the strategic, taxonomic organization within a stratum as choice -- as represented by
system networks -- and the tactic realizations of choices -- as represented in realization statements. The former gives rise to
paradigmatic descriptions; the latter to syntagmatic descriptions. Within the lexicogrammatical stratum, for example, axis
separates the network of strategic options available for realizing meanings as wordings and the tactic realization of particular
options as fragments of structure. Thus, in English, if a clause is `interrogative', there is a further (i.e., more delicate: see
below) choice between `wh-interrogative' and `yes/no-interrogative'; these latter two systemic options are realized either by
the presence of a Wh-element (indicated by the realization statement [+ Wh]), which is ordered before the Finite-element (the
finite part of the verb, i.e., that carrying agreement and tense; realization statement: [Wh Finite]), or by ordering the Subject
after the Finite-element [Finite Subject] respectively. Crucially, the realization statements are always given in the context of
paradigmatic options such as `wh-interrogative' and `yes/no-interrogative', and the coherence of the paradigmatic
organization is given preference over generalizations concerning phrase structure. The paradigmatic orientation is perhaps the
central distinctive feature of the architecture overall.

 The second dimension of intra-stratal organization, delicacy, orders paradigmatic options with respect to one another. This
refers to the dependency between systems in a system network; it corresponds to the subsumption partial ordering in a type
lattice representation. The more general options provide the context in which more delicate ones are available.

 Finally, the third dimension, rank, refers to the typical constituency potential of a stratum. In English, clauses consist of
groups/phrases, which consist of words, which consist of morphemes; thus, the rank scale of the English lexicogrammar is
clause, group/phrase, word, and morpheme. Each higher-ranking unit constitutes the context in which units of the rank below
serve (see Figure 2.2). Clause, being the highest-ranking unit, is the most transparent gateway to semantics (cf. Halliday).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node20.html (2 von 3) [11.12.2004 14:21:28]

Intra-stratal organization: choice and delicacy; structural realization

Figure: Constituency and the rank scale: English lexicogrammar

next

up

previous

contents

index

Next: Inter-stratal organization: interfaces Up: The linguistic system Previous: Functional Regions

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node20.html (3 von 3) [11.12.2004 14:21:28]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Functional Regions

next

up

previous

contents

index

Next: Intra-stratal organization: choice and Up: Depth and Breadth Previous: Metafunctions

Functional Regions

 While the metafunctions provide a general division of linguistic resources, this is not sufficiently
fine for usefully manipulating large scale linguistic resources. For this reason, within each
metafunction, linguistic resources are further divided into functional regions. A functional region is a
subset of the resources that are concerned with a single `semantic/functional' area. A lexicogrammar
then typically divides into 30 or more functional regions, each of which is responsible for expressing
some particular aspect of the functional distinctions made by the stratum above. Organizing a
grammar by `rank' (see below) and `region' then provides an overall `map' of the linguistic system
which can be used to focus in on areas of interest. The regions can be seen as a kind of meta-network
imposed over the base-level network of linguistic resources. KPML strongly encourages orientation to
regions as a basic means of finding one's way about in large-scale resources.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node19.html [11.12.2004 14:21:36]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inter-stratal organization: interfaces

next

up

previous

contents

index

Next: A generic computational systemic Up: The linguistic system Previous: Intra-stratal
organization: choice and

Inter-stratal organization: interfaces

The basic inter-stratal organization employed is still the framework known as chooser and inquiry
semantics (Mann). This can be briefly described as follows.

 The chooser and inquiry framework for systemic-functional grammar (SFG) arose out of the need to
make a text generation system that was modular and re-usable across different contexts and across
different computational systems, knowledge representation languages, text planning components, etc.
It was necessary to be able to provide semantic control of the grammar component without insisting
that a user, or other computational system, be aware of the grammatical distinctions maintained and
organized within the grammar. The chooser and inquiry framework provides such a level of semantic
control by associating a chooser with each grammatical system in the system network. A chooser is a
semantic procedure which knows how to make a purposeful choice among the grammatical features of
the system with which it is associated. It makes the choice by asking one or more questions, called
inquiries, concerning parameters that, typically, refer to aspects of the meaning, concepts, etc. that
need to be expressed. It is the responsibility of the inquiries to obtain the information relevant for the
grammatical decision. As far as the grammar and choosers are concerned, therefore, the inquiries
represent oracles which can be relied on to motivate grammatical alternations appropriately for the
current communicative goals that need to be accomplished. This is a simpler task than directly
requiring a selection of grammatical features, since the choosers and inquiries decompose a single
selection among minimal grammatical distinctions into a number of selections among minimal
semantic distinctions. While the grammatical alternations may not be directly relevant to a component
external to the grammar, the semantic distinctions are: this level supplies a situation-independent
semantic classification in terms of which a computational system can organize its information for
expression in natural language.

The meaning of inquiries can be defined in two ways: either an informal natural language description
of the semantic discrimination can be given, or an actual process may be implemented which
interrogates a knowledge base, text plan, etc. in order to establish the response appropriate for the
particular communicative goal being achieved. In general, the inquiries associated with choosers of
systems from the different metafunctions in the grammar need to look to different sources for their
responses. Ideational inquiries typically examine the knowledge base or domain model of a
computational system (i.e., the ideation base); interpersonal inquiries examine a user model, beliefs,
attitudes and intentions (i.e., the interaction base); and textual inquiries examine the text plan and text
history (i.e., the text base). Matthiessen () describes the relation between the metafunctions and
different kinds of `support knowledge' that are required in some detail.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node21.html (1 von 2) [11.12.2004 14:21:43]

Inter-stratal organization: interfaces

One direction of ongoing development is to replace the association of choosers with individual
systems by a more general semantic network of inquiries. The arguments for this are presented, with
some examples, in Matthiessen & Bateman (). Currently released systems still use the individual
chooser packages however.

next

up

previous

contents

index

Next: A generic computational systemic Up: The linguistic system Previous: Intra-stratal
organization: choice and

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node21.html (2 von 2) [11.12.2004 14:21:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

A generic computational systemic functional system

next

up

previous

contents

index

Next: A specific instantiation: the Up: Computational Systemic-Functional Linguistics Previous: Inter-stratal organization:
interfaces

A generic computational systemic functional
system
We now describe the computational instantiation of sets of linguistic resources of the kind described in the previous section.
Just as the linguistic system was organized, the organization of a generic computational functional systemic system is also to be
described at a number of levels of abstraction. These levels or, to use Christian Matthiessen's suggestive metaphor, meta-strata,
 are motivated by a consideration of semiotic systems as a whole but also relate interestingly to modern practises of software
engineering. We separate out the following levels:

● Theory: at this level, the theoretical perspective -- i.e., the particular questions to be asked, the ways of going about
answering them, the view of what kind of phenomenon language is, etc. -- is specified. In the present case, we find at
this level a statement of what systemic functional linguistics is.

● Linguistic representation: here, we find:
❍ a representation dimension, where we describe the theoretically motivated representational devices available to

us for approaching language. In the present case, the most important linguistic representational device is the
systemic network.

❍ a description dimension, where we find concrete linguistic descriptions of actual languages and linguistic
phenomena, expressed using the representational resources defined.

Note that this meta-stratum involves linguists primarily; there is no necessary connection drawn with computation and
the representation adopted is specified only in terms of the theory.

● Computational representation: here, we find a re-expression of the previous representational information but in terms
which are explicitly computational. The aim would be for all information that is expressed at the linguistic
representational level to find some corresponding reflex at the computational representational level. This meta-stratum
necessary involves computational linguists -- in fact, we would use the existence of this meta-stratum as a definition of
what computational linguistics is. Crucially, as with the relation of theory to linguistic representation, there is assumed
to be a natural realizational relationship between the meta-strata of linguistic and computational representation.

● Implementation: here, we pass a `line of arbitrariness' in realization and are concerned with how we make the
computational representation run as best we can. There is no need at this level to respect modularities defined and used
at the higher meta-strata if they do not contribute to desired run-time behavior.

It is crucial to draw the distinction between the linguistic representation meta-stratum and the computational representation
meta-stratum since the two are responsive to quite different concerns. Demonstrations such as those of Mellish () or Carpenter
(, pp27-32) that systemic networks are generally `equivalent' to type lattice specifications only hold for the representation
theoretical level construal of systemic networks. Such interpretations are, however, underconstraining at the linguistic
theoretical level and make no criteria available for distinguishing between systemic networks that represent aspects of language
and `arbitrary' networks that appear very unlikely as language descriptions (such as, for example, Brew's () `systemic' network
for 3-SAT). The dimensions of organization that find expression in systemic accounts in general, and in KPML in particular, are
all to be construed at the linguistic theoretical level, i.e., at the linguistic representation meta-stratum; it remains for future work
to define possible realizations of constructs beyond the basic type lattice organization at the representation theoretical level,
although some first steps are presented in Kasper & O'Donnell () and Bateman et al. (). For more on the differences between a
systemic network and, e.g., the subsumption lattices of HPSG at the linguistic theoretical level, see Bateman (); for further
information about the two levels of theoretical representation considered abstractly, see below. The implementational basis of
other levels could similarly be changed without affecting the linguistic representation specifications at all; this reflects a further
important principle of modularity.

Although the Penman system (see Penman Project () and Section 2.3) straddled the lower two meta-strata somewhat
uncomfortably, future systemic functional systems will move steadily towards respecting this division and so it makes sense to
interpret even current systems in its terms. In particular, current considerations for alternative implementations in terms of
typed feature structures (cf., e.g., Bateman et al. , Henschel) make this division concrete. At present, the grammar definition

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node22.html (1 von 3) [11.12.2004 14:21:53]

A generic computational systemic functional system

notation used in Penman-style architectures can be placed at the computational representation meta-stratum, while the Penman
code which interprets these and compiles an internal data structure which is `traversed' as a network, building up internal
representations of syntactic descriptions, is best placed at the implementation meta-stratum. We can expect that both the
implementation details and the computational representation will change substantially over the next decade, whereas the
linguistic representation will probably be extended rather than changed.

It is perhaps useful to bear in mind that the meta-strata are to be considered as being related in a realization relationship, just as
the strata of the linguistic system. Thus, each meta-stratum contains a complete representation of the linguistic system at the
level of abstraction appropriate. A comparison with an idealized view of a generic systemic functional system should clarify
the distinctions drawn here. Such a system would consist of:

● theory: systemic-functional linguistics in general,
● linguistic representation: systemic networks used to describe some linguistic phenomena,
● computational representation: statements made in a typed feature structure formalism compiled automatically from the

linguistic representation and capable of being executed according to the the abstract semantics of the formalism,
● implementation: efficient implementation of the formalism.

This scheme is shown graphically in Figure 2.3. A representation at the computational representation meta-stratum is intended
to correspond to Uszkoreit's () `declarative specifications' or to Zajac's (, p830) `executable specifications'. They should also be
supportive, therefore, of automatic compilation for specific tasks as done, for example, by the compilation of LFG-like
grammars in KBMT (Tomita & Carbonell) and in the recent flurry of reports on automatic `migration' of HPSG resources into
various forms (e.g., Götz & Meurers). The main concern is then with the principles of organization of such resources.

Figure: Meta-stratal organization of the computational systemic functional account

next

up

previous

contents

index

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node22.html (2 von 3) [11.12.2004 14:21:53]

A generic computational systemic functional system

Next: A specific instantiation: the Up: Computational Systemic-Functional Linguistics Previous: Inter-stratal organization:
interfaces

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node22.html (3 von 3) [11.12.2004 14:21:53]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

A specific instantiation: the Penman-style architecture

next

up

previous

contents

index

Next: The generation process: overview Up: Computational Systemic-Functional Linguistics
Previous: A generic computational systemic

A specific instantiation: the Penman-
style architecture

Here we introduce very briefly the Penman-style generation architecture that is also used for the
lexicogrammatical and semantic strata supported by KPML.

The approach to generation is resource-driven, rather than instance-driven (or data-driven). The
organization of the systemic network determines the order in which information is gathered and what
information is sought. This is managed via the choosers and inquiries as described above.

The architecture is shown in graphical form in Figure 2.4, with the flow of information indicated by
broken gray arrows.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node23.html (1 von 3) [11.12.2004 14:22:08]

A specific instantiation: the Penman-style architecture

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node23.html (2 von 3) [11.12.2004 14:22:08]

A specific instantiation: the Penman-style architecture

Figure: Penman-style architecture for lexicogrammar, semantics, and their interrelationships

● The generation process: overview
❍ Network traversal
❍ Accessing semantic information
❍ Stopping traversal: bottoming out

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node23.html (3 von 3) [11.12.2004 14:22:08]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The generation process: overview

next

up

previous

contents

index

Next: Network traversal Up: A specific instantiation: the Previous: A specific instantiation: the

The generation process: overview

This section provides a very brief overview of the generation process depicted in Figure 2.4. For more
details, see Mann & Matthiessen (), Matthiessen & Bateman (). Also described here are some
particular details of the basic Penman and KPML style generation strategy.

● Network traversal
● Accessing semantic information
● Stopping traversal: bottoming out

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node24.html [11.12.2004 14:22:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Network traversal

next

up

previous

contents

index

Next: Accessing semantic information Up: The generation process: overview Previous: The
generation process: overview

Network traversal

The generation process in a Penman-style architecture such as KPML is as follows. Generation proceeds
in cycles of traversal through the defined systemic network. Each grammatical unit that is generated is
created by one cycle through the network. The result of traversing the network is a set of selected
grammatical features (the `selection expression') and a corresponding grammatical structure. The
grammatical structure is created by resolving all the collected grammatical constraints associated with
features of the selection expression. Further cycles (for grammatical subconstituents) are created by
constraining a grammatical constituent to require realization involving further features selected from
the systemic network. More information about the kinds of grammatical constraints that may be
employed is given in Section 12.2.5.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node25.html [11.12.2004 14:22:27]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Accessing semantic information

next

up

previous

contents

index

Next: Stopping traversal: bottoming out Up: The generation process: overview Previous: Network
traversal

Accessing semantic information

The features that are chosen during traversal of a network are generally selected by virtue of the
semantics to be expressed. This is mediated by the chooser and inquiry framework (developed
in Mann ()). Choosers organize inquiries into `decision trees', and inquiries are resonsible for (a)
inspecting the semantic specification that is being expressed in order to classify that specification
along specific semantic dimensions and (b) providing access to particular portions of the semantic
specification for triggering further realization. The connection between grammar and semantics is
made via a function association table that relates grammatical functions (i.e., labels for grammatical
constituents defined by the grammar) and semantic `hubs' (i.e., labels for portions of the semantics to
be expressed). Inquiries typically take grammatical functions as arguments, thus providing access to
the associated semantic information in a modular fashion. More information is provided in
Section 12.2.7.

The usual semantic organization adopted in the Penman-style architecture, and when using KPML, is an
Upper Model. All of the KPML resources are defined so that generation is possible with respect to a
single Upper Model. This provides the concrete instantiation of the ideation base introduced above.
One of the most versions of an upper model is the Generalized Upper Model (version 2.0).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node26.html [11.12.2004 14:22:34]

http://www.darmstadt.gmd.de/publish/komet/gen-um/newUM.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Stopping traversal: bottoming out

next

up

previous

contents

index

Next: Pointers to further information Up: The generation process: overview Previous: Accessing
semantic information

Stopping traversal: bottoming out

Cycles of generation will continue for all sub-constituents of a grammatical unit until all sub-
constituents are filled by some specific linguistic substance--typically lexemes or morphemes. Thus,
one possible error is an infinite regression caused by underconstraining some grammatical constituent.

In KPML there are four main ways by which a grammatical constituent may be sufficiently specified as
to receive lexical material as its realization and so not to trigger a further cycle through the grammar:

1. an explicit lexical entry can be selected for realization (with the realization statement: lexify
(Section 12.2.5),

2. a set of lexical features can be associated with a grammatical constituent (by means of the
classify realization constraint: Section 12.2.5); on completion of a traversal through the
grammar, the complete collection of lexical features for a grammatical constituent is used to
pick a matching lexical item (i.e., a lexical item whose lexical features unify),

3. an explicit lexicalization on semantic grounds can be asked for by invoking the inquiry term-
resolve-id.

4. an explicit selection of a morpheme can be made with the morphological realization operators:
preselect-substance, preselect-substance-as-stem, or
preselect-substance-as-property (Section 12.2.5.4).

Note: if a constituent has been classified, then the selection of a lexical item as described in (2) above
will not respect any additional information--it is a purely lexicogrammar internal selection. That is, no
semantic information or SPL information will be consulted. If the user wants semantic information to
be taken into account then option (3) must be taken by including the term-resolve-id inquiry in
some chooser that is activated at an appropriate point during generation (cf. Section 12.4.1).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node27.html [11.12.2004 14:22:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pointers to further information

next

up

previous

contents

index

Next: Installation and Startup Up: Computational Systemic-Functional Linguistics Previous: Stopping traversal: bottoming
out

Pointers to further information

We can now describe the documentation available to a user of a generic systemic-functional computational system in terms
of which module of the system is described. This can be done not only for each module of linguistic resources, but also for
each meta-stratum at which the module exists. Each level of abstraction and each component with each level has distinct
documentation corresponding to its differing concerns. Moreover, any additions and modifications to the framework should
position themselves explicitly with respect to this organization, since it is only by doing this that the issues and design criteria
can be defined. The dangerous tendency of mixing the linguistic and computational meta-strata should be avoided.

An overview of the documentation and its assignment to modules is given in Figure 2.5.

Figure: Further documentation map

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node28.html (1 von 3) [11.12.2004 14:23:05]

Pointers to further information

Thus, the following documents together form the basis of a documentation of the generic computational system. gif

Document Area 1: systemic theory
John Bateman. 1992. ``Systemic Grammar''. Encyclopedia of AI.

Christian Matthiessen and M.A.K. Halliday. 1994. ``Systemic Functional Grammar: a first step into the theory''.

Document Area 2: ideational semantics
John Bateman, Bob Kasper, Johanna Moore and Richard Whitney. 1990. ``A general organization of knowledge for
natural language processing: the Penman upper model.'' ISI Penman note.

Renate Henschel. 1994. ``Merging the English and German Upper Model.'' Arbeitspapiere der GMD, 848. Sankt
Augustin, Germany.

Renate Henschel and John Bateman. 1994. ``The merged upper model: a linguistic ontology for German and English''.
Proceedings of COLING '94.

John Bateman, Renate Henschel and Fabio Rinaldi. 1995. ``Generalized Upper Model 2.0: documentation''. Technical
report. GMD/Institut für Integrierte Publikations- und Informationssysteme, Darmstadt, Germany.
URL = http://www.darmstadt.gmd.de/publish/komet/gen-um/newUM.html.

Halliday, Michael A.K. and Christian M.I.M. Matthiessen, Construing experience through meaning: a language-
based approach to cognition. Berlin: de Gruyter, to appear.

Document area 3: textual semantics
John Bateman. 1993. ``Nigel: textual semantics documentation''. Technical report. GMD/Institut für Integrierte
Publikations- und Informationssysteme, Darmstadt, Germany.

John Bateman and Christian Matthiessen. ``Uncovering the text base''. In: Keqi Hao, Hermann Bluhme and Renzhi Li
(eds.), Proceedings of the International Conference on Texts and Language Research (29-31 March 1989, Xi'an,
China), pp3-45, Xi'an Jiaotong University Press, 1993.

Christian Matthiessen, ``Interpreting the textual metafunction''. Linguistics Department, University of Sydney. 1992.

Document area 4: grammar
Christian Matthiessen. 1995. ``Lexicogrammatical Cartography''. Tokyo, Tapei and Dallas: International Language
Sciences Publishers.

Elke Teich. 1992. ``KOMET grammar of German''. Technical report. GMD/Institut für Integrierte Publikations- und
Informationssysteme, Darmstadt, Germany.

Liesbeth Degand. 1993. ``Dutch Grammar Documentation''. Technical report. GMD/Institut für Integrierte
Publikations- und Informationssysteme, Darmstadt, Germany.

Bernhard Hauser. 1995. ``Multilinguale Textgenerierung am Beispiel des Japanischen''. Technische Hochschule
Darmstadt, Diplomarbeit.

Document area 5: semantic interface
Robert T. Kasper. 1989. ``A flexible interface for linking applications to PENMAN's sentence generator''. Proceedings of
the DARPA Workshop on Speech and Natural Language.

Document area 6: knowledge representation
Bob MacGregor. 1995 ``The LOOM 2.0 Manual''. ISI Technical Report.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node28.html (2 von 3) [11.12.2004 14:23:05]

Pointers to further information

In case of difficulties, the unpublished documents can be sent on request. It is, of course, also possible to focus on particular
areas of interest by referring to the overall map of documentation concerns set out in Figure 2.5. The documentation is being
steadily extended.

next

up

previous

contents

index

Next: Installation and Startup Up: Computational Systemic-Functional Linguistics Previous: Stopping traversal: bottoming
out

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node28.html (3 von 3) [11.12.2004 14:23:05]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Footnotes

...design.
The multilingual generation functionality is based on the the multilingual extensions to the
Penman system made by Licheng Zeng (University of Sydney) as documented in Zeng ().
Other extensions in KPML include provision of an integrated systemic morphology, work on
higher levels of text organization, such as genre and register, as well as numerous code
improvements and bug fixes. Only those aspects of the system relevant to developing and
maintaining multilingual grammatical resources are described in this documentation however;
for overviews of other aspects, see, for example, Bateman & Teich ().

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...Dutch.
For details of these resources, see their respective documentation and
descriptions (Matthiessen , Teich , Degand).

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (1 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...supported.
Thanks to Mick O'Donnell, KPML without the window interface has also been compiled with
Allegro PC Common Lisp with minor changes. Interested parties should contact the author.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (2 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...world.
As a complement to the notion of a conceptualization, if we take the ideation base to be a
meaning base rather than a knowledge base - this is described further in Matthiessen &
Bateman ().

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (3 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

...grammar.
This is the basic generalization; we do, of course, store instantial wordings - quotes, proverbs,
etc.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...system.
There are many more documents covering areas such as grammar and semantics; those listed

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (4 von 59) [11.12.2004 14:23:40]

Footnotes

here are those of particular relevance to the linguistic resources currently available
computationally.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...size=-1>KPML.
For some indication of what is involved in using other knowledge representation systems, see
Appendix C.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (5 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...found.
KPML will not try to compile LOOM itself. Problems will arise if one attempts to continue loading
KPML without a compiled version of LOOM being available-loading will fail ungracefully if one
attempts to use the source LOOM files without compilation. Note that if the LOOM pathnames and
directory structure have not been properly set up, then the compiled version of LOOM may fail
to be found and the system may attempt (incorrectly) to use the uncompiled source files. This
can fail with unpleasant messages such as: >>Error: The function COPY-EQ-
SLOTS is undefined or similar.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (6 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...system.
It is possible to install the system without CLIM being present; see the configuration step below.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (7 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

...size=-1>CLOS

For newer Lisps, such as Allegro 4.2 and newer, CLOS is already present in the standard Lisp
release.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...loaded.
In order to spare garbage and also for more reliability if a single image of the system is to be
used on various machines, it can be advantageous if the compilation and loading phases are
carried out separately rather than during a single Lisp session as described here.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (8 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...ones.
Once installed, it is possible for the knowledgeable user to weed out particular patches, but this
is not suggested for normal use.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (9 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...clear.
KPML-e versions include a fifth graph subtype: GENRE-STRUCTURE-GRAPH; this is not described
here.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (10 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

...monochrome.
Where this is not the case-for example, with the red/blue differentiation used for contrasting
multilingual systemic resources according to language when presented graphically (cf.
Section 6.2.5)-alternative representation-styles are selected.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...used.
For Allegro 4.2 or 4.3, for example, see Chapter 14 of the Allegro documentation.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (11 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...readable.
Note that this is a destructive operation. Having started up the window interface in demo mode,
it is not then possible to revert to non-demo mode. A similar effect can be obtained by
changing the allocated fonts-although this requires that particular known fonts are installed and
can only work to best effect if the size of some of the window panes is also altered. This is
done automatically by using the demo mode.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (12 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...options.
Patching is not activated as the default behaviour since it changes the operation of several
commands and the user needs to be aware of this-cf. Chapter 11.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (13 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

...configured.
Note that configuring KPML for a given language (Chapter 3) is no guarantee that resources for
that language exist!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (14 von 59) [11.12.2004 14:23:40]

Footnotes

.

...language.
I.e., loading a system of the same name but for another language will have no effect on the
status of the existing definition.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...size=-1>KPML.
From Lisp, pushing the values onto the value of the global variable kpml::alllanguages
is sufficient.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (15 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...origin.
Actually they are interned in the package identified by the value of kpml::*current-
language-package*, but in KPML this is always kpml.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (16 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...automatically.
Unless the flag kpml-i::*auto-print* is set.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (17 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

...bateman@gmd.de.
At present, only the most recently activated resource graph determines the region about which
a message is sent.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...figure
There are several utilities for this: it appears that most versions of CLIM do not produce an
appropriate bounding box size for figures.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (18 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...list.
This behaviour can be changed by means of the flag kpml-i::*show-collecteds*
(Section A.3).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (19 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...systems.
Definitions can include more than one system possessing a given feature, but all but the last
such definition are disabled during loading: cf. Section 7.5.2.4.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (20 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

...HREF="node107.html#chooserepseg">6.10.
The chooser graphs are the only kinds of graph produced by KPML which are displayed
vertically: note that although the display modes options still calls this `vertical spacing'
although in this case the effect is more one of changing the horizontal spacing. The EPS
example in Figure 6.10 was produced with `vertical' spacing of 5.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...generated.
Regardless of how input. Thus an SPL input specification could be given as an argument to the
function say and subsequently regenerated with <Generate Again>.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (21 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...command.
The displayed versions of the generated strings are in fact produced with the example record
operation <Display Generated String> (Section 10.2.5.1). The mouse-sensitive structure can
therefore be fine-tuned to differing granularities-it need not be a direct representation of the
syntactic structure. KPML uses the same structure for this presentation as the `rich mouseable
structure' that can be passed back to applications for further processing (e.g., adding
hyperlinks, defining their own mouse sensitivity, etc.). Section 14.5 describes these facilities in
detail.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (22 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...generation.
All warnings can be suppressed by setting the flag *demo-mode* to true: not recommended
for everyday use!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (23 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...mode.
This mode played a more important role in the early days of the Penman system before the
inquiry interface and semantic representations had become stable. It is still potentially useful
for getting to understand in detail how the architecture works and the kind of modularities that
it achieves. A detailed example of a mock-up deimplemented generation traversal is given
by Mann & Matthiessen ().

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (24 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

...`off'.
The internal symbol names for these flags are listed in Appendix A below; this enables them to
be used to control the amount of information that is given during generation when the window
interface is not being used.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...entered.
From this one can determine the effect on system entry that the system dependencies, defined
in the global variable system-dependencies, have. These system dependencies are

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (25 von 59) [11.12.2004 14:23:40]

Footnotes

responsible for helping to decide which of several apparently equally eligible systems should
be entered. Relying on particular orders is therefore possible, although not recommended. The
forms for defining such dependencies are described in Section 12.2.11.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...augmentation.
Note that since KPML does not attempt to provide a semantically complete internal
representation of the subsumption lattice entailed by the systemic network (this is still beyond
the practical capabilities of available feature logic implementations: cf. (Henschel)), it
approximates full paths by tracing backwards (i.e., rightwards in the systemic network) until a
feature participates in a disjunctive entry condition. Guidance is then given for preselections
through such entry condition: see Section 12.2.7.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (26 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...hand.
It appears currently not possible to give a nil setting once a number has been given; as a
workaround, the number zero can be given. This has the same effect as nil since traversal
cycle counting starts from 1 and so a cycle number zero is never found.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (27 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...graph.
Note that this particular chooser definition contains an oddity: the `notprecede' option for
precede-q that does not lead anywhere; this can be ignored here.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (28 von 59) [11.12.2004 14:23:40]

Footnotes

.

.

.

.

.

.

.

...window.
Note that displaying a chooser graphically when only some of its inquiries have been traced
and the flag `show generation paths' is set can lead to an incorrect graph. This can be avoided
by tracing the chooser rather than inquiries.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...size=-1>TENSE.
The linguistic details and motivations for this treatment of tense are based on (Halliday) and

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (29 von 59) [11.12.2004 14:23:40]

Footnotes

are given in Matthiessen ().

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...right.
This orientation can be changed, see the options below; it is, however, probably the most
suitable for systemic functional structures due to the long functional labels that constituents
receive.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (30 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...release.
It is also possible to graph individual constituents from a generated structure. This is managed
however via the example record and the facilities offered there for structure graphing: cf.
Sections 10.2.5 and 10.3.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (31 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

...facilities.
Slightly more than was available in KPML 0.8.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (32 von 59) [11.12.2004 14:23:41]

Footnotes

.

...follows.
Minor differences in the positioning and ordering of the options can occur as the menu is
dynamically constructed.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...loaded.
With the present release, this test is probably best run only when single language varieties are
loaded.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (33 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...HREF="node274.html#exrename">10.2.7),
Only available from the Development window under KPML 0.9.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (34 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

...`failing'.
This does not, therefore, include Lisp errors. If resources are so misformed that Lisp errors
occur, then the example runner enters the Lisp debugger as usual and example running is
suspended.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (35 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

...grow.
When more than one generated string is produced for an example, only the first of these
appears in the example runner file. This restriction does not apply to the :complete detail
file.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...therefore:
Note that the function structure information appearing is not ideal if this file is to be read into
Lisp for automatic processing since some care is necessary to avoid reader errors.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (36 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...NAME=3324> .
This is equivalent to issuing an explicit in-language command at the Lisp listener (cf.
Section 12.2.1). The effects of the in-language command can be overridden by a
subsequent in-language or by calling the function (clear-region-and-language-
defaults).

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (37 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...Emacs/Mule.
Note: the mode of interaction provided in the Penman interface whereby SPL specifications
could be edited from a stand-alone Penman process by starting a new editor-process for each
edit is not supported.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (38 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

...required.
The version of Nigel released as a KPML-resource set does, however, include systemic resources
for morphology. This provides a more flexible and transparent representation of the linguistic
resources at word and morpheme rank, but increases the generation time a little since further
cycles through the grammar are required.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (39 von 59) [11.12.2004 14:23:41]

Footnotes

...networks.
In older resources-for example, the Nigel grammar and resources created from this resource-
the lexical features and the grammatical features belong to disjoint symbol spaces and so
require a mapping from one to the other. This is being gradually changed as time permits (see
the linguistic resource descriptions accompanying those resources).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...HREF="node271.html#grexstruct">10.2.5).
Setting the global flag *global-font-switching* to true will cause all information
displayed in the inspector and development windows to be effected however. Such global font
changes take effect when an appropriate <Set Language> is issued.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (40 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...Mule.
GNU Mule is the Emacs-extension permitting editing with many different character fonts,
including Japanese, Chinese, Vietnamese, Thai, Arabic, Russian, etc.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (41 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...enforced.
Note that this is an additional realization operator over those defined in Penman-style
resources; reports of experience with its use would be appreciated.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (42 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

...`preselect'.
Although one difference is that use of inflectify allows use of the lexicon to check for
idiomatic realizations of features: i.e., irregular forms. Theoretically there is no reason why this
should not apply to higher ranks for idioms in general, but this is not currently supported in
KPML.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...HREF="node317.html#rsnotation">12.1.
The notation actually extends the standard somewhat, since not all the realization statements
supported here are standard.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (43 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...explicitly.
For early experiments in this direction, see, for example, Sefton ().

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (44 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...user.
That this is called :english is a hangover from the Penman system; it will be changed to
:gloss in the near future.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (45 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

...not.
This is a hangover from the Penman system, it will probably be generalized somewhat
sometime.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...available.
In such cases, the logical form is also, of course, preserved.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (46 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...multilingual).
There are some exceptions in the structure slots that are merged: information that is purely
bookkeeping for generation is not merged.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (47 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...model'.
For alternative, more flexible, models of relating domain to upper model concepts, see,
e.g., Bateman & Teich ().

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (48 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

...generator.
Both the SPL macro and default facilities were written by Bob Kasper for the Penman system.
This is taken on virtually unchanged in KPML.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...are:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (49 von 59) [11.12.2004 14:23:41]

Footnotes

These are mostly maintained in lists internal to KPML so customization would also be
straightforward if they are not to be defined in the upper model adopted.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...argument
An inquiry defined as taking a parameter of type Function provides such objects
appropriately (see Section 12.2.7).

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (50 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...access.
In fact, for the very lazy, lexical-feature-present-in-association-p assumes
as default for its :yes case, a symbol identical to the feature sought (given as second
parameter), and for its :no case, a symbol constructed by prefixing either the yes case, or if
this is also missing, the second parameter, with the string held in the variable *default-
negation-prefix* (which is in turn by default the string ``NON'').

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (51 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...author.
The relevant KPML/Penman internal function for this is realize-classify. This function
is called whenever a constituent has had lexical constraints specified for it in terms of
`classifications', i.e., preselections of lexical features. It returns information specifying a lexical
item that is appropriate for the constraints specified. If, however, a lexical item has already
been selected on semantic grounds (by use of the term-resolve-id inquiry), then that is
accepted without further investigation.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (52 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

...say.
Note, this is a generalization of the Penman functions say and express. It takes several
additional keyword parameters and returns results that are not available from the corresponding
Penman functions. Code relying on these features is not interchangeable with the Penman
system.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...HREF="node351.html#mouseablestructureeg">14.1.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (53 von 59) [11.12.2004 14:23:41]

Footnotes

Each printable constituent object also has a unique identifier (under the slot :id); these have
been ommited from the figure to save space.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...are:
The knowledge-base package reduction methods, as well as several internal speed-ups, were
worked out by John Wilkinson (University of Waterloo, Canada).

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (54 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...time
This is the time excluding, for example, any swapping, garbage collection, KPML once-only set
up activities (such as establishing network connectivity), and Loom classifications.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (55 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

...to:
Franz strongly recommend that safety never be set to zero for their Allegro Common Lisp.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (56 von 59) [11.12.2004 14:23:41]

Footnotes

...individually.
A CORBA-compliant protocol is being considered.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...itself.
The reader might wonder as to why there is an inconsistency in the naming; some of the flags
have names of the from *...*, most do not. This is a relic of the old Penman code still
underlying much of KPML. The flags with stars are in areas that have been reworked more
recently.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (57 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...redefined.
There are two additional functions used in the old Penman experimental nominal phrase
planner; this code is not normally used. The functions are: kb-relations and kb-
identifier.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (58 von 59) [11.12.2004 14:23:41]

Footnotes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

John Bateman - GMD/IPSI - Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/footnode.html (59 von 59) [11.12.2004 14:23:41]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The KPML root interface windows

next

up

previous

contents

index

Next: Introduction Up: No Title Previous: Notational conventions in this

The KPML root interface windows

● Introduction
● The `new-style' root window: starting up
● The root commands: overview
● General System Behaviour

❍ Environment Directories
❍ Flags

● General Multilingual Operations and Modes
● Focusing Operations

❍ Linguistic object focusing
❍ Language focusing
❍ Region focusing

● Loading existent linguistic resources
❍ Simple resource set loading
❍ General commands for loading linguistic resources

■ Loading particular kinds of linguistic objects
■ Loading modes: overwriting and merging

■ Overwriting mode
■ Merging mode

■ Loading and the multilingual modes
■ Monolingual loading
■ Contrastive loading
■ Multilingual loading

● Resource clearing
● Saving and Creating linguistic resources

❍ Simple resource set saving
❍ General commands for saving linguistic resources

■ Monolingual saving
■ Contrastive saving
■ Multilingual saving

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node37.html (1 von 2) [11.12.2004 14:24:04]

The KPML root interface windows

❍ Inheriting language definitions
❍ Automatic lexical item acquisition and saving
❍ Creating unconditionalized linguistic resources
❍ Changing the Lisp package of inquiry implementations

● Interface suspension, exiting, etc.
❍ Quiting the interface
❍ Suspending the interface
❍ (Re-)Activating the interface
❍ Clearing the interface windows

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node37.html (2 von 2) [11.12.2004 14:24:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next

up

previous

contents

index

Next: The `new-style' root window: Up: The KPML root interface Previous: The KPML root
interface

Introduction

It is assumed that most interaction between the user of the develoment environment and the KPML
system will be via the window interface. If this is not so, or if CLIM is not available, see Chapter 14 for
information about interacting with the system without the interface.

Two styles of window interface are provided: the `new' and the `old'. The old-style is that familiar to
users of the Penman system or KPML 0.8 and before; it is described in Chapter 8. Selection of style
(when available) can only be done during the KPML load up and configuration phase. The rationale for
the new-style interface is to provide both the quickest access to the information necessary for
debugging and maintenance and the ability to maintain that information on screen at all times and in
combination with other necessary information. Also provided are more graphical tools for inspecting
the results and process of generation. The new-style interface uses color-differentiation extensively
for presenting various kinds of information in combination; use of KPML is therefore recommended on

color screens, although, of course, the differentiation will still be visible in monochrome. gif

The recommended way of using KPML is as a subprocess to GNU Emacs; Emacs should be entered in
the normal way, and KPML started in an external process Common Lisp buffer. Instructions for starting

such a buffer can probably be found in the documentation of the Lisp system being used. gif Using
some of the extensions to Emacs--such as the GNU Mule system--offers here a variety of further
possibilities (cf. Section 12.2.2.3). However, it is also, of course, possible to use KPML directly without
Emacs being present.

The KPML system uses the original calling Lisp window for outputting results of commands that are
not intended for interactive use. Error conditions that arise and which are not caught by KPML may also
occasionally result in control being thrown back to the calling Lisp process. In this event, a restart of
the KPML interface (usually one of the presented options for continuing from the error) will suffice for
continuing work. For these reasons, it is recommended that the user sets up the screen so that the
calling Lisp listener (either an Emacs buffer or an interaction shell) can also be seen somewhere in the
background while working with KPML. Such error conditions will generally only arise if the user is
developing resources and the definitions are seriously incomplete, or if the window system is
disturbed in some way extrinsic to KPML (e.g., by network problems, color palette problems, etc.).

Note: if Emacs and Allegro Common Lisp are not being used, then error conditions can cause
more than one process to use the originating Lisp listener simultaneously! The user must ensure

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node38.html (1 von 2) [11.12.2004 14:25:46]

Introduction

that the required input makes it way to the appropriate process (e.g., by repeating it until
accepted).

Commands are given either by selecting from menus or by being typed within interaction panes.
Generally, all typed input is terminated by typing a carriage return. Partially typed in or executed
commands can be aborted by typing a control-Z.

 The new-style interface also provides argument completion. Control-? produces a list of possible
completions of the string already given; control-/ produces a list of all possible completions where the
string given occurs as a substring. Commands and arguments being input can be edited using the
normal input line editing commands (control-f: forwards a character, control-b: backwards a
character, control-e to end of line, control-a to beginning of line, etc.).

The remainder of this chapter describes the `new' style root interface window. Chapters 6 and 7 then
describe the other two main windows of the new style interface: the Inspector window window and
the Development window respectively.

next

up

previous

contents

index

Next: The `new-style' root window: Up: The KPML root interface Previous: The KPML root
interface

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node38.html (2 von 2) [11.12.2004 14:25:46]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The `new-style' root window: starting up

next

up

previous

contents

index

Next: The root commands: overview Up: The KPML root interface Previous: Introduction

The `new-style' root window: starting up

Once the KPML system has been loaded, and as long as it has been configured so as to include the new-
style window interface (see Chapter 3), the interface can be started by calling the Lisp function kpml-
i::startup from the selected Lisp listener (i.e., either an Emacs Common Lisp buffer or a shell).
The function takes several optional keyword arguments as indicated by the following.

 [function]

When non-nil :reset indicates that any existing instances of a KPML window interface are to be
replaced. :demo, when non-nil, brings up the window interface in demonstration mode: here the size
of fonts in windows are made very much larger so that they can be easily seen at some distance from
the screen or during overhead projection--many of the window and screen images shown in this
documentation were made using the KPML demonstration window mode in order to make them more

readable. gif

The straightforward call to:

(kpml-i::startup)

is equivalent to the call:

(kpml-i::startup :reset T :demo nil)

Images made with the make-kpml-image function (cf. Section 3.1) will automatically bring up the
window interface with default parameters when executed.

The first action of the startup function is to ask the user whether the interface is to be brought up in
monochrome or in colour. Restarts of the window interface can change their selection here as the user
requires. For example, many of the screendumps reproduced in this document were made in
monochrome mode since these can look better when printed in black-and-white.

If no linguistic resources are present on startup, the root window alone will be brought up. If linguistic
resources have been loaded, then the Inspector and Development windows described in Chapters 6
and 7 respectively will also be started automatically.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node39.html (1 von 2) [11.12.2004 14:26:05]

The `new-style' root window: starting up

next

up

previous

contents

index

Next: The root commands: overview Up: The KPML root interface Previous: Introduction

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node39.html (2 von 2) [11.12.2004 14:26:05]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The root commands: overview

next

up

previous

contents

index

Next: General System Behaviour Up: The KPML root interface Previous: The `new-style' root window:

The root commands: overview
The root window provides commands for those operations that generally precede or follow working with a set of
linguistic resources--such as loading and saving linguistic resources--as well as for selecting between general system
behaviour options. The root interface window is shown in Figure 5.1.

Figure: The KPML root interface

The root window consists of 5 panes stacked vertically. From top to bottom these are: the root command menu, the
root interaction pane, the root messages pane, the <Launch Development Windows> command button, and the
documentation line.

Most, but not all, available commands are shown in the command menu. There are also several additional commands
that can be typed directly in the middle interaction pane or selected by mouse-click from the completion menu when

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node40.html (1 von 2) [11.12.2004 14:26:18]

The root commands: overview

available (as shown in the documentation line). These latter are less frequently required commands. The prompt
shown in the interaction pane includes an indication of the current language; in the example in the figure, this can be
seen to be English.

Once resources have been loaded and the system flags have been set as desired, the development and inspection
windows can be started by clicking on the <Launch Development Windows> button. This brings up the two windows
described in the following two chapters.

Finally, the documentation line shows at all times the options available by clicking the mouse buttons. Options are
shown when applicable for the left (L) button, the middle (M) button, and the right (R) button. In the figure, there is
only one option available: clicking right would bring up the complete list of commands possible for input at the
interaction pane. Clicking on one of these would then insert it as if typed. To activate it, the user must then type a
return.

The root commands group into the following categories. Both those commands available directly via the menu and
those that need to be entered at the interaction pane are listed here, differentiated according to the notational
conventions given in Chapter 4.

● General system behaviour (<Flags> and < Environment Directories>).
● System behaviour particularly concerned with the multilinguality of loaded or stored linguistic resources

(<Multilingual Behaviour Modes> and <Set Default Language>).
● System behaviour during loading or saving particularly concerned with which types of linguistic object are to

be affected (<Focusing Operations>).
● Resource input/output: including linguistic resource sets as a whole (<Load Linguistic Resource>, <Store

Linguistic Resource>, <Create New Language>), lexicons (<Load Lexicon Files>, <:Write Lexicon Files>,
<:Clear Lexicons>), and clearing of any loaded systemic linguistic resources (<Clear Systemic Networks>).

● Exit, suspension/activation and clearing of window interface panes (<Quit>, <:Suspend>, <:Activate>, and
<:Clear Windows>).

The following sections describe these command groups in detail.

next

up

previous

contents

index

Next: General System Behaviour Up: The KPML root interface Previous: The `new-style' root window:

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node40.html (2 von 2) [11.12.2004 14:26:18]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General System Behaviour

next

up

previous

contents

index

Next: Environment Directories Up: The KPML root interface Previous: The root commands:
overview

General System Behaviour

● Environment Directories
● Flags

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node41.html [11.12.2004 14:26:29]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Environment Directories

next

up

previous

contents

index

Next: Flags Up: General System Behaviour Previous: General System Behaviour

Environment Directories

The <Environment Directories> command brings up a menu for setting/inspecting the environmental
file directories that the KPML system uses for various kinds of information access and display. The
directories currently maintained here are:

● Root of resources: the directory under which all linguistic resources hang (cf. Section 12.1).
● Hardcopy directory: the directory where postscript versions of graphed information are written

when called for--for example, when graphing systemic networks (Section 6.2.1.2), structures
(Section 7.9 and 10.2.5), or choosers (Section 6.3.2.2).

● Merging results directory: the directory that records the actions taken when resources are being
merged during loading rather than overwritten when the most verbose tracing flags are set (see
Section 5.7.2.2).

● Example runner results directory: the directory where the results of attempting to generate
selected sets of loaded examples (see Chapter 9) are recorded.

Changing the root directory, for example, is one simple way of creating resources in a new user-
specific location--this would be of particular use if different users or developing different resources
but using the same installation of KPML.

The starting value for the root directory is that given in the KPML configuration phase. The starting
values for the other directories is /tmp.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node42.html [11.12.2004 14:26:36]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Flags

next

up

previous

contents

index

Next: General Multilingual Operations and Up: General System Behaviour Previous: Environment
Directories

Flags

The command <Flags> brings up a menu containing flags that control general display characteristics
of the KPML system. These flags activate or disable:

● display of generated constituency structure: when this flag is set successful generation
processes display not only a generated string but also a representation of the grammatical
structure underlying that string. The structure is mouse sensitive and can be used for seeking
information concerning the generation process. Figure 7.2 shows an example (cf.
Section 10.3.2).

● schematic constituency display in generated strings: when set, generated strings are displayed
with internal syntactic bracketting enabling selective mouse selection of grammatical
constituents (cf. Section 10.3.1). The first output string in Figure 7.1 is an example of the use
of this mode.

● restriction of examples offered for generation according to language: when set, the menus of
pre-stored examples for generation are restricted only to show those examples defined for the
current language (cf. Section 7.4.2).

● automatic acquisition of new lexical items: when set, any new lexical items generated on-the-
fly during generation are added to a list of `new lexemes'. These can then be written out to
lexicon files following a session (cf. Section 5.9.4).

● example running results recording to various levels of detail: resource maintenance is generally
performed by running test suites. This flag sets the degree of detail in the logs of such test suite
runs (cf. Section 10.2.9).

● use of various pop-up windows for showing generation results or for inspecting linguistic
objects. In particular, generated strings, selection expressions (i.e., paths of features selected
while traversing the systemic networks), and choosers can either be presented in the relevant
development or inspector window information panes, or separately in their own pop-up
windows. The default behaviour is that selection expressions and choosers are shown in their
own windows and generated strings are shown in the development window.

next

up

previous

contents

index

Next: General Multilingual Operations and Up: General System Behaviour Previous: Environment
Directories

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node43.html (1 von 2) [11.12.2004 14:26:42]

Flags

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node43.html (2 von 2) [11.12.2004 14:26:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General Multilingual Operations and Modes

next

up

previous

contents

index

Next: Focusing Operations Up: The KPML root interface Previous: Flags

General Multilingual Operations and
Modes

This section describes the options and effects available under the commands <Multilingual Behaviour
Modes> and <Set Default Language> .

KPML provides some general modes and settings for multilingual operations that apply in some form to
almost all operations that the system offers--i.e., to loading, saving, graphing, printing, and generating.
These modes extend the flexibility and ease of use of the system particularly when multilingual
operations are being performed with any frequency.

All types of multilingual operations on resources can be carried out in three modes:

● monolingual mode, where a single monolingual view of a, possibly multilingual, resource is
taken,

● contrastive mode, where several, usually monolingual, views of a multilingual resource are
taken `side by side', or in parallel,

● multilingual mode, where a single multilingual view is taken of some selection of languages
(possibly all) drawn from a multilingual resource.

Here, a monolingual resource is understood as one which contains information only about one language
variety (whether or not this is indicated by single in-language declarations (Section 12.2.1) or by
appropriate conditionalization within linguistic unit definitions (Section 12.3)), and a multilingual
resource is understood as one which contains information about at least two language varieties.

The modes can be set by selecting the command <Multilingual Behavior Modes> ; this brings up a
menu of possibilities. The precise consequences of each of the three modes when combined with a given
multilingual operation type is set out in the individual sections below. The default behavior on starting
up a newly installed instance of KPML is always `monolingual' in all cases.

In addition, the multilingual modes menu includes options for setting whether linguistic resources are
merged during loading (see Section 5.7.2.2.2) or not, and for setting whether linguistic resources are by
default cleared before the loading of a new resource set begins. The defaults are that no merging occurs

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node44.html (1 von 2) [11.12.2004 14:26:51]

General Multilingual Operations and Modes

and that resources are cleared.

As described in the chapter concerning definition formats (Chapter 12), definitions of linguistic objects
for loading can contain explicit language conditionalizations. They need not do so, however, in which
case the language specification for a linguistic object is taken either from a declaration at the beginning
of the file containing the definition or, if no such declaration is present, from the currently known set of
languages for which KPML is configured. This behaviour is sometimes not what is required--for example,
if a definitions from some resource file are being edited and the changes are being immediately
evaluated as typically the case when using KPML combined with Emacs, then these definitions will often
not contain language conditionalizations because they are relying on the declaration at the beginning of
the file. Evaluating the definitions could then place the definition in the wrong language partitions. The
<Set Default Language> provides a solution to this problem by setting up a default set of languages for
all evaluation contexts where no explicit language conditionalization is given. This is described in more
detail in the chapter on resource patching (Chapter 11).

next

up

previous

contents

index

Next: Focusing Operations Up: The KPML root interface Previous: Flags

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node44.html (2 von 2) [11.12.2004 14:26:51]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Focusing Operations

next

up

previous

contents

index

Next: Linguistic object focusing Up: The KPML root interface Previous: General Multilingual
Operations and

Focusing Operations

This section describes the options and effects available under the command <Focusing Operations> .

● Linguistic object focusing
● Language focusing
● Region focusing

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node45.html [11.12.2004 14:27:08]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Linguistic object focusing

next

up

previous

contents

index

Next: Language focusing Up: Focusing Operations Previous: Focusing Operations

Linguistic object focusing

 Whereas the default behaviour of the loading and saving operations <Load Linguistic Resource>
and <Store Linguistic Resource> is that all linguistic resources of a given language or languages be
loaded or saved, this can be more finely controlled by focusing on the types of linguistic object that
are of interest.

The command <Focusing Operations: Focus on selected linguistic objects> brings up a menu of the
kinds of linguistic objects known to the system. This list contains the following items:

● :systems
● :choosers
● :inquiries
● :default-orderings
● :punctuation
● :lexemes
● :examples
● :inquiry-implementations
● :inquiry-defaults
● :domains
● :properties
● :resource-patches
● :kpml-lg-specific-patches

All or any of these items may be selected. Subsequent loading or saving operations will then concern
only the linguistic objects of the types selected.

 The command <Focusing Operations: Release linguistic object focus> undoes the effect of object
focusing, by setting the default list of object considered back to the full set. The full set consists of all

the linguistic objects except the two patch options. gif

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node46.html [11.12.2004 14:27:14]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Language focusing

next

up

previous

contents

index

Next: Region focusing Up: Focusing Operations Previous: Linguistic object focusing

Language focusing

 When one is working with some subset of the languages for which resources are available, it is
possible to fix attention to that subset so as to avoid repetitive queries (during, for example,
contrastive saving, graphing, generation, etc.) as to which languages are required.

The command <Focusing Operations: Focus on selected languages> brings up a menu of the
languages that are known to the system. The user should then select some subset (or all) of the
languages offered. These then become the languages that are used in any contrastive or multilingual
operations without further user queries.

 The effect of language focusing is removed by the command < Focusing Operations: Release
language focus>. Giving this command when no languages are focused has no effect.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node47.html [11.12.2004 14:27:18]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Region focusing

next

up

previous

contents

index

Next: Loading existent linguistic resources Up: Focusing Operations Previous: Language focusing

Region focusing

 Region focusing provides a finer selection of particular functional regions (cf. Section 2.1.1.3)
within languages. When a set of regions is focused, then only these regions will be effected by loading
and saving operations. Region focusing works entirely analogously to language focusing.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node48.html [11.12.2004 14:27:22]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading existent linguistic resources

next

up

previous

contents

index

Next: Simple resource set loading Up: The KPML root interface Previous: Region focusing

Loading existent linguistic resources

 Loading refers to the reading of resource definitions (according to the specifications set out in
Chapter 12) maintained in files into the KPML system. The assumed directory organization of these
resource files is as described in Section 12.1. Normally, the first operation that will be done when
starting up KPML will be to load some set of resources. The default startup loading behavior is
monolingual behavior.

● Simple resource set loading
● General commands for loading linguistic resources

❍ Loading particular kinds of linguistic objects
❍ Loading modes: overwriting and merging

■ Overwriting mode
■ Merging mode

❍ Loading and the multilingual modes
■ Monolingual loading
■ Contrastive loading
■ Multilingual loading

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node49.html [11.12.2004 14:27:26]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Simple resource set loading

next

up

previous

contents

index

Next: General commands for loading Up: Loading existent linguistic resources Previous: Loading
existent linguistic resources

Simple resource set loading

Once KPML is installed, loaded, and running, the first operation that typically needs to be performed is
to load some already existing set of linguistic resources.

The resources desired need also to have been installed and made accessible to KPML. KPML can access
resources when the directory in which the resources are kept has been placed in the global variable
root-of-resources. This can either be done during installation of KPML (see Section 3.3), or
at any time by issuing the command <Environment Directories> (see Section 5.4.1).

Following this, the simplest way to load a set of linguistic resources is with the command:

<Load Linguistic Resources>

The languages offered will be those for which KPML has been configured. gif . This command will
then cause all available resources for the designated resource set to be loaded. This includes the
grammar definition (systems, choosers, and inquiries), any lexica that are defined for the resource set,
any examples that are defined for the resource set, punctuation rules, and SPL-defaults/macros for the
language variety; for descriptions of all these resource types, see Chapter 12.

 Note that explicit language conditionalization given in an input specification always takes
precedence over any default assumptions or options. That is, if a resource set is called :english,
but contains explicit conditionalizations for :german, then it is these explicit conditionalizations that
prevail.

Resource set loading relies on the resources having the organization and internal form also described
in Chapter 12. This organization is automatically created and conformed to by any of the KPML
commands for saving linguistic resources (Section 5.9.1).

If the resource set is complete (as any of the standardly released resource sets will be), it is then
possible to generate with the loaded resources--either from the provided examples or from new
semantic specifications given by the user. Generation of an example sentence provided in the resource
set is started by the command DEVELOPMENT:<Generate Sentence EG-n> where EG-n is an example
name selected from an offered menu. The first time that a sentence is generated, it will probably be
the case that some internal bookkeeping is triggered; this does not then occur again until new
resources are loaded. For the details of the generation process see Section 7.4, and for test suite
maintenance Chapter 10.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node50.html (1 von 2) [11.12.2004 14:27:42]

Simple resource set loading

next

up

previous

contents

index

Next: General commands for loading Up: Loading existent linguistic resources Previous: Loading
existent linguistic resources

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node50.html (2 von 2) [11.12.2004 14:27:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General commands for loading linguistic resources

next

up

previous

contents

index

Next: Loading particular kinds of Up: Loading existent linguistic resources Previous: Simple
resource set loading

General commands for loading linguistic
resources

While the above loading command usage is often sufficient for using KPML, the system provides
considerably more functionality for loading linguistic resource sets.

● Loading particular kinds of linguistic objects
● Loading modes: overwriting and merging

❍ Overwriting mode
❍ Merging mode

● Loading and the multilingual modes
❍ Monolingual loading
❍ Contrastive loading
❍ Multilingual loading

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node51.html [11.12.2004 14:27:52]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading particular kinds of linguistic objects

next

up

previous

contents

index

Next: Loading modes: overwriting and Up: General commands for loading Previous: General
commands for loading

Loading particular kinds of linguistic objects

 It is possible to indicate exactly what kinds of linguistic objects are to be loaded from any resource
set by issuing the command < Multilingual Behaviour Modes: Focus on selected linguistic objects>
(Section 5.6.1). When some subset of linguistic objects are focused, any load operation initiated
before the focused object set is released is automatically restricted to just those objects that are
focused.

Therefore, if a grammar, for example, that of French, was to be kept intact, and it was simply required
to load an updated version of, for example, the punctuation rules for that language, then this could be
achieved with the following command sequence (making use also of the language focusing commands
mentioned in Sections 5.6.2) issued from the ROOT KPML window interface.

<Multilingual Behaviour Modes: Focus on selected language French>
<...: Focus on selected linguistic objects punctuation>
<Load linguistic resources>
<Multilingual Behaviour Modes: Release Object Focusing>

Note that the command DEVELOPMENT:<Operations on examples: Load examples> is also available for
loading examples (Section 10.2.1). This allows the user to select a given example set from the
Example directory of the current language, should not all the available example sets be required.
Example sets offered in the menu consist of those files with extension .spl or .ex in the appropriate
language directory.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node52.html [11.12.2004 14:27:57]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading modes: overwriting and merging

next

up

previous

contents

index

Next: Overwriting mode Up: General commands for loading Previous: Loading particular kinds of

Loading modes: overwriting and merging

Two loading modes are provided: overwriting and merging.

● Overwriting mode
● Merging mode

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node53.html [11.12.2004 14:28:01]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overwriting mode

next

up

previous

contents

index

Next: Merging mode Up: Loading modes: overwriting and Previous: Loading modes: overwriting
and

Overwriting mode

 When systems, choosers, inquiries, examples and lexical items are loaded for which definitions of
identically named entities already exist, these previous definitions are fully replaced by the new ones.
No trace of the older ones will survive. When a newly defined entity has a smaller language scope
than the entity replaced, then a warning to this effect is given since it means that the previous
language resources relying on the old definition may no longer be complete.

Similarly, for punctuation rules, nonsystemic dependencies, and inquiry implementations, the newly
loaded resources for a language will replace all existing definitions for any language.

Although potentially deleterious for the loaded versions of existing resources, this option can be
sensibly used for working on new language development without regard for previous resources.
Subsequently, merging can be undertaken using the merging mode for reimporting the debugged
resources into the general multilingual potential.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node54.html [11.12.2004 14:28:05]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Merging mode

next

up

previous

contents

index

Next: Loading and the multilingual Up: Loading modes: overwriting and Previous: Overwriting
mode

Merging mode

When systems, choosers, inquires, examples and lexical items are loaded for which definitions of
identically named entities already exist, these previous definitions are merged with the new
definitions. The result is a multilingual entity which is equivalent to a set of monolingual definitions.
The entity can then be used or inspected from the perspective of any of the languages for which KPML
is configured.

Similarly, for punctuation rules, nonsystemic dependencies, and inquiry implementations, the new
definitions are added to existing definitions (replacing only any such definitions already existing for
the newly loaded language), and definitions of other languages are not affected.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node55.html [11.12.2004 14:28:09]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading and the multilingual modes

next

up

previous

contents

index

Next: Monolingual loading Up: General commands for loading Previous: Merging mode

Loading and the multilingual modes

The multilingual modes (Section 5.5) intersect with loading to produce the following behaviors.

● Monolingual loading
● Contrastive loading
● Multilingual loading

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node56.html [11.12.2004 14:28:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual loading

next

up

previous

contents

index

Next: Contrastive loading Up: Loading and the multilingual Previous: Loading and the multilingual

Monolingual loading

When the monolingual mode for loading is activated, a resource set from a single identified language
variety is loaded. For example, issuing a <Load linguistic resources> command prompts for a single
language and the resources found under the corresponding directory will be loaded. Monolingual
loading takes place in overwriting mode; that is, any new definitions possessing the same name as
existing definitions cause the existing definitions to be overwritten--regardless of whether this causes
information to be lost by removing definitions relevant for other languages! That is, if there is an
existing definition of a grammatical system PROCESS-TYPE that is relevant for the languages English,
German and Japanese, and a new system of the same name is loaded monolingually for German, then
the previously accessible views of English and Japanese will be lost. If a new system of the same
name is loaded monolingually for, for example, Dutch, then the previous views of English, German
and Japanese will all be lost. This behavior comes closest to that of the Penman system when loading
new definitions.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node57.html [11.12.2004 14:28:16]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive loading

next

up

previous

contents

index

Next: Multilingual loading Up: Loading and the multilingual Previous: Monolingual loading

Contrastive loading

When the contrastive mode for loading is activated, resource sets from several identified language
varieties are loaded. For example, issuing a <Load linguistic resources> command in this case
prompts not for one but for several languages: resources found under each of the corresponding
directories will then be loaded. The order of loading is not specified and should not be significant.
Also, although it will generally be the case that the individual resource sets are monolingual, this need
not be the case and is not enforced. Contrastive loading provides a convenient way of loading an
entire set of distinct resources in one go.

Although resources are cleared before loading commences--as in the case with monolingual loading--
contrastive loading takes place in merging mode. Here, for any of the selected languages, definitions
sharing names with existing definitions will be merged with the views of the existing definitions that
correspond to languages distinct to the one currently being loaded. Indeed, with this option, overwrite
mode would make little sense since it would usually make it the case that information would be lost
when each additional resource set were loaded. Thus, asking for contrastive loading of, for example,
English, German and French results in a single three-language multilingual resource consisting of the
merged monolingual descriptions of each of those languages.

Note that, since the resources loaded are cleared prior to a contrastive load, asking for the contrastive
loading of a single language is equivalent to monolingual loading. In order to load a single language
into the KPML system in merging mode, this mode has to be selected explicitly. This can be done under
the <Multilingual Behaviour Modes> command described in Section 5.5. Then, using the example for
monolingual loading outlined above: in the first case the definitions for English and Japanese will be
maintained and only that for German will be replaced; in the second case, all of the information is
maintained, the incoming definition for Dutch is simply merged with the existing definitions for
English, German and Japanese resulting in a definition for PROCESS-TYPE that allows four distinct
language views. This could be of use in successive testing of resources.

Note also that when a system has been disabled for some language during previous loading, then that

status remains unchanged unless the system is explicitly reloaded for that language. gif

Similarly, if a linguistic object belongs to a patch, then that patch status remains unchanged when
linguistic objects of the same name but from other languages and possibly of different patch status are
loaded.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node58.html (1 von 2) [11.12.2004 14:28:21]

Contrastive loading

next

up

previous

contents

index

Next: Multilingual loading Up: Loading and the multilingual Previous: Monolingual loading

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node58.html (2 von 2) [11.12.2004 14:28:21]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual loading

next

up

previous

contents

index

Next: Resource clearing Up: Loading and the multilingual Previous: Contrastive loading

Multilingual loading

 When the multilingual mode for loading is activated, a single multilingual resource set from a
specified directory is loaded into the KPML system. The normal behavior during multilingual loading is
that loading proceeds in merge mode; i.e., new definitions replace old definitions just for those
languages which are common between the new and the existing resources. If potential `interference'
with existing resources is to be ruled out, then those resources should first be cleared. The directory
used for loading multilingual resources can be inspected and set using the < Environment Directories>
command (Section 5.4.1).

The multilingual loading option is quite powerful. It makes it possible for a multilingual grammar for,
for example, English, German and Dutch developed by one research group to be merged directly with
another multilingual grammar for, say, Japanese, Chinese and Thai developed by a distinct research
group. The result is then in this case a single six-language multilingual resource from which
contrastive views can be extracted as required--for example by inspecting (Chapter 6) or saving
(Section 5.9.1) operations. An alternative way of producing the same result would be for each group
to extract three monolingual resource sets (contrastive saving, see below) and then to load the
resulting six descriptions contrastively. The multilingual option is, however, much faster since the
necessary merging operations have already been carried out in the multilingually written files.

Note: there is no guarantee that an `optimal', or even a `canonical', merged form is created in
any of the options involving merges. All that is guaranteed is functional equivalence of the
resources created.

The language varieties used as conditionalizations in a multilingual resource set should all be made
known to the system before loading; that is, if the resource set uses conditionalizations for :french,
:japanese, and :dutch, then these values must be declared as expected language varieties to

KPML. gif Multilingual resources created with KPML will standardly include a declaration of the
languages they include (cf. Section 12.2.3).

next

up

previous

contents

index

Next: Resource clearing Up: Loading and the multilingual Previous: Contrastive loading

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node59.html [11.12.2004 14:28:26]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource clearing

next

up

previous

contents

index

Next: Saving and Creating linguistic Up: The KPML root interface Previous: Multilingual loading

Resource clearing

 If it is necessary to clear already loaded resources before loading new resource sets, this can be
carried out by the <Clear Systemic Network> command. This clears all systemic networks and their
corresponding choosers and inquiries. Language and region focusing have no effect here.

The command <:Clear Lexicons> similarly clears all lexical items defined; while the command
DEVELOPMENT:<Example Operations: Clear Examples> clears all example definitions.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node60.html [11.12.2004 14:28:30]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Saving and Creating linguistic resources

next

up

previous

contents

index

Next: Simple resource set saving Up: The KPML root interface Previous: Resource clearing

Saving and Creating linguistic
resources

● Simple resource set saving
● General commands for saving linguistic resources

❍ Monolingual saving
❍ Contrastive saving
❍ Multilingual saving

● Inheriting language definitions
● Automatic lexical item acquisition and saving
● Creating unconditionalized linguistic resources
● Changing the Lisp package of inquiry implementations

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node61.html [11.12.2004 14:28:34]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Simple resource set saving

next

up

previous

contents

index

Next: General commands for saving Up: Saving and Creating linguistic Previous: Saving and
Creating linguistic

Simple resource set saving

Saving is the operation of exporting the resource definitions held at any time in the KPML system to
sets of external files. Saving is the normal operation to be performed after working on the resources or
after creating new resources. Saving can be carried out in any of the three multilingual operation
modes (Section 5.5). The default startup saving behavior is monolingual saving.

All information concerning systems, choosers and inquiries that is known to the system will be saved
to their respective regions, regardless of any originating file structure used in loading that information.
In contrast, lexicons and examples are saved back into a directory structure isomorphic to their
originating definitions although not necessary in the same directory.

All requests for saving linguistic resources initiated with the <Store linguistic resources> command
obey any constraints that may have been set under language, region, and linguistic object focusing as
described above.

The following additional commands provide specialized saving commands:

● ROOT:<:Write Lexicon File> - this will pick out the lexical items defined in an identified file
and write these and these only back to that file.

● DEVELOPMENT:<Example Operations: Write Examples> - this will write out the current
examples as defined (cf. Section 10.2.2).

Note that the saving commands never clear their target directories before saving: the user should
therefore exercise care that old and new definitions are not mixed involuntarily. To aid this, the save
menu contains an additional flag asking whether a new directory is to be created (regardless of the
existence of a previous directory for the language variety at issue) or not. When a new directory is to
be created and there is already an existing directory of the same name for that language variety, then
the existing directory is copied into a backup directory. The name of the backup directory is the same
as the original with the date of creation of the new directory appended.

next

up

previous

contents

index

Next: General commands for saving Up: Saving and Creating linguistic Previous: Saving and
Creating linguistic

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node62.html (1 von 2) [11.12.2004 14:28:38]

Simple resource set saving

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node62.html (2 von 2) [11.12.2004 14:28:38]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General commands for saving linguistic resources

next

up

previous

contents

index

Next: Monolingual saving Up: Saving and Creating linguistic Previous: Simple resource set saving

General commands for saving linguistic
resources

● Monolingual saving
● Contrastive saving
● Multilingual saving

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node63.html [11.12.2004 14:28:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual saving

next

up

previous

contents

index

Next: Contrastive saving Up: General commands for saving Previous: General commands for saving

Monolingual saving

In monolingual saving mode, the user is prompted for a single language selected from those for which
KPML is currently configured. A single set of monolingual resources for that language will then be
written to files in a directory corresponding to the name of the language variety. The directory will be
located underneath the *root-of-resources* directory as specified during KPML initialization
(Chapter 3) or as subsequently modified by the <Environment Directories> command (Section 5.4.1).

For example, if KPML is working with a loaded multilingual resource including views for English and
German, issuing a monolingual Store linguistic resources command for German will write out a set of
files (three for each functional region, providing the systems, choosers, and inquiries, plus ordering
and punctuation information: see Chapter 12) under a directory called GERMAN. All of the resource
files will be conditionalized exclusively for the single language German.

Resource sets of this kind can then naturally be reloaded separately at any time using the monolingual
<Load linguistic resources> command, or as a contributor to a multilingual set using the contrastive
load option.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node64.html [11.12.2004 14:28:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive saving

next

up

previous

contents

index

Next: Multilingual saving Up: General commands for saving Previous: Monolingual saving

Contrastive saving

 In contrastive saving mode, the user is prompted for a set of languages selected from those for which
KPML is currently configured. The system then performs a monolingual save for each of these
languages.

For example, issuing a contrastive <Store linguistic resources> command for English and German
results in two directories (called ENGLISH and GERMAN respectively) being written, each containing
a complete monolingual conditionalized set of resource definitions.

Resource sets of this kind can then naturally be reloaded in their entirety at any time using the
contrastive <Load linguistic resources> command, or as single languages using the monolingual load
option.

Note that monolingual conditionalized resource sets are explicitly marked as being relevant for a
given language. This contrasts with monolingual resource sets which have no language affiliation: see
Section 5.9.5.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node65.html [11.12.2004 14:28:52]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual saving

next

up

previous

contents

index

Next: Inheriting language definitions Up: General commands for saving Previous: Contrastive saving

Multilingual saving

When the multilingual mode for loading is activated, a single multilingual resource set is written to a
specified directory. The user is prompted for the languages (which can be any subset of the set of
languages for which KPML is configured at that time) to be included in that resource set. The resource
set contains the appropriate language specific conditionalizations to enable the individual language
views to be recovered when required.

For example, if KPML is configured for English, German, Dutch, French and Japanese, then issuing a
multilingual <Store linguistic resources> for English, Dutch and Japanese will result in a single three-
way multilingual resource set being written to the specified directory. The directory used for saving
multilingual resources can be inspected and set using the <Environment Directories> command
(Section 5.4.1).

Multilingual resource sets of this kind can be reloaded at any time using the multilingual <Load
linguistic resources> command.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node66.html [11.12.2004 14:28:56]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inheriting language definitions

next

up

previous

contents

index

Next: Automatic lexical item acquisition Up: Saving and Creating linguistic Previous: Multilingual
saving

Inheriting language definitions

 KPML provides one way of creating linguistic resources: a resource set is constructed that is the exact
copy of some existing linguistic resources apart from the language conditionalization being altered to
refer to some new language. This is triggered by the <Create New Language> command.

This command brings up a menu dialogue which asks the name of the new language variety to be
created and the existing language variety from which it is to be created. Following the operation a
complete new set of resources for the new language variety based on the definitions of the selected
old language is written under the current root of resources, and this language is added to the list of
available languages. If the original resource set was complete, then it should be possible to issue a
load linguistic resource command on the new language and obtain the same generation results as were
obtained with the originating language.

This command can be used as the first stage of creating resources for a new language.

The command is fully sensitive to region and linguistic object focusing.

Note that, as always, only systemic resources are included in this saving operation: i.e., only
systems, choosers, inquiries, punctuation, and default orderings. Other definitions (domains,
etc.) have to be prepared separately.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node67.html [11.12.2004 14:29:01]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Automatic lexical item acquisition and saving

next

up

previous

contents

index

Next: Creating unconditionalized linguistic resources Up: Saving and Creating linguistic Previous:
Inheriting language definitions

Automatic lexical item acquisition and saving

 When the ROOT:<Flags> option `automatic acquisition of new lexical items' is set, any undefined
lexical items mentioned in :lex or :name slots in SPL expressions are created with lexical features
appropriate for their place of occurence in the realized sentence and with a spelling drawn from the
label appearing in the SPL. All such lexical items are placed on the list *new-lexical-items*
which can then be output to a file of new lexical definitions (presumably after running through a
complete batch of examples with the example runner, for example) using the function make-new-
lexical-items-file.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node68.html [11.12.2004 14:29:05]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Creating unconditionalized linguistic resources

next

up

previous

contents

index

Next: Changing the Lisp package Up: Saving and Creating linguistic Previous: Automatic lexical
item acquisition

Creating unconditionalized linguistic resources

From time to time, it may be required to create sets of linguistic resources that are not conditionalized
in any way--such as, for example, the resources under GENERAL in the KPML resource releases. Such
resources can then be used as seeds for growing further multilingual resources for different languages.

In order to create a set of unconditionalized resources the following steps are necessary.

1. Establish a loaded set of linguistic resources that has the desired behavior when some
particular language variety is current.

That is, we need to specify some language variety that is to serve as the basis for the
unconditionalized resources. Since these resources will not specify any language variety, they
are equivalent to the resources for one particular language. The first task, therefore, is to create
some language variety that has the desired effect.

2. Load this established language variety as the only loaded language and with
all_languages set to only that language (as a singleton list).

3. Specify that the resource saving mode is :multilingual.
4. Issue in a Lisp listener the following save command:

Only the first parameter is obligatory; this defines the name of the directory under which the
new, unconditionalized resources will appear. The remaining keyword parameters are optional
and as for the save-linguistic-resources function (Section 14.4.4).

Following this sequence of operations, a new unconditionalized resource set that has the behavior of
the originally selected language variety will have been left under the directory NEW-RESOURCES,
which itself will be under either the default root of resources directory or the directory given in the
call to save-unconditionalized-linguistic-resources.

Note: currently the creation of unconditionalized default orderings, punctuation, etc. is not done
correctly. For the present, simply edit the values found there to remove the conditionalization
(which will be for the original language variety specified).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node69.html (1 von 2) [11.12.2004 14:29:09]

Creating unconditionalized linguistic resources

Thus, the lists following the language condition should replace the values given as a whole; i.e., all
lists of the form:

should be replaced simply by X. More elegant support for unconditionalized information of this kind
will be provided at some stage. The properties.lisp file should also be treated with caution; the
file of the same name to be found in the GENERAL resources can be taken as a model.

Finally, as is usually the case with resource creation, all definitions not covered by the automatic
resource saving operations (e.g., SPL default definitions, domain models, etc.) should be copied as
required.

Loading such general unconditionalized resources should, of course, be carried out in multilingual
loading mode, since the resource is not restricted to any single language but takes on the scope of
applicability defined by the range of languages for which KPML is configured at the time of resource
loading or the current defaults as created by <Set Default Language> .

next

up

previous

contents

index

Next: Changing the Lisp package Up: Saving and Creating linguistic Previous: Automatic lexical
item acquisition

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node69.html (2 von 2) [11.12.2004 14:29:09]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Changing the Lisp package of inquiry implementations

next

up

previous

contents

index

Next: Interface suspensionexiting, etc. Up: Saving and Creating linguistic Previous: Creating
unconditionalized linguistic resources

Changing the Lisp package of inquiry
implementations

 For increased modularity of resource development, it may occasionally be appropriate that different
bodies of inquiry implementations are maintained in different Lisp packages. This is caused by the fact
that such implementations, as simple Lisp functions, lie outside the comprehensive language
conditionalization facilities offered by KPML.

Writing of resources is thus extended so that it is possible to set the package from which inquiry
implementation codes will be expected. To do this, the variable
package-for-inquiry-implementations must be set to either a string denoting the
package or a (dotted pair) association list of languages (as specified in all_languages) and such
strings. An example of the latter would be:

If a symbol representing an inquiry implementation in an inquiry definition (see Section 12.2.7) is
already from a package that is not the kpml package, then this information is preserved unless the flag
force-inquiry-implementation-package? is additionally set true. This package setting
behavior can by summarized as follows:

 if a new package for inquiry implementations (target) is given

then

 if the old package was kpml

 then the new target is taken

 else the package stays as it is, unless forced.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (1 von 5) [11.12.2004 14:29:29]

Changing the Lisp package of inquiry implementations

else

 package stays as it was.

Use of distinct packages for inquiry implementations is further supported by a new package, called
kpml-kb, which already includes the normal Penman/KPML-defined SPL, knowledge representation
system, and lexicon interface functions as external symbols. It is therefore sufficient for an inquiry
implementation file to begin with the declaration:

1. for CLtL1:

2. for CLtL2 (e.g., Allegro 4.2 and later):

in order to use both Lisp and the Penman/KPML functions without package specifiers.

Care should be exercised if these inquiries refer to symbols that are maintained in the kpml package. In
KPML, there is no support for systemic resources (including lexical item definitions) being in distinct
packages. Therefore all lexical features, system name, system features, etc. will be in the kpml package
and so must be referenced appropriately. Use of the functions defined in Section 13.2 whenever
reference is to be made to lexical information guarantees that the appropriate package is enforced.
Further, all responses to inquiries returned from inquiry implementations will be automatically interned

in the kpml package regardless of their package of origin. gif

An example of these package definitions and mechanisms is given by the following inquiry
implementation (assuming CLtL2):

Here, the function definition is, of course, for the function

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (2 von 5) [11.12.2004 14:29:29]

Changing the Lisp package of inquiry implementations

komet-inqs::accompaniment-modification-q-code. However, the symbol
fetch-subc-feature refers to the SPL interface function of the same name described in
Appendix B. All of these interface functions are usable in this way. In KPML, these functions operate on
their arguments so that regardless of package of origin, symbols are searched for in the appropriate place
(e.g., in the upper model package penman-kb , or in the package used for SPL specifications--which
is normally kpml). Finally, the symbol returned by the function is automatically converted to one
belonging to the appropriate package for the inquiry response--since this is the symbol that occurs in the
inquiry definition in the :answerset slot and in the use of the inquiry in any choosers and so must be
made accessible in the package for those definitions.

The full list of Penman/KPML functions and variables (all in the kpml package) which are accessible on
use of the kpml-kb package are as follows.

● The following functions are used by inquiry implementations to access components of SPL
expressions and to interrogate the subsumption relations of the knowledge base. Most of them
are described in Appendix B and C.

● In addition, some of the SPL functions are actually macros and expand to involve other symbols,
which, of course, must also be accessible.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (3 von 5) [11.12.2004 14:29:29]

Changing the Lisp package of inquiry implementations

● The following functions are provided by KPML for accessing lexical information during
generation. This can be done from inquiry implementations, although this should be understood
as standing in for a more appropriate way of transporting features internally to the
lexicogrammar. It should also be borne in mind that the lexical features will normally be in the
kpml package, and so this will need to be explicitly specified for lexical/morphological inquiries
residing in a different package, unless the built-in KPML access functions are used (e.g.,
lexical-feature-present-p, etc.: Section 13.2); these latter functions ensure that
symbols of the appropriate package are used regardless of their originating package.

● The following functions are former Penman functions that are also used occasionally in inquiry
implementations.

● The following former Penman variables hold necessary information for making internal
information accessible concerning the history of the generation process for supporting textual
inquiries.

● The following KPML variable conditionalizes some of the morphology inquiry implementations.

● The following is needed for lexicalized information.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (4 von 5) [11.12.2004 14:29:29]

Changing the Lisp package of inquiry implementations

● The following book-keeping inquiries should always be accessible.

next

up

previous

contents

index

Next: Interface suspensionexiting, etc. Up: Saving and Creating linguistic Previous: Creating
unconditionalized linguistic resources

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node70.html (5 von 5) [11.12.2004 14:29:29]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Interface suspension, exiting, etc.

next

up

previous

contents

index

Next: Quiting the interface Up: The KPML root interface Previous: Changing the Lisp package

Interface suspension, exiting, etc.

● Quiting the interface
● Suspending the interface
● (Re-)Activating the interface
● Clearing the interface windows

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node71.html [11.12.2004 14:29:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Quiting the interface

next

up

previous

contents

index

Next: Suspending the interface Up: Interface suspensionexiting, etc. Previous: Interface
suspensionexiting, etc.

Quiting the interface

The command <Quit> causes all open KPML windows to be destroyed and then exits the interface.
Interaction with the system is then still possible in the calling Lisp listener. There a new interface
instance can be started or Lisp can be exited in the standard manner (e.g., for Allegro :exit, or for
Lucid (quit)).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node72.html [11.12.2004 14:29:38]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Suspending the interface

next

up

previous

contents

index

Next: (Re-)Activating the interface Up: Interface suspensionexiting, etc. Previous: Quiting the interface

Suspending the interface

When the KPML interface is running it normally intercepts all output and messages from the generation
process in order to present this information in an appropriate form (e.g., in a particular window pane, in
some pop-up window, or as a dialogue menu). Very occasionally, it might be desired to have this
information sent to the calling Lisp listener as if the interface were not running. This might be one way, for
example, of obtaining a trace of generation that can be edited or printed in hardcopy and studied at length.
The command <:Suspend> has the effect of disabling the interface's interception of messages. These
messages are then presented as if the interface were not present--i.e., in a pretty printed teletype form.

Note that suspending the interface does not disable the interface: it is still possible to issue commands in
the normal way. All that is suspended is the presentation of information.

Thus, selecting to trace the system and chooser activity during generation (with the command
DEVELOPMENT:<Generation Display Modes>), suspending the interface, and then generating an example
would result in output of the form shown in Figure 5.2 being sent to the Lisp listener. From there it can be
printed, edited, etc. more readily than its appearance in the KPML interface.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node73.html (1 von 2) [11.12.2004 14:29:47]

Suspending the interface

Figure: Example non-interface trace of generation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node73.html (2 von 2) [11.12.2004 14:29:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

(Re-)Activating the interface

next

up

previous

contents

index

Next: Clearing the interface windows Up: Interface suspensionexiting, etc. Previous: Suspending the
interface

(Re-)Activating the interface

Issuing the command ROOT:<:Activate> undoes the effect of a <:Suspend> command, and
information returns to being presented in the interface.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node74.html [11.12.2004 14:29:51]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clearing the interface windows

next

up

previous

contents

index

Next: The KPML Inspector Window Up: Interface suspensionexiting, etc. Previous: (Re-)Activating
the interface

Clearing the interface windows

 The command ROOT:<:Clear windows> clears the KPML development, inspection, and any dependent
display windows.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node75.html [11.12.2004 14:29:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The KPML Inspector Window

next

up

previous

contents

index

Next: Overview of Commands Up: No Title Previous: Clearing the interface windows

The KPML Inspector Window

KPML offers a wide variety of modes for inspecting the contents of loaded linguistic resources. The most effective way
to inspect resources is by a mixture of graphical and textual displays. Larger-scale views are usually obtained
graphically, allowing the user to quickly focus in on particular details that are presented textually. The KPML inspector
window provides convenient overall access to these inspection methods.

Information inspection within KPML generally involves following information chains: that is, one might know that a
particular grammatical system exists, but wants also to know how the grammatical features of that system are actually
chosen and under what conditions. This involves following the information chain from system name to corresponding
chooser, and from corresponding chooser to corresponding inquiries and their definitions. This might then be followed
further to particular knowledge base concepts, which might lead back to lexical items and other points in the grammar.
An overview of the information chains possible when examining linguistic resources--particularly the linguistic
potential--is given in Figure 6.12 below.

The graphical presentation modes can also be used in conjunction with the generation modes described in the
following chapter in order to graphically display generation paths: i.e., traversal paths through the systemic networks
or choosers, and associations of grammatical and semantic units. These additional capabilities are described under
generation tracing (Section 7.5.2). This means that some of the menus reached by clicking as described in this chapter
will contain additional options to those described here.

An example of the inspector window is shown in Figure 6.1. There are four panes, from top to bottom: the Inspector
Command menu, the Interaction pane, the Information pane, and the mouse documentation line. As usual, for the
commands that are entered in the interaction pane, input is terminated by a carriage return. Partially typed in or
executed commands can be aborted by typing a control-Z; argument completion is provided by control-? (for string
completion) and by control-/ (for completion where the string given occurs as a substring). Commands and arguments
being input can be edited using the normal input line editing commands (control-f: forwards a character, control-b:
backwards a character, control-e to end of line, control-a to beginning of line, etc.).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node76.html (1 von 4) [11.12.2004 14:30:06]

The KPML Inspector Window

Figure: The KPML inspector window

● Overview of Commands
● Graphing systemic networks

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node76.html (2 von 4) [11.12.2004 14:30:06]

The KPML Inspector Window

❍ Basic graphing options and commands
■ Quit Resource Grapher
■ Printgraph
■ Show examples with collected features
■ Clear Collected Features
■ Display Modes

■ Content-oriented resource graph options
■ Layout and hardcopy oriented resource graph options
■ Continuation options

■ Mail Intention to Work
❍ Producing graphs for inclusion as figures in documents
❍ Mouse activated resource graph options

■ Showing a full system definition
■ Showing the realization statements of a feature
■ Showing the chooser associated with a system
■ Collecting/Discollecting features
■ Pruning the displayed graph
■ Redisplaying a graph
■ Spawning further graphs

❍ Graphing regions
❍ Contrastive and multilingual graphing

■ Monolingual graphing
■ Contrastive graphing
■ Multilingual graphing

● Inspecting individual object definitions
❍ Introduction
❍ Display commands

■ Print System
■ Print Chooser
■ Print Inquiry
■ Print Inquiry Implementation
■ Print Lexical Item
■ Print Concept
■ Print Relation

❍ Definition displaying and the multilingual modes
■ Monolingual definition printing
■ Contrastive definition printing
■ Multilingual definition printing

● Object selection according to specified criteria
❍ `Who has' selections

■ Who has as input
■ Who has as output

❍ `Who can' selections
■ Who can lexify
■ Who can inflectify
■ Who can classify
■ Who can insert
■ Who can order

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node76.html (3 von 4) [11.12.2004 14:30:06]

The KPML Inspector Window

■ Who can partition
■ Who can preselect
■ Who can ask
■ Who can identify
■ Who can pose identifying inquiry

❍ Examples Using Features
● Direct inspection and information chains

❍ Introduction
❍ Inspection operations on grammatical systems

■ Printing system definition
■ Print associated chooser
■ Graph Grammar starting from system

❍ Inspection operations on grammatical features
■ Displaying usage of grammatical features
■ Who has as input
■ Who has as output
■ Show path to
■ Show chooser of feature
■ Graph from feature
■ Collect feature
■ Uncollect feature
■ Clear collected features

❍ Inspection operations on choosers
■ Print chooser
■ Show inquiries of chooser
■ Systems of chooser

❍ Inspection operations on inquiries
■ Print inquiry
■ Print implementation
■ Who can ask
■ Who can pose identifying inquiry

❍ Inspection operations on lexical items
❍ Inspection operations on SPL terms
❍ Inspection operations on examples

● Overview of information inspection chains

next

up

previous

contents

index

Next: Overview of Commands Up: No Title Previous: Clearing the interface windows

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node76.html (4 von 4) [11.12.2004 14:30:06]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of Commands

next

up

previous

contents

index

Next: Graphing systemic networks Up: The KPML Inspector Window Previous: The KPML
Inspector Window

Overview of Commands
There are four main groups of commands available under the Inspector window. These concern:

● networks and graphical overviews of resources,
● presentations of individual object definitions,
● linguistic object selection according to specific criteria,
● direct inspection of linguistic objects.

The first three groups provide initial steps in information chains where the starting point for the chain
is given explicitly by the user by typing in linguistic object names or by selecting from a menu of
possible objects. While this mode of information seeking enables all components of the loaded
resources to be examined, it is more usually the case during resource maintenance or debugging that
very particular information is being sought--for example, information concerned with particular
decisions made during the generation process at some point in the grammar. The fourth group of
commands therefore provides ready access to information on the basis of descriptions that have
already been presented. Here information chains are followed by mouse clicks rather than giving the
name of some linguistic object explicitly. It is possible, in this way, to obtain most information
necessary for resource debugging simply by clicking along information chains. This, combined with
KPML's extensive options for selecting which information starting points are to be presented, speeds up
such resource debugging considerably.

The remaining sections of this chapter describe the individual commands under these groups in detail.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node77.html [11.12.2004 14:30:11]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graphing systemic networks

next

up

previous

contents

index

Next: Basic graphing options and Up: The KPML Inspector Window Previous: Overview of Commands

Graphing systemic networks

Numerous options are provided for browsing the linguistic resources in graphical form. This is probably the best way of
navigating the large-scale resources available. In order to ease that navigation, graphing is strongly oriented towards functional
regions. As described in Section 2.1.1.3, a functional region is a subset of the resources that are concerned with a single
`semantic/functional' area. KPML offers commmands for graphing regions in their entirety (<Graph Region>) and for graphing
network portions starting from any specified grammatical system (<Graph Grammar>). The default graphing behaviour in the
latter case is still, however, that only systems from a single grammatical region are selected for graphing. This avoids overly
large graphs and maintains some functional coherence in the area of systemic network examined. This default behaviour can,
of course, be overriden if desired.

 An example of an extract from a region is shown graphed in Figure 6.2. Here we can see part of the region DEPENDENCY,
which is partially responsible in the grammars of several languages for determining what kind of linguistic unit is to be
generated/described. In the graphed representation, boxed elements denote `systems' of the systemic network and unboxed
elements denote the `features' of those systems. `Gates'--i.e., systems with only one output feature-can be recognized in that
there is only one dependent feature. These are often terminal and are used for grouping together realization statements; an
option explained below allows these to be filtered out of the graph.

Figure 6.2 therefore represents two grammatical systems proper (DEPENDENCE and RANKSHIFTED-FINITENESS) and two gates
(NONFINITE-CLAUSE and FINITE-CLAUSE). The first system has three grammatical features (`rankshifted-clause', `dependent-clause',
and `independent-clause'); the second has two (`nonfinite-rankshift' and `finite-rankshift'). With respect to the region shown,
the system RANKSHIFTED-FINITENESS can only be entered if the feature `rankshifted-clause' is selected in the system DEPENDENCE.

The default options for graphing combine several different kinds of information over and above that given in Figure 6.2. In the
examples given in this section, we start with this simplest case and move towards and beyond the default setting showing the
additional information that may be presented.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node78.html (1 von 3) [11.12.2004 14:30:18]

Graphing systemic networks

Figure: Dependency region (extract)

Systemic network graph windows have their own set of commands and options and remain available until explicitly quit by the
user. The immediately following subsections describe the command and mouse-activated options available. These apply to all
network graphs.

The command INSPECTOR:<Grapher Display Modes> can also be issued from the graph windows. The options it provides are
therefore described below under the GRAPH:<Display Modes> option.

● Basic graphing options and commands
❍ Quit Resource Grapher
❍ Printgraph
❍ Show examples with collected features
❍ Clear Collected Features
❍ Display Modes

■ Content-oriented resource graph options
■ Layout and hardcopy oriented resource graph options
■ Continuation options

❍ Mail Intention to Work
● Producing graphs for inclusion as figures in documents
● Mouse activated resource graph options

❍ Showing a full system definition
❍ Showing the realization statements of a feature
❍ Showing the chooser associated with a system
❍ Collecting/Discollecting features
❍ Pruning the displayed graph

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node78.html (2 von 3) [11.12.2004 14:30:18]

Graphing systemic networks

❍ Redisplaying a graph
❍ Spawning further graphs

● Graphing regions
● Contrastive and multilingual graphing

❍ Monolingual graphing
❍ Contrastive graphing
❍ Multilingual graphing

next

up

previous

contents

index

Next: Basic graphing options and Up: The KPML Inspector Window Previous: Overview of Commands

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node78.html (3 von 3) [11.12.2004 14:30:18]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Basic graphing options and commands

next

up

previous

contents

index

Next: Quit Resource Grapher Up: Graphing systemic networks Previous: Graphing systemic
networks

Basic graphing options and commands

 This section describes the commands available from the GRAPH window.

● Quit Resource Grapher
● Printgraph
● Show examples with collected features
● Clear Collected Features
● Display Modes

❍ Content-oriented resource graph options
❍ Layout and hardcopy oriented resource graph options
❍ Continuation options

● Mail Intention to Work

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node79.html [11.12.2004 14:30:22]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Quit Resource Grapher

next

up

previous

contents

index

Next: Printgraph Up: Basic graphing options and Previous: Basic graphing options and

Quit Resource Grapher

The command GRAPH:<Quit Resource Grapher> exits from, and removes, the associated resource
grapher window.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node80.html [11.12.2004 14:30:27]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Printgraph

next

up

previous

contents

index

Next: Show examples with collected Up: Basic graphing options and Previous: Quit Resource
Grapher

Printgraph

 The command GRAPH:<Print Graph> places a postscript file of the contents of the graph (as
produced under effect of the various display modes: see below) in the default `hardcopy directory'.
The present hardcopy directory can be inspected and changed with the ROOT:<Environment
Directories> command (Section 5.4.1) and with the GRAPH:<Display Modes> or INSPECTOR:<Grapher
Display Modes> commands described below.

Note: the user is still responsible for sending the created postscript file to an appropriate

printer; this is not done automatically. gif

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node81.html [11.12.2004 14:30:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show examples with collected features

next

up

previous

contents

index

Next: Clear Collected Features Up: Basic graphing options and Previous: Printgraph

Show examples with collected features

 It is possible to `collect' lists of grammatical features. The simplest way to collect a feature is to click
right on a feature shown in a graph and to select the appropriate subcommand as described in
Section 6.2.3. The grapher command <Show examples with collected features> then prints in the
Inspector information pane a list of stored examples where the complete set of features on the
collected list occur. This is a quick way of finding examples representing the distinctions drawn in the
grammar.

The examples using any single selected feature can also be shown by right-mouse clicking on any
grammatical feature shown in the graph and selecting the appropriate command presented.

Note, this will only select from examples where the selection expression is already present in the
example record: see Section 10.1 for a description of how and when this occurs.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node82.html [11.12.2004 14:30:37]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear Collected Features

next

up

previous

contents

index

Next: Display Modes Up: Basic graphing options and Previous: Show examples with collected

Clear Collected Features

 This command clears the list of collected features. Note that it is possible to collect features from
several graphs, from the textual displays, and from feature lists produced during generation (e.g.,
selection expressions) simultaneously; clearing is therefore necessary before collecting when
collecting is intended to begin afresh.

It is also possible to clear the collected features by right-clicking on any empty space in the graph and
selecting the appropriate command from the menu that appears.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node83.html [11.12.2004 14:30:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Display Modes

next

up

previous

contents

index

Next: Content-oriented resource graph options Up: Basic graphing options and Previous: Clear
Collected Features

Display Modes

Giving the command GRAPH:<Display Modes> (or, almost equivalently, from the Inspector main
command menu directly with INSPECTOR:<Grapher Display Modes>) allows the user to change the
view of the graph in various ways, both in terms of layout and content. The options provided differ
slightly depending on whether the user is already graphing an area of the linguistic resources or is
setting the grapher display options from the inspector window.

● Content-oriented resource graph options
● Layout and hardcopy oriented resource graph options
● Continuation options

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node84.html [11.12.2004 14:30:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Content-oriented resource graph options

next

up

previous

contents

index

Next: Layout and hardcopy oriented Up: Display Modes Previous: Display Modes

Content-oriented resource graph options

 The content-oriented options are as follows.

● bounded by region: this is the normal way of delimiting the amount of network that is shown. Only systems and features that are reachable from the given start system without
passing outside the functional region of that start system will be displayed.

● maximal depth: this is another way of delimiting the amount of information shown. Here the restriction is in terms of depth reached. This option can be combined with the
previous one in the case of large functional regions.

● show previous generation path: this folds in network traversal information from generation (described in Section 7.7).
● terminal gates visible: this determines whether terminal gates, which make no contribution to the connectivity of the network, will be shown in the graph. If realizations are being

sought, then terminal gates will be useful; otherwise, they may merely clutter the network display. Thus, if the apparent end of the network has been reached but, curiously,
realization statements appear to be missing, then it is probably due to this flag being turned off.

● region external links visible: this determines the display behaviour at the boundaries of functional regions. Since information about inter-region connectivity can be very useful,
and gives a sense of the incompleteness of any information shown, this is the default graphing behaviour. With this flag set all systems lying on the boundary of a functional
region also display the region-external systems, i.e., systems of other regions, into which they feed. These region-external systems are shown in a smaller, bold typeface with the
name of their region of origin attached.

The consequence of using this option for the segment of the DEPENDENCY region graphed in Figure 6.2 above is shown in Figure 6.3. Here we can see not only that, for example,
feature [independent-clause] lies on the boundary of the DEPENDENCY region (since no further features or systems issue from it), but also that it leads onto the systems INDEPENDENT-
CLAUSE-SIMPLEX and INDEPENDENT-PARATACTICS in the functional region CLAUSECOMPLEX--hence we know that it is non-terminal in the network as a whole.

In addition, systems which are part of the region but whose entry conditions include features from outside of the region are shown in italics. Systems whose entry conditions are
drawn entirely from within the region are shown in a normal typeface. This is also useful for getting a sense of the connectivity of the network, since only those paths from within
the region will actually be shown in the graph. Thus, in the example of Figure 6.3, we can see that both FINITE-CLAUSE and NONFINITE-CLAUSE have input conditions additional to
those of the region lying outside of the graphed region, whereas RANKSHIFTED-FINITENESS does not.

Clicking on a region-external system brings up a further graph starting from that system and obeying the active graph settings.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node85.html (1 von 3) [11.12.2004 14:31:03]

Content-oriented resource graph options

Figure: Extract from Dependency region with links to other regions shown

● current language: this determines the language whose resources are being displayed. Picking a functional region and varying the value of the current language is thus one (very
awkward!) way of setting up contrastive views of the multilingual resources; this behavior is provided properly by contrastive graphing (Section 6.2.5).

● Systemic notation: this flag, when set, causes the graphed network to be displayed using standard systemic notation rather than a form more reminiscent of the definition format
described in Section 12.2.5. This is particularly intended for use in combination with the show realization statements flag described next.

● Show realization statements: this flag, when set, causes the graphed network to display the realization statements that are associated with particular grammatical features.
Realization statements can be shown either in their definitional format (Section 12.2.5) or in standard systemic notation if the previously flag is also set. Since it is usual for
systemic networks to contain their realization statements, this option is the default when KPML is newly configured. Examples of how this appears can be seen in Figures 6.4
and 6.6.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node85.html (2 von 3) [11.12.2004 14:31:03]

Content-oriented resource graph options

next

up

previous

contents

index

Next: Layout and hardcopy oriented Up: Display Modes Previous: Display Modes

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node85.html (3 von 3) [11.12.2004 14:31:03]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Layout and hardcopy oriented resource graph options

next

up

previous

contents

index

Next: Continuation options Up: Display Modes Previous: Content-oriented resource graph options

Layout and hardcopy oriented resource graph options

 The layout-oriented options are:

● vertical scaling: the distance between elements vertically.
● hardcopy vertical scaling: the distance between elements that will be used in postscript files

for hardcopying.
● hardcopy directory: the directory where postscript files for hardcopying will be stored (when

the Print Graph menu option is used).
● header present: this flag determines whether header information (containing the region name,

the current language, and, if hardcopy, the date of production of the graph) is shown in the
graph or not.

● suitable for figures: when set, this flag causes hardcopy versions of graphs to be produced in
`single page' mode. Postscript files for inclusion in text documents should normally be
produced with this flag set, otherwise extended postscript will not produce the right results (cf.
Section 6.2.2).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node86.html [11.12.2004 14:31:09]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Continuation options

next

up

previous

contents

index

Next: Mail Intention to Work Up: Display Modes Previous: Layout and hardcopy oriented

Continuation options

When called from a grapher window, the grapher modes menu also contains options for specifying
whether the current graph is to be replaced by a similar graph respecting the newly set options,
whether a new graph is to be produced in addition to the old graph, whether a hardcopy version is to
be produced, or whether no action is to follow.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node87.html [11.12.2004 14:31:14]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Mail Intention to Work

next

up

previous

contents

index

Next: Producing graphs for inclusion Up: Basic graphing options and Previous: Continuation options

Mail Intention to Work

Sends an e-mail message describing the Region that is being graphed expressing the intention to work
on that region. This is to provide an improved flow of information between distributed developers of
linguistic resources; those who wish to receive such messages should send a note to

bateman@gmd.de. gif

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node88.html [11.12.2004 14:31:18]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Producing graphs for inclusion as figures in documents

next

up

previous

contents

index

Next: Mouse activated resource graph Up: Graphing systemic networks Previous: Mail Intention to Work

Producing graphs for inclusion as figures in documents

 The options described in the previous section can be used straightforwardly to produce encapsulated postscript files
suitable for inclusion as figures in text documents. The steps are as follows:

1. produce a postscript file by issuing a <Print Graph> or equivalent command with the GRAPH:<Display Modes
flags `suitable for figures' and `header present set and unset respectively. (Unless there is some particular
reason, the `show previous generation path' flag should probably also left unset.)

adjust the bounding box size in the produced file to include only the actual contents of the figure gif

3. include the generated postscript file in the document in the normal way recommended for encapsulated
postscript (e.g., for LaTeX with a `psfig' style, etc.).

Note that for resource diagrams, better results are often achieved if the hardcopy vertical scaling is also reduced.

An example of a figure produced in this way is shown in Figure 6.4. Note that the figure makes use of several of the
further layouting options described below (particularly those of Section 6.2.3.5). The figure shows the first few steps
in delicacy of the grammar of English.

Figure: Example of EPS figure showing systemic resources

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node89.html (1 von 2) [11.12.2004 14:31:30]

Producing graphs for inclusion as figures in documents

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node89.html (2 von 2) [11.12.2004 14:31:30]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Mouse activated resource graph options

next

up

previous

contents

index

Next: Showing a full system Up: Graphing systemic networks Previous: Producing graphs for
inclusion

Mouse activated resource graph options

In addition to the explicitly shown graphing commands and options described above, the systemic
resource graphs also offer an extensive range of operations by mouse clicking on various parts of the
displayed graph. These mouse activated options are described here.

● Showing a full system definition
● Showing the realization statements of a feature
● Showing the chooser associated with a system
● Collecting/Discollecting features
● Pruning the displayed graph
● Redisplaying a graph
● Spawning further graphs

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node90.html [11.12.2004 14:31:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Showing a full system definition

next

up

previous

contents

index

Next: Showing the realization statements Up: Mouse activated resource graph Previous: Mouse
activated resource graph

Showing a full system definition

 Left-mouse clicking on a region-internal system node in a resource graph (e.g., on DEPENDENCE in
Figures 6.2 or 6.3) causes the full textual display of the system's definition to be printed in the
Inspector window. This is therefore equivalent to issuing the command INSPECTOR:<Print System> and
typing in the name of the clicked upon system.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node91.html [11.12.2004 14:31:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Showing the realization statements of a feature

next

up

previous

contents

index

Next: Showing the chooser associated Up: Mouse activated resource graph Previous: Showing a full
system

Showing the realization statements of a feature

 If realization statements (i.e., the structural contraints associated with any grammatical feature: see
Section 12.2.5) are not being shown in the graph automatically (by selecting the appropriate flag as
described in Section 6.2.1.5 above), then left-clicking on a grammatical feature will pop-up a window
containing the realization statements for that feature.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node92.html [11.12.2004 14:31:54]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Showing the chooser associated with a system

next

up

previous

contents

index

Next: Collecting/Discollecting features Up: Mouse activated resource graph Previous: Showing the
realization statements

Showing the chooser associated with a system

 Right-clicking on any node also brings up a menu including show associated chooser as an option.
This has the same effect as issuing the command INSPECTOR:<Print Chooser> for the chooser
associated with the grammatical system of which the clicked upon grammatical feature is an output. In
other words, the chooser responsible for choosing the feature clicked upon to be chosen is presented.
The mode of chooser display (i.e., textually in the Inspector window or in graphical form) is as
selected for the <Print Chooser> command.

In addition, if realization statements are being shown in the graph (as caused by setting the
appropriate content-oriented flag described in Section 6.2.1.5 above), then left-mouse-clicking on a
grammatical feature is a short-cut for the above.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node93.html [11.12.2004 14:31:57]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Collecting/Discollecting features

next

up

previous

contents

index

Next: Pruning the displayed graph Up: Mouse activated resource graph Previous: Showing the
chooser associated

Collecting/Discollecting features

 It is possible to `collect' lists of grammatical features. These collected features can then be used in a
variety of further operations.

Grammatical features can be either added to, or removed from, the current collection by the
corresponding menu options reached by right-clicking on any node in the resource graph. The right-
click menu also includes a command for showing the examples which use the selected grammatical
feature and for clearing the features collected so far.

 Once features have been collected, resource graphs split into two panes, the lower of which shows
the list of features currently collected. Clicking on any feature on this list will remove it from the

collected feature list. gif

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node94.html [11.12.2004 14:32:02]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pruning the displayed graph

next

up

previous

contents

index

Next: Redisplaying a graph Up: Mouse activated resource graph Previous: Collecting/Discollecting features

Pruning the displayed graph

 It is possible to select particular portions of the systemic network graph that are not to be shown. The stop graph here command under the right-mouse click
menu causes subsequent graphing to stop at the clicked upon node. When grammatical features are removed from a graph, their absence is marked by `...'.
When a grammatical system is removed, however, there is no indication of this in the graphed network at all. Care should therefore be exercised with this
facility in order not to obtain a false view of the resources that are in fact defined. Graph pruning can probably be used to best effect for preparing teaching
materials; for grammar maintenance it may be misleading and so should be used with care.

The pruning option can also be used, for example, to remove confusing detail from cluttered graphs. Figure 6.5 shows again the extract from the DEPENDENCY
region shown in Figure 6.3 but focusing this time on the connectivity leading to the ASSERTION system in the MOOD region.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node95.html (1 von 2) [11.12.2004 14:32:12]

Pruning the displayed graph

Figure: Pruned extract from the Dependency region

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node95.html (2 von 2) [11.12.2004 14:32:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Redisplaying a graph

next

up

previous

contents

index

Next: Spawning further graphs Up: Mouse activated resource graph Previous: Pruning the displayed
graph

Redisplaying a graph

In order to make new layout or content options for network graphing take effect, it is necessary to
regraph the graph. This can be most easily achieved by left-clicking on any portion of the graph that
is not occupied. This brings up a menu of general options, one of which is redislaying the graph.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node96.html [11.12.2004 14:32:16]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Spawning further graphs

next

up

previous

contents

index

Next: Graphing regions Up: Mouse activated resource graph Previous: Redisplaying a graph

Spawning further graphs

Left-clicking on a region-external grammatical system (for example, the systems INDEPENDENT-CLAUSE-
COMPLEX, POLARITY, DEPENDENT-CLAUSE-COMPLEX, etc. in Figure 6.3) brings up a further graph rooted in
the clicked upon system and concerning the region of that system. The subgraph is only produced
when the system selected is shown as being outside of the region with which the graph is currently
concerned. This provides a means of growing a graph interactively when it is necessary to follow
paths through more than one region.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node97.html [11.12.2004 14:32:21]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graphing regions

next

up

previous

contents

index

Next: Contrastive and multilingual graphing Up: Graphing systemic networks Previous: Spawning further graphs

Graphing regions

 The command INSPECTOR:<Graph region> brings up a menu of defined functional regions from which one must be selected, and graphs all the
systems that fall within this region. This will be more or less effective depending on the integrity of the region. If a region is poorly defined with many
points of contact with other regions, then the graph will look correspondingly complex. `Holes' in the region--that is, paths through the network that lead
out of a region only to lead back into it further downstream--create extra, usually spurious, `starting' points that are collected together at the left of the
graph. Region starting points are defined as those systems for which all of their entry conditions lie outside of the region. It is still possible that systems
shown within a region have additional entry conditions from outside of the region; this is indicated by printing their names in italics as described above.

Figure 6.6 displays a very small functional region in the normal default style that is active when KPML is freshly configured. Here we can see that
realization statements in systemic notation are present (the notation is explained in Table 12.1) and that the region has two `points of entry'.

The options for changing the appearance and content of a region graph are identical to those described above for resource graphs in general.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node98.html (1 von 2) [11.12.2004 14:32:32]

Graphing regions

Figure: Example of region graphing: the region TAG

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node98.html (2 von 2) [11.12.2004 14:32:32]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive and multilingual graphing

next

up

previous

contents

index

Next: Monolingual graphing Up: Graphing systemic networks Previous: Graphing regions

Contrastive and multilingual graphing

The three modes of multilingual operations on resources (Section 5.5) apply also to graphing and have
the consequences described here.

● Monolingual graphing
● Contrastive graphing
● Multilingual graphing

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node99.html [11.12.2004 14:33:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual graphing

next

up

previous

contents

index

Next: Contrastive graphing Up: Contrastive and multilingual graphing Previous: Contrastive and
multilingual graphing

Monolingual graphing

 The monolingual graphing option corresponds to the behavior for resource graphing commands
described above, i.e., single graphs for the currently selected language are produced.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node100.html [11.12.2004 14:33:54]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive graphing

next

up

previous

contents

index

Next: Multilingual graphing Up: Contrastive and multilingual graphing Previous: Monolingual
graphing

Contrastive graphing

In contrastive graphing mode, the user is additionally prompted for a selection of languages of
interest. Then individual graphs are produced in parallel for each language specified allowing the
languages to be compared. An example can be seen in Figure 12.7.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node101.html [11.12.2004 14:34:11]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual graphing

next

up

previous

contents

index

Next: Inspecting individual object definitions Up: Contrastive and multilingual graphing Previous: Contrastive graphing

Multilingual graphing

In multilingual graphing mode, the user is prompted for a selection of languages of interest (currently limited to two). Then a single graph is produced that contains the multilingual view of
the resources of those languages. This option can be used to best effect when KPML is configured for color monitors since one of the languages is presented in red, the other in blue, and their
common overlap in black. An example of such multilingual graphing is shown in Figure 6.7a.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (1 von 5) [11.12.2004 14:34:31]

Multilingual graphing

Figure: Example of multilingual (color) graphing

If color is not available, the divergent resources are marked explicitly according to language and congruences are highlighted. An example is shown in Figure 6.7b. Here we can see that
systems are shown double-boxed if they only hold for a single language, and multiply boxed if they hold for both languages. Features of systems are prefixed by the language they hold for
when they do not hold for both languages. Thus in the example we can see that only the systems RANK, GROUP-PHRASE-CLASS, and GROUP-CLASS are common to both English and German among
the systems shown.

A further graphed example is given in Figure 12.8.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (2 von 5) [11.12.2004 14:34:31]

Multilingual graphing

Figure: Example of multilingual (monochrome) graphing

When graphing networks in this mode, an additional option appears under the Grapher Display Modes (Section 6.2.1.5). This asks whether the `integrity' of grammatical systems is to be
preserved in the multilingual graphs: that is, since in a multilingual set of resources a single feature may belong to more than one system (one for each language), it can be meaningful to

graph features with more than one parent. This cannot occur in monolingual graphs, since features are uniquely assigned to systems. gif When the integrity of systems is to be maintained
during graphing, then each feature only has one parent system--even if this means duplicating features. The duplicated features will in any case belong to different language varieties. When
integrity is not maintained, then the graph may combine similarly named features from different languages. The default display style on newly configuring KPML is that integrity should not be
preserved. This allows distinct portions of a multilingual grammar to be merged wherever it is possible to do so; preserving integrity guarantees that language graphs diverge as soon as a

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (3 von 5) [11.12.2004 14:34:31]

Multilingual graphing

feature diverges.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (4 von 5) [11.12.2004 14:34:31]

Multilingual graphing

Figure: Multilingual graphs with and without preservation of grammatical system integrity

The consequences of this graph display choice is shown in the two graphs of Figure 6.8. In the upper graph, system integrity has been maintained; in the lower graph, it has not. The
difference in the display modes can be seen by examining the position of the grammatical feature `clause' in the two graphs. For German, this feature is a output feature of the grammatical
system RANK; for English, however, the feature is an output feature of the grammatical system CLAUSE-CLASS, which is itself reached via the `clauses' feature of the English RANK system. The
lower graph, preserving system integrity, therefore shows two `clause' features, one for each system. In contrast, the upper graph shows only one `clause' feature, belonging both to the
English system CLAUSE-CLASS and the German system RANK. Which view is more appropriate depends on the particular resources and purposes of inspection.

next

up

previous

contents

index

Next: Inspecting individual object definitions Up: Contrastive and multilingual graphing Previous: Contrastive graphing

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node102.html (5 von 5) [11.12.2004 14:34:31]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: A

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

A
:Abort (KPML command)

Pausing and restarting generation
Aborting commands

Notational conventions in this document
:Activate (KPML command)

(Re-)Activating the interface
Activating the interface

(Re-)Activating the interface
Allegro Common Lisp

Prerequisites, Availability of the system, Troubleshooting, Installation and Startup, Installing
the KPML system, Installing the Emacs/Mule-interface, Making an executable image ,
Introduction, Introduction, Quiting the interface, Modifying linguistic resources, Establishing
and using a generation server, Creating a KPML client

Associate new chooser
Boundary conditions

Associations
❍ function association table (FAT) entries: Show Associations
❍ inquiries: Choosers, Choosers
❍ tracing: Show Associations, Modes and internal flags
❍ association types: Inquiries
❍ associations:Accessing semantic information, Associations, Inquiries

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-A.html [11.12.2004 14:34:52]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html#44
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: C

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

C
Cautions

Run-time cautions
Chooser-inquiry semantics

Inter-stratal organization: interfaces
Choosers

❍ definition: Choosers
❍ printing: Showing the chooser associated , Print Chooser
❍ editing: Modifying linguistic resources

:Clear history (KPML command)
Clear history

:Clear Lexicon (KPML command)
Lexicons, Resource clearing

:Clear systemic network
Resource clearing

:Clear tracing option (KPML command)
Clearing tracing selections

:Clear windows (KPML command)
Clearing the interface windows

Clearing collected features
Clear Collected Features

Clearing examples
Clear Examples

Clearing generation history
Clear history

Clearing lexicons
Lexicons

Clearing language focus
Language focusing

Clearing linguistic object focus
Linguistic object focusing

Clearing resources

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (1 von 6) [11.12.2004 14:35:10]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

General Multilingual Operations and , Resource clearing, Linguistic Resource Loading
Operations

Clearing tracing options
Clearing tracing selections

Clearing display windows
Clearing the interface windows

CLIM 1
Prerequisites, Availability of the system, Known bugs/problems, The `old-style' KPML
interface

Collected features
❍ removal: Collecting/Discollecting features
❍ clearing:

Clear Collected Features
❍ definition:

Collecting/Discollecting features
❍ example uses:

Dynamic traversal tracing, Show examples with collected
Commands (KPML interface type-in and menus)

❍ Abort: Pausing and restarting generation
❍ Activate: (Re-)Activating the interface
❍ Chooser display-modes: Print Chooser, Traversal and resource graphs
❍ Clear history: Clear history
❍ Clear Lexicon: Lexicons, Resource clearing
❍ Clear systemic network: Resource clearing
❍ Clear tracing option: Clearing tracing selections
❍ Clear windows: Clearing the interface windows
❍ Create new language: Inheriting language definitions
❍ Disable system: Show Disabled Candidate Systems, Disabling and enabling systems
❍ Display generated string: Starting generation, Display generated string
❍ Display modes: Graphing systemic networks, Printgraph, Traversal and resource graphs
❍ Display modes: Display Modes
❍ Display options: Display options, Individual chooser tracing
❍ Editing: Modifying linguistic resources
❍ Enable system: Disabling and enabling systems, Disabling and enabling systems, Static

tests during resource
❍ Environment directories: Environment Directories, Simple resource set loading,

Monolingual saving, Multilingual saving, Printgraph, Starting the example runner,
Directory structure and contents

❍ Examples using features: Show examples with features, definition: Examples Using
Features

❍ Example operations: The example operations
Clear examples: Resource clearing, Clear Examples

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (2 von 6) [11.12.2004 14:35:10]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html#46

Index: A

■ Copy examples with new names: Copy examples with new
■ delete some examples: Delete some examples
■ Example runner: Monolingual generation, Starting the example runner
■ Feature survey: Features used in examples
■ Generate from example SPL: Generate from example SPL
■ Graph example structure: Graph example structure
■ Load examples: Loading particular kinds of , Load Examples
■ Show examples with features: Show examples with features
■ Write examples: Simple resource set saving, Write Examples

❍ Flags: Flags, The root commands: overview, Automatic lexical item acquisition , Print
Chooser, Starting generation, Starting generation, Starting generation, Inspecting the
results of , Levels of detail while , Operations on displayed strings, Inspect selection
expression, Operations on displayed structures, Show selection expression, Acquiring
lexical items

❍ Focusing operations:
■ general: The root commands: overview, Introduction
■ definition: Focusing Operations
■ examples: Loading particular kinds of
■ language focusing: Language focusing
■ linguistic object focusing: Linguistic object focusing
■ releasing object focusing: Linguistic object focusing

❍ Generate again: Pause, Starting generation, example: Copy examples with new
❍ Generate from example SPL: Graph example structure
❍ Generate sentence: Simple resource set loading, Starting generation, Overview of

commands, Monolingual generation, Contrastive generation, Running modes, Pause,
Generate from example SPL, Graph example structure, example: Copy examples with
new

❍ Generation display modes: Suspending the interface
❍ Generation modes: Introduction to generation debugging , Introduction to generation

debugging , Single Step, Traversal and resource graphs, Structure Grapher Options,
Example sets and test , Operations on example strings , Example record versioning

❍ Grammar consistency tests: Static tests on whole
❍ Graph grammar: Graphing systemic networks, Graph Grammar starting from ,

Traversal and resource graphs, Graph Grammar
❍ Graph region: Graphing regions, Graphing systemic networks
❍ Graph structure: Introduction to structure graphs, How to debug resources:
❍ Grapher display modes: Display Modes, Graphing systemic networks, Printgraph,

Traversal and resource graphs, Graph Grammar
❍ Hardcopy: Print Chooser
❍ Launch development windows: The root commands: overview, The root commands:

overview

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (3 von 6) [11.12.2004 14:35:10]

Index: A

❍ Load examples: Directory structure and contents
❍ Load lexicon files: Lexicons
❍ Load linguistic resources: Simple resource set loading, Linguistic object focusing,

Notational conventions in this , Monolingual loading, Contrastive loading, Monolingual
saving, Contrastive saving, Multilingual saving, Semantic defaults and macros,
Patching and loading linguistic , Patching and loading linguistic , Directory structure
and contents, Directory structure and contents

❍ Load linguistic resources (patching): Patching and loading linguistic
❍ Multilingual behaviour modes: General Multilingual Operations, Contrastive loading,

General Multilingual Operations , The root commands: overview
❍ Multilingual behaviour modes and language focusing: Loading particular kinds of
❍ Options: Structure Grapher Options
❍ Partial regeneration: Partial re-generation
❍ Pause: Pausing and restarting generation, Resume
❍ Pause on inquiry: Pausing on inquiries
❍ Print: Introduction
❍ Print graph: Producing graphs for inclusion
❍ Print chooser: Showing the chooser associated , Print associated chooser, Show chooser

of feature, Print chooser, Individual chooser tracing, Choosers
❍ Print chooser (in popup window): Print Chooser
❍ Print graph: Printgraph, Print Chooser, Introduction to structure graphs
❍ Print inquiry: Print inquiry
❍ Print system: Showing a full system , Printing system definition
❍ Quit: Quiting the interface, Quit, Introduction to structure graphs
❍ Quit resource grapher: Quit Resource Grapher
❍ Redisplay: Redisplay
❍ Reset generation modes: Introduction to generation debugging , Generation Display

Modes
❍ Resume: Pausing and restarting generation
❍ Set default language: General Multilingual Operations and , General Multilingual

Operations , The root commands: overview, Creating unconditionalized linguistic
resources, Patching and loading linguistic

❍ Set language: Switching Languages, Language-font associations, Switching languages
❍ Show cumulative history: Viewing focused results, Activation of tracing, Individual

chooser tracing
❍ Show examples with collected features: Show examples with collected , Traversal and

resource graphs, Display generated string
❍ Show path to: Show path to, Basic realization constraints
❍ Stop pausing on inquiry: Pausing on inquiries
❍ Store linguistic resources: Linguistic object focusing, Simple resource set saving,

Directory structure and contents, Resource definition files

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (4 von 6) [11.12.2004 14:35:10]

Index: A

❍ Store linguistic resources (example of use): Contrastive saving, Multilingual saving
❍ Store linguistic resources (patching): Patching and saving linguistic
❍ Suspend: Suspending the interface, (Re-)Activating the interface
❍ Trace inquiries of chooser: Individual chooser tracing
❍ Trace inquiry: Individual inquiry tracing
❍ Trace system: Individual system tracing
❍ Traversal graph: Dynamic traversal tracing
❍ Untrace inquiries of chooser: Individual chooser tracing
❍ Untrace inquiry: Individual inquiry tracing
❍ Untrace system: Individual system tracing
❍ `Who can' commands

■ ... ask: Who can ask, Who can ask
■ ... classify: Who can classify
■ ... identify: Who can identify
■ ... inflectify: Who can inflectify
■ ... insert: Who can insert
■ ... lexify: Who can lexify
■ ... order: Who can order
■ ... partition: Who can partition
■ ... pose: Who can pose identifying
■ ... pose-identifying-inquiry: Who can pose identifying
■ ... preselect: Who can preselect

❍ `Who has as' commands
■ ... input: Who has as input
■ ... output: Who has as output

❍ Write lexicon file: Simple resource set saving
Command completion

The root commands: overview
Completion

Introduction, The KPML Inspector Window
Concept printing

Print Concept
Conflation alias

Show Ordering Constraints
Contrastive multilingual mode:

❍ definition:General Multilingual Operations and
❍ generation: Contrastive generation
❍ graphing: Contrastive graphing
❍ loading: Contrastive loading
❍ printing: Contrastive definition printing
❍ saving: Contrastive saving

Copyhub

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (5 von 6) [11.12.2004 14:35:10]

Index: A

Choosers, Show Associations
:Create new language (KPML command)

Inheriting language definitions

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-C.html (6 von 6) [11.12.2004 14:35:10]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspecting individual object definitions

next

up

previous

contents

index

Next: Introduction Up: The KPML Inspector Window Previous: Multilingual graphing

Inspecting individual object definitions

● Introduction
● Display commands

❍ Print System
❍ Print Chooser
❍ Print Inquiry
❍ Print Inquiry Implementation
❍ Print Lexical Item
❍ Print Concept
❍ Print Relation

● Definition displaying and the multilingual modes
❍ Monolingual definition printing
❍ Contrastive definition printing
❍ Multilingual definition printing

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node103.html [11.12.2004 18:25:39]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next

up

previous

contents

index

Next: Display commands Up: Inspecting individual object definitions Previous: Inspecting
individual object definitions

Introduction

The definitions of any linguistic object can be displayed directly. The commands for displaying
objects are found at the top level in the Inspection window command menu. The linguistic objects
addressed include: systems, choosers, inquiries, inquiry implementations, grammatical features,
lexical items, SPL-terms, sentence plans (both prior to, and following, expansion of macros), and LOOM
concepts and relations. Each of these can be typed directly at the Interaction window using the
command <:Print ...> ; i.e., clicking on `Print Lexical Item' has the same effect as typing `Print
Lexical Item' in directly at the Interaction window. Similarly, each of the options under the menu
option `Who can ...' can be obtained also by typing in the equivalent command at the Interaction
window.

The full list of these commands, and the description of their function whether reached by typing in or
by selecting menu options, is as follows. All commands are described as if the multilingual mode
setting were `monolingual', which is the default (see Sections 5.5 and 6.3.3); examples of different
settings are also given in Section 6.3.3.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node104.html [11.12.2004 18:25:44]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Display commands

next

up

previous

contents

index

Next: Print System Up: Inspecting individual object definitions Previous: Introduction

Display commands

● Print System
● Print Chooser
● Print Inquiry
● Print Inquiry Implementation
● Print Lexical Item
● Print Concept
● Print Relation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node105.html [11.12.2004 18:25:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print System

next

up

previous

contents

index

Next: Print Chooser Up: Display commands Previous: Display commands

Print System

Requires that a grammatical system name be entered in the interaction window and prints the
definition of the system (see Section 12.2.4) in the interaction results window. The definition shown is
that which holds for the currently active language. For example, this was the last command performed
in the interaction pane shown in Figure 6.1, producing the RANK system definition shown there.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node106.html [11.12.2004 18:25:53]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Chooser

next

up

previous

contents

index

Next: Print Inquiry Up: Display commands Previous: Print System

Print Chooser

Requires that a chooser name be entered in the interaction window and prints the definition of the chooser (see
Section 12.2.6) in the interaction results window. The definition shown is that which holds for the currently active
language.

If :choosers are on the list of activated pop-up displays (settable from the ROOT:<Flags> command), then the
command <Print Chooser> produces a graphical representation of the specified chooser instead of a textual form.
Figure 6.9, for example, shows the corresponding graph of the chooser definition given in Section 12.2.6. The layout-
oriented grapher options described for system network graphing also apply for chooser graphs and may be set with the
command CHOOSER-GRAPH:<Chooser Display Modes> . The linguistic objects present in the graph are, as with the textually
presented version, mouse-sensitive, providing links back to grammatical features and inquiries (cf. Section 6.5).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node107.html (1 von 3) [11.12.2004 18:26:03]

Print Chooser

Figure: Graphical display of a chooser

As with the RESOURCE-GRAPH:<Print Graph> command (Section 6.2.1.2), the
CHOOSER-GRAPH:< Hardcopy> command produces a postscript file in the current hardcopy directory. This can then be sent
to a printer, or given the appropriate flag settings and modifications (cf. Section 6.2.2) included in text documents. An
example of an included encapsulated postscript version of a chooser (that for PRIMARY TENSE in English) is shown in

Figure 6.10. gif

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node107.html (2 von 3) [11.12.2004 18:26:03]

Print Chooser

Figure: Graphical chooser display included in this document as an EPS file

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node107.html (3 von 3) [11.12.2004 18:26:03]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Inquiry

next

up

previous

contents

index

Next: Print Inquiry Implementation Up: Display commands Previous: Print Chooser

Print Inquiry

 Requires that an inquiry name be entered in the interaction window and prints the definition of the
inquiry (see Section 12.2.7) in the interaction results window. The definition shown is that which
holds for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node108.html [11.12.2004 18:26:07]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Inquiry Implementation

next

up

previous

contents

index

Next: Print Lexical Item Up: Display commands Previous: Print Inquiry

Print Inquiry Implementation

 Requires that an inquiry name be entered in the interaction window and prints the definition of the
implementation of that inquiry if it exists and is accessible in uncompiled form. This definition will
normally be a Lisp function.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node109.html [11.12.2004 18:26:21]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Lexical Item

next

up

previous

contents

index

Next: Print Concept Up: Display commands Previous: Print Inquiry Implementation

Print Lexical Item

 Requires that a lexical item name be entered in the interaction window and prints the definition of
the lexical item (see Section 12.2.8) in the interaction results window. The definition shown is that
which holds for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node110.html [11.12.2004 18:26:38]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Concept

next

up

previous

contents

index

Next: Print Relation Up: Display commands Previous: Print Lexical Item

Print Concept

 Requires that a LOOM concept name be entered in the interaction window and prints the definition of
that concept in the interaction results window.

Note: this is currently specific to Loom, and will need updating when a different knowledge
representation language is used. The change is straightforward.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node111.html [11.12.2004 18:26:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print Relation

next

up

previous

contents

index

Next: Definition displaying and the Up: Display commands Previous: Print Concept

Print Relation

Requires that a LOOM relation name be entered in the interaction window and prints the definition of
that concept in the interaction results window.

Note: this is currently specific to Loom, and will need updating when a different knowledge
representation language is used. The change is straightforward.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node112.html [11.12.2004 18:26:46]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Definition displaying and the multilingual modes

next

up

previous

contents

index

Next: Monolingual definition printing Up: Inspecting individual object definitions Previous: Print
Relation

Definition displaying and the multilingual modes

All the display commands described above are also further parameterized by the monolingual,
contrastive, and multilingual modes. The effects are described as follows. The default, startup mode is
monolingual definition printing. The description of the definition form is given in Section 12.2.4.

● Monolingual definition printing
● Contrastive definition printing
● Multilingual definition printing

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node113.html [11.12.2004 18:26:51]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual definition printing

next

up

previous

contents

index

Next: Contrastive definition printing Up: Definition displaying and the Previous: Definition
displaying and the

Monolingual definition printing

In monolingual definition printing mode, the definition corresponding to that for the currently selected
language is displayed in one of the KPML windows.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node114.html [11.12.2004 18:26:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive definition printing

next

up

previous

contents

index

Next: Multilingual definition printing Up: Definition displaying and the Previous: Monolingual
definition printing

Contrastive definition printing

 In contrastive definition printing mode, displays are given of the individual definitions
corresponding to views from either all of the known language varieties or, alternatively, if a set of
languages has been `focused' (Section 5.6.2), from this focused set. For example, if German and
English have been focused (or, if KPML has only been configured to expect German and English), then
< Print System Rank> produces the following.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node115.html [11.12.2004 18:27:08]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual definition printing

next

up

previous

contents

index

Next: Object selection according to Up: Definition displaying and the Previous: Contrastive definition
printing

Multilingual definition printing

 In multilingual definition printing mode, a combined view of all of known or focused languages is
presented. For example, in the same situation as the the previous example, multilingual mode printing would
produce the following.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node116.html [11.12.2004 18:27:20]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Object selection according to specified criteria

next

up

previous

contents

index

Next: `Who has' selections Up: The KPML Inspector Window Previous: Multilingual definition
printing

Object selection according to specified
criteria
The KPML inspector window includes commands for accessing linguistic objects on the basis of
specific resource-centred properties. The full list of commands is as follows.

● `Who has' selections
❍ Who has as input
❍ Who has as output

● `Who can' selections
❍ Who can lexify
❍ Who can inflectify
❍ Who can classify
❍ Who can insert
❍ Who can order
❍ Who can partition
❍ Who can preselect
❍ Who can ask
❍ Who can identify
❍ Who can pose identifying inquiry

● Examples Using Features

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node117.html [11.12.2004 18:27:25]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

`Who has' selections

next

up

previous

contents

index

Next: Who has as input Up: Object selection according to Previous: Object selection according to

`Who has' selections

● Who has as input
● Who has as output

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node118.html [11.12.2004 18:27:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who has as input

next

up

previous

contents

index

Next: Who has as output Up: `Who has' selections Previous: `Who has' selections

Who has as input

The command <:Who has as input> requires that a grammatical feature be entered in the interaction
window and prints a list of those grammatical systems that have the feature as input in the interaction
results window. The connectivity shown is that relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node119.html [11.12.2004 18:27:46]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who has as output

next

up

previous

contents

index

Next: `Who can' selections Up: `Who has' selections Previous: Who has as input

Who has as output

The command <:Who has as output> requires that a grammatical feature be entered in the interaction
window and prints a list of those grammatical systems that have the feature as output in the interaction
results window. The connectivity shown is that relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node120.html [11.12.2004 18:27:52]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

`Who can' selections

next

up

previous

contents

index

Next: Who can lexify Up: Object selection according to Previous: Who has as output

`Who can' selections

The INSPECTOR:<Who Can...> command brings up a wide range of `who-can' type queries described as
follows. All of them can also be given directly as type-in commands at the Inspector interaction pane.

● Who can lexify
● Who can inflectify
● Who can classify
● Who can insert
● Who can order
● Who can partition
● Who can preselect
● Who can ask
● Who can identify
● Who can pose identifying inquiry

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node121.html [11.12.2004 18:27:59]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can lexify

next

up

previous

contents

index

Next: Who can inflectify Up: `Who can' selections Previous: `Who can' selections

Who can lexify

Requires that either a grammatical function or a lexical item name be entered in the interaction
window and prints in the interaction results window a list of those grammatical systems that lexify the
grammatical function to have the lexical item as realization. The unspecified argument (i.e., either the
grammatical function or the lexical item) is filled by any such unit in the loaded resources where the
specified kind of realization statement holds. This option is reached from the menu option <Who can
...>, followed by the selection <... lexify>. The systems selected are those relevant for the currently
active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node122.html [11.12.2004 18:28:03]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can inflectify

next

up

previous

contents

index

Next: Who can classify Up: `Who can' selections Previous: Who can lexify

Who can inflectify

Requires that either a grammatical function or a morphological lexical feature name be entered in the
interaction window and prints in the interaction results window a list of those grammatical systems
where the grammatical function is inflectified to have the morphological feature. The unspecified
argument (i.e., either the grammatical function or the morphological feature) is filled by any such unit
in the loaded resources where the specified kind of realization statement holds. This option is reached
from the menu option <Who can ...>, followed by the selection <... lexify>. The systems selected are
those relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node123.html [11.12.2004 18:28:07]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can classify

next

up

previous

contents

index

Next: Who can insert Up: `Who can' selections Previous: Who can inflectify

Who can classify

Requires that either a grammatical function or a lexical feature name be entered in the interaction
window and prints in the interaction results window a list of those grammatical systems where the
grammatical function is classified to have the lexical feature. The unspecified argument (i.e., either
the grammatical function or the lexical feature) is filled by any such unit in the loaded resources
where the specified kind of realization statement holds. This option is reached from the menu option
<Who can ...>, followed by the selection <... classify>. The systems selected are those relevant for the
currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node124.html [11.12.2004 18:28:11]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can insert

next

up

previous

contents

index

Next: Who can order Up: `Who can' selections Previous: Who can classify

Who can insert

Requires that a grammatical function be given in the interaction window and prints in the interaction
results window a list of those systems where the specified function is inserted. This option is reached
from the menu option <Who can ...>, followed by the selection <... insert>. The systems selected are
those relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node125.html [11.12.2004 18:28:16]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can order

next

up

previous

contents

index

Next: Who can partition Up: `Who can' selections Previous: Who can insert

Who can order

Requires that a grammatical function be given in the interaction window and prints in the interaction
results window a list of those systems where the specified function is ordered with respect to some
other function. This option is reached from the menu option <Who can ...>, followed by the selection
<... order>. The systems selected are those relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node126.html [11.12.2004 18:28:20]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can partition

next

up

previous

contents

index

Next: Who can preselect Up: `Who can' selections Previous: Who can order

Who can partition

Requires that a grammatical function be given in the interaction window and prints in the interaction
results window a list of those systems where the specified function is partitioned with respect to some
other function. This option is reached from the menu option <Who can ...>, followed by the selection
<... partition>. The systems selected are those relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node127.html [11.12.2004 18:28:24]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can preselect

next

up

previous

contents

index

Next: Who can ask Up: `Who can' selections Previous: Who can partition

Who can preselect

Requires that either a grammatical function or a grammatical feature name be entered in the
interaction window and prints in the interaction results window a list of those grammatical systems
where the grammatical function is preselected to have the grammatical feature. The unspecified
argument (i.e., either the grammatical function or the grammatical feature) is filled by any such unit in
the loaded resources where the specified kind of realization statement holds. This option is reached
from the menu option <Who can ...>, followed by the selection <... preselect>. The systems selected
are those relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node128.html [11.12.2004 18:28:28]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can ask

next

up

previous

contents

index

Next: Who can identify Up: `Who can' selections Previous: Who can preselect

Who can ask

Requires that a branching inquiry be given in the interaction window and prints a list of those
choosers where the inquiry is asked in the interaction results window. This option is reached from the
menu option <Who can ...>, followed by the selection <... ask>. The choosers thus shown are those
relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node129.html [11.12.2004 18:28:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can identify

next

up

previous

contents

index

Next: Who can pose identifying Up: `Who can' selections Previous: Who can ask

Who can identify

Requires that a grammatical function be given in the interaction window and prints in the interaction
results window the identifying inquiries that can provide a value for this function. This option is
reached from the menu option <Who can ...>, followed by the selection <... identify>. The inquiries
selected are those relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node130.html [11.12.2004 18:29:03]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can pose identifying inquiry

next

up

previous

contents

index

Next: Examples Using Features Up: `Who can' selections Previous: Who can identify

Who can pose identifying inquiry

Requires that an identifying inquiry be given in the interaction window and prints a list of those
choosers where the inquiry is asked in the interaction results window. This option is reached from the
menu option <Who can ...>, followed by the selection <... pose identifying inquiry>. The choosers
thus shown are those relevant for the currently active language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node131.html [11.12.2004 18:29:07]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Examples Using Features

next

up

previous

contents

index

Next: Direct inspection and information Up: Object selection according to Previous: Who can pose
identifying

Examples Using Features

 The command INSPECTOR:<Examples Using Features> is similar to the command that is available
from the resource graph window described above. However, if there are no collected features, it
prompts the user for a feature that is to be sought in the stored example records. A list of examples
that have the feature specified somewhere in one of their selection expressions is given in the
Inspector window

As always, this will only select from examples where the selection expression is already present in the
example record: see Section 10.1 for a description of how and when this occurs.

Features are normally collected directly from graph of the systemic networks (Section 6.2.3.4) or from
selection expressions produced during generation (Section 7.4).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node132.html [11.12.2004 18:29:11]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Direct inspection and information chains

next

up

previous

contents

index

Next: Introduction Up: The KPML Inspector Window Previous: Examples Using Features

Direct inspection and information
chains

● Introduction
● Inspection operations on grammatical systems

❍ Printing system definition
❍ Print associated chooser
❍ Graph Grammar starting from system

● Inspection operations on grammatical features
❍ Displaying usage of grammatical features
❍ Who has as input
❍ Who has as output
❍ Show path to
❍ Show chooser of feature
❍ Graph from feature
❍ Collect feature
❍ Uncollect feature
❍ Clear collected features

● Inspection operations on choosers
❍ Print chooser
❍ Show inquiries of chooser
❍ Systems of chooser

● Inspection operations on inquiries
❍ Print inquiry
❍ Print implementation
❍ Who can ask
❍ Who can pose identifying inquiry

● Inspection operations on lexical items
● Inspection operations on SPL terms
● Inspection operations on examples

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node133.html (1 von 2) [11.12.2004 18:29:16]

Direct inspection and information chains

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node133.html (2 von 2) [11.12.2004 18:29:16]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next

up

previous

contents

index

Next: Inspection operations on grammatical Up: Direct inspection and information Previous: Direct inspection and
information

Introduction

In addition to the kinds of commands given above where explicit names of linguistic units must be entered, it is
also possible (and more usual) to use direct mouse driven commands that operate on particular linguistic objects
visible in the KPML display windows--such as the network graphs or the inspection window. The mouse-sensitivity
of the nodes in systemic graphs was described above (Section 6.2.3); this section discusses the possibilities that
textual representations offer for supporting the direct following of information chains also.

As in the descriptions above, it should be noted that there are also options for supporting various tracing operations
during generation. These are not described here, but will be returned to in Chapter 7.

Normally all objects that are displayed in any KPML window are to a greater or lesser extent mouse sensitive. The
kinds of operations that can be performed on these objects depends on their type. Thus, different types of linguistic
objects support different kinds of operations. The descriptions given here will be organized according to linguistic
object type.

Linguistic objects are generally referred to by name. In the textual displays, it is therefore the names of various
linguistic objects that occur that are mouse sensitive.

As an example, Figure 6.11 shows the textual display of a grammatical system with all the mouse sensitive objects
present artificially highlighted. Each highlighted object here also shows the type of the object that is mouse
sensitive. Moving the mouse around a window quickly reveals the mouse sensitive objects in that window; the type
of an object can usually be seen in the mouse documentation line.

Figure: Mouse sensitive objects within a textual display

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node134.html (1 von 2) [11.12.2004 18:29:26]

Introduction

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node134.html (2 von 2) [11.12.2004 18:29:26]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on grammatical systems

next

up

previous

contents

index

Next: Printing system definition Up: Direct inspection and information Previous: Introduction

Inspection operations on grammatical systems

● Printing system definition
● Print associated chooser
● Graph Grammar starting from system

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node135.html [11.12.2004 18:29:30]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Printing system definition

next

up

previous

contents

index

Next: Print associated chooser Up: Inspection operations on grammatical Previous: Inspection
operations on grammatical

Printing system definition

Clicking left on a system name will print a definition of that system in the Inspection information
pane. This is also the first option on the menu produced by clicking right on a system name. In both
cases this is fully equivalent to the command <Print System> , but saves typing in the desired system
name.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node136.html [11.12.2004 18:29:37]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print associated chooser

next

up

previous

contents

index

Next: Graph Grammar starting from Up: Inspection operations on grammatical Previous: Printing
system definition

Print associated chooser

Right-clicking on a system name brings up a menu including show associated chooser as an option.
This has the same effect as issuing the command INSPECTOR:<Print Chooser> and typing in the
clicked upon name.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node137.html [11.12.2004 18:29:41]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph Grammar starting from system

next

up

previous

contents

index

Next: Inspection operations on grammatical Up: Inspection operations on grammatical Previous:
Print associated chooser

Graph Grammar starting from system

 Right-clicking on a system name brings up a menu including Graph Grammar as an option. This has
the same effect as issuing the command INSPECTOR:<Graph Grammar> and typing in the clicked upon
name.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node138.html [11.12.2004 18:29:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on grammatical features

next

up

previous

contents

index

Next: Displaying usage of grammatical Up: Direct inspection and information Previous: Graph
Grammar starting from

Inspection operations on grammatical features

The first command described in this section is that reached by left-clicking on a grammatical feature.
The remainder are all reached by selecting the corresponding command from the menu produced by
right-clicking on a grammatical feature.

Note that all the commands here can also be typed in full in the INSPECTOR interactor pane; in this case,
the arguments required must be typed directly as with all such commands.

All information given is for the current language only.

● Displaying usage of grammatical features
● Who has as input
● Who has as output
● Show path to
● Show chooser of feature
● Graph from feature
● Collect feature
● Uncollect feature
● Clear collected features

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node139.html [11.12.2004 18:29:49]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Displaying usage of grammatical features

next

up

previous

contents

index

Next: Who has as input Up: Inspection operations on grammatical Previous: Inspection operations
on grammatical

Displaying usage of grammatical features

Clicking left on a grammatical feature presents lists of all those systems that use that feature in their
inputs and their outputs. This has the same effect as issuing the command INSPECTOR:< Print Feature>
and typing in the clicked upon name. The same command can be reached under the right-click menu.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node140.html [11.12.2004 18:29:54]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who has as input

next

up

previous

contents

index

Next: Who has as output Up: Inspection operations on grammatical Previous: Displaying usage of
grammatical

Who has as input

Selecting this option from the right-click menu for grammatical features prints a mouse-sensitive list
of the systems which have the clicked upon feature in their entry conditions.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node141.html [11.12.2004 18:29:57]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who has as output

next

up

previous

contents

index

Next: Show path to Up: Inspection operations on grammatical Previous: Who has as input

Who has as output

Selecting this option from the right-click menu for grammatical features prints a mouse-sensitive list
of the systems which have the clicked upon feature as one of their output features. Note that a well-
formed systemic network can only have one such system: however, it is quite possible to have
multiple definitions that share an output condition known to KPML at the same time. All but one of
these will, however, be disabled--i.e., will not be used in generation (cf. Section 7.5.2.4).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node142.html [11.12.2004 18:30:02]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show path to

next

up

previous

contents

index

Next: Show chooser of feature Up: Inspection operations on grammatical Previous: Who has as output

Show path to

 Selecting this option from the right-click menu for grammatical features prints a mouse-sensitive list of the
features which lie on the traversal path leading to the clicked upon system. For example, selecting this option for
the feature `finite-rankshift' (cf. Figure 6.3) produces the following for English:

The paths given are calculated starting from the selected feature and working leftwards in the network along all
connections that do not participate in disjunctions. Giving a full path description including disjunctions is naturally
somewhat more expensive and so is avoided.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node143.html [11.12.2004 18:30:06]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show chooser of feature

next

up

previous

contents

index

Next: Graph from feature Up: Inspection operations on grammatical Previous: Show path to

Show chooser of feature

Selecting this option from the right-click menu for grammatical features is equivalent to issuing a
<Print Chooser> command for the systems who have the clicked upon feature as an output. That is,
all choosers that could be responsible for the clicked upon feature are displayed.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node144.html [11.12.2004 18:30:10]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph from feature

next

up

previous

contents

index

Next: Collect feature Up: Inspection operations on grammatical Previous: Show chooser of feature

Graph from feature

 Selecting this option from the right-click menu for grammatical features brings up a systemic
network graph with the clicked upon feature as root. All layout and content options are as described in
Section 6.2.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node145.html [11.12.2004 18:30:26]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Collect feature

next

up

previous

contents

index

Next: Uncollect feature Up: Inspection operations on grammatical Previous: Graph from feature

Collect feature

As described in Section 6.2.1.3, features can be `collected' for various purposes. Selecting this option
allows the collection of any feature that is displayed in the interaction result pane.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node146.html [11.12.2004 18:30:30]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Uncollect feature

next

up

previous

contents

index

Next: Clear collected features Up: Inspection operations on grammatical Previous: Collect feature

Uncollect feature

As described in Section 6.2.1.3, features can be `collected' for various purposes. Selecting this option
removes the clicked upon feature from the current list. This allows any feature that is displayed in the
interaction result pane to be removed from the current collection.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node147.html [11.12.2004 18:30:34]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear collected features

next

up

previous

contents

index

Next: Inspection operations on choosers Up: Inspection operations on grammatical Previous:
Uncollect feature

Clear collected features

Selecting this option clears all the collected features (cf. Section 6.2.1.3) regardless of which feature
happened to be clicked upon.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node148.html [11.12.2004 18:30:38]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on choosers

next

up

previous

contents

index

Next: Print chooser Up: Direct inspection and information Previous: Clear collected features

Inspection operations on choosers

All of the following commands can also be typed direction in the INSPECTOR window's interactor pane.
In this case, the arguments required must be typed directly as with all such commands, instead of
being the object clicked upon.

● Print chooser
● Show inquiries of chooser
● Systems of chooser

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node149.html [11.12.2004 18:30:41]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print chooser

next

up

previous

contents

index

Next: Show inquiries of chooser Up: Inspection operations on choosers Previous: Inspection
operations on choosers

Print chooser

Clicking left on a chooser presents presents the definition of that chooser shown according to current
defaults (i.e., a textual view in the INSPECTOR window or as a separate graphical view as determined by
the appropriate flag under the ROOT:< Flags> command. This has the same effect as issuing the
command INSPECTOR:<Print Chooser> and typing in the clicked upon name. The same command can
be reached under the right-click menu.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node150.html [11.12.2004 18:30:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show inquiries of chooser

next

up

previous

contents

index

Next: Systems of chooser Up: Inspection operations on choosers Previous: Print chooser

Show inquiries of chooser

Selecting this option from the right-click menu for a chooser displays in the INSPECTOR's interaction
results pane a mouse-sensitive list of all the inquiries that are used in the clicked upon chooser.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node151.html [11.12.2004 18:30:49]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Systems of chooser

next

up

previous

contents

index

Next: Inspection operations on inquiries Up: Inspection operations on choosers Previous: Show
inquiries of chooser

Systems of chooser

Selecting this option from the right-click menu for a chooser displays in the INSPECTOR's interaction
results pane a mouse-sensitive list of all the systems that use a particular chooser. Normally there is
only one such system, since each system has its own chooser. But if there are multiple versions of
systems then it is possible that a single chooser would be used by these distinct versions. The main
rationale of this command is to provide a mouse-driven means of following an information chain from
choosers back to systems.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node152.html [11.12.2004 18:30:53]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on inquiries

next

up

previous

contents

index

Next: Print inquiry Up: Direct inspection and information Previous: Systems of chooser

Inspection operations on inquiries

All of the following commands can also be typed direction in the INSPECTOR window's interactor pane.
In this case, the arguments required must be typed directly as with all such commands, instead of
being the object clicked upon.

● Print inquiry
● Print implementation
● Who can ask
● Who can pose identifying inquiry

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node153.html [11.12.2004 18:30:58]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print inquiry

next

up

previous

contents

index

Next: Print implementation Up: Inspection operations on inquiries Previous: Inspection operations
on inquiries

Print inquiry

Clicking left on an inquiry presents presents the textual definition of that inquiry in the INSPECTOR's
interaction results pane. This has the same effect as issuing the command INSPECTOR:<Print Inquiry>
and typing in the clicked upon name. The same command can be reached under the right-click menu.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node154.html [11.12.2004 18:31:02]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Print implementation

next

up

previous

contents

index

Next: Who can ask Up: Inspection operations on inquiries Previous: Print inquiry

Print implementation

Selecting this option from the right-click menu for an inquiry displays in the INSPECTOR's interaction
results pane the inquiry implementation associated with an inquiry: this is normally a Lisp function.
The implementation can normally only be printed if the corresponding function has not been
compiled.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node155.html [11.12.2004 18:31:06]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can ask

next

up

previous

contents

index

Next: Who can pose identifying Up: Inspection operations on inquiries Previous: Print
implementation

Who can ask

Selecting this option from the right-click menu for an inquiry displays in the INSPECTOR's interaction
results pane a mouse-sensitive list of those choosers that ask the inquiry as a branching inquiry. As
well as being typed directly as INSPECTOR:<:Who can ask> , this command can also be reached as
INSPECTOR:<Who can ... : ... ask>.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node156.html [11.12.2004 18:31:10]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Who can pose identifying inquiry

next

up

previous

contents

index

Next: Inspection operations on lexical Up: Inspection operations on inquiries Previous: Who can ask

Who can pose identifying inquiry

Selecting this option from the right-click menu for an inquiry displays in the INSPECTOR's interaction
results pane a mouse-sensitive list of those choosers that pose the inquiry as an identifying inquiry. As
well as being typed directly as INSPECTOR:<:Who can pose identifying inquiry> , this command can
also be reached as INSPECTOR:<Who can ... : ... pose identifying inquiry>.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node157.html [11.12.2004 18:31:14]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on lexical items

next

up

previous

contents

index

Next: Inspection operations on SPL Up: Direct inspection and information Previous: Who can pose
identifying

Inspection operations on lexical items

The only inspection operation for a lexical item is to print its definition. This may include mouseable
morphological features.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node158.html [11.12.2004 18:31:18]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on SPL terms

next

up

previous

contents

index

Next: Inspection operations on examples Up: Direct inspection and information Previous: Inspection
operations on lexical

Inspection operations on SPL terms

The only inspection operation for an SPL term is to print its definition.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node159.html [11.12.2004 18:31:21]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspection operations on examples

next

up

previous

contents

index

Next: Overview of information inspection Up: Direct inspection and information Previous:
Inspection operations on SPL

Inspection operations on examples

A wide range of further inspection operations are supported on the basis of `example records'. These
are stored as test suites, or example sets. The role and maintenance of examples is described in detail
in Chapter 10. The description of inspection (and other) operations on examples is therefore given
there.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node160.html [11.12.2004 18:31:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of information inspection chains

next

up

previous

contents

index

Next: The KPML Development Window Up: The KPML Inspector Window Previous: Inspection
operations on examples

Overview of information inspection
chains

The possibilities for following information chains for particular types of linguistic objects are
summarized in Figure 6.12. Each box in the diagram represents a particular type of linguistic object
supported by KPML. An arrow between a pair of boxes indicates that it is possible, by means of a
mouse-click combination, to go from an object of the indicated source type to the associated object of
the target type.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node161.html (1 von 3) [11.12.2004 18:31:55]

Overview of information inspection chains

Figure: Summary of information chain possibilities: resources

For example, there are menu commands available which make it possible to go from the textual or
graphical representation of a `grammatical feature' to:

(i)
the system for which that feature is an output,

(ii)
the chooser which is responsible for selecting that feature,

(iii)
a graph of the systemic network having that feature as root.

Right mouse-clicking on an object will generally bring up a menu presenting the indicated options
(plus options for generation tracing as described in Chapter 7).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node161.html (2 von 3) [11.12.2004 18:31:55]

Overview of information inspection chains

Note that the options presented here are considerably extended by the example sets; this is
summarized in Section 10.4.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node161.html (3 von 3) [11.12.2004 18:31:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The KPML Development Window

next

up

previous

contents

index

Next: Introduction Up: No Title Previous: Overview of information inspection

The KPML Development Window

● Introduction
● Window Layout
● Overview of commands
● Generation: basics

❍ Introduction to generation with KPML
❍ Starting generation
❍ Generation and the multilingual modes

■ Monolingual generation
■ Contrastive generation

❍ Semantic defaults and macros
❍ Run-time cautions
❍ Run-time warnings
❍ Running modes
❍ Boundary conditions

● Tracing and debugging during generation
❍ Introduction to generation debugging under KPML
❍ Generation tracing modes

■ Show Constituent Starts
■ Show System And Inquiry Activity
■ Show Why System Is Firing
■ Show Disabled Candidate Systems
■ Show System Entry Dependencies
■ Show Preselections
■ Show Immediate Realizations
■ Show Lexical Selection
■ Show Lexical Features
■ Show Ordering Constraints
■ Show Ordering Events
■ Show Ordering Results

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node162.html (1 von 3) [11.12.2004 18:32:02]

The KPML Development Window

■ Show Associations
■ Show Inquiry Answer Source
■ Show entailed inquiry response

❍ Generation process control options
■ Realize Selectively
■ Realize until constituent number
■ Single Step
■ Enter Debugger on Warnings

❍ Generation result focusing modes
■ Cumulate System and Inquiry Activity
■ Update Example Record Fields

❍ Viewing focused results
■ The cumulative history window commands

■ Redisplay
■ Clear history
■ Display options
■ Quit

■ Example of use
● Activating result focusing and tracing for particular linguistic objects

❍ Activation of tracing
■ Individual system tracing
■ Individual chooser tracing
■ Individual inquiry tracing

❍ Clearing tracing selections
● Graphical representation of systemic network traversal

❍ Traversal and resource graphs
❍ Dynamic traversal tracing

● Additional generation process control options
❍ Disabling and enabling systems
❍ Pausing on inquiries
❍ Pausing and restarting generation

● Inspecting the results of generation: Graph Structure
❍ Introduction to structure graphs
❍ Structure Grapher Options
❍ Operations available on structure constituents

■ Selection expression
■ Preselections
■ Orderings
■ Lexical constraints
■ Associations
■ All structural constraints

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node162.html (2 von 3) [11.12.2004 18:32:02]

The KPML Development Window

● Inspecting the results of generation: Operations on the produced strings or textual structure
displays

● Switching Languages
● Summary of generation process information chains
● How to debug resources: a sketch of a method

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node162.html (3 von 3) [11.12.2004 18:32:02]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next

up

previous

contents

index

Next: Window Layout Up: The KPML Development Window Previous: The KPML Development
Window

Introduction
The KPML development window is used for maintaining and developing linguistic resources by means
of generation--either single instances of generation or by running through example sets. The
development window includes commands for controlling the amount of information shown or
gathered during generation and for inspecting the results of generation.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node163.html [11.12.2004 18:32:07]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Window Layout

next

up

previous

contents

index

Next: Overview of commands Up: The KPML Development Window Previous: Introduction

Window Layout
An example of the development window is shown in Figure 7.1. It is divided into 4 panes stacked
vertically:

● the menu commands for resource development,
● the `target' sentence pane which shows the intended generation target when working with

examples,
● the interaction results display pane,
● the mouse documentation line.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node164.html (1 von 2) [11.12.2004 18:32:17]

Window Layout

Figure: KPML development environment window

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node164.html (2 von 2) [11.12.2004 18:32:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Overview of commands

next

up

previous

contents

index

Next: Generation: basics Up: The KPML Development Window Previous: Window Layout

Overview of commands
The development commands can be divided into the following categories:

● commands for starting generation (<Generate Sentence> , <Generate Again>, and <Example
Operations: Example Runner>),

● commands for controlling the information displayed or collected during generation
(<Generation Modes>, <Reset Generation Modes>, and <Clear Tracing Options>),

● commands for interrupting or resuming the generation process (<Pause>, <Abort Generation>,
and < Resume>,

● commands for showing the results of generation (<Graph Structure> and <Show Cumulative
History>),

● commands for operating on examples and example sets (those under <Example Operations>).

In addition, the single command <Set Language> can be used to explicitly indicate the language for
which generation is to proceed and for which display and graphical information is to be given.

These command groups, with the exception of those for example sets which are described separately
in Chapter 10, are described in detail in the following sections. Since the main function of the
development window is concerned with generation, our discussion of the commands take generation
as its starting point.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node165.html [11.12.2004 18:32:50]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation: basics

next

up

previous

contents

index

Next: Introduction to generation with Up: The KPML Development Window Previous: Overview of
commands

Generation: basics

● Introduction to generation with KPML
● Starting generation
● Generation and the multilingual modes

❍ Monolingual generation
❍ Contrastive generation

● Semantic defaults and macros
● Run-time cautions
● Run-time warnings
● Running modes
● Boundary conditions

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node166.html [11.12.2004 18:35:28]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction to generation with KPML

next

up

previous

contents

index

Next: Starting generation Up: Generation: basics Previous: Generation: basics

Introduction to generation with KPML

Generation with KPML has two main functions. First, generation is motivated externally in that some
application, or user, wishes to automatically create natural language strings expressing some given
semantic content. Second, generation is motivated internally in that a set of linguistic resources can be
demonstrated to be adequate for successfully generating some pre-specified set of test sentences: a test
suite, or example set. In both cases it may be necessary to inspect both the linguistic resources defined
and the generation process in order to ascertain why a particular semantic specification did not
produce an accceptable string, or to discover what kind of semantic specification would have been
appropriate. Because generation plays a crucial role as a mode of resource `debugging' or
maintenance, an extensive range of commands are provided for finding out exactly what happened
during generation and why.

The simplest mode of generation in KPML is that some semantic specification is provided as input
(expressed in the SPL, sentence plan language, notation) and a string is produced that expresses that
semantic specification in the natural language determined by the resources loaded and the language
desired.

Although it is possible to give one-off semantic inputs (cf. Section 14.1), it is more common for work
to proceed on some set of selected examples--these might be a test suite for the resources, or some set
of representative sentences that a particular application needs to have generated. The task is generally
to ensure that the defined resources do the expected thing with the inputs given and, when they do not,
to repair or extend them. For this reason, generation with KPML is example-driven. Semantic inputs are
loaded as a set of examples and then selected for generation--either singly or as a collection. The
creation and maintenance of example sets is described in detail in Chapter 10.

next

up

previous

contents

index

Next: Starting generation Up: Generation: basics Previous: Generation: basics

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node167.html [11.12.2004 18:35:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Starting generation

next

up

previous

contents

index

Next: Generation and the multilingual Up: Generation: basics Previous: Introduction to generation with

Starting generation

The command DEVELOPMENT:<Generate Sentence> brings up a menu of examples, selection of one of which initiates generation by appeal to
the semantic specification stored in that example (rather than by user interaction or by rote from an example file). Generation is normally
undertaken in `implemented' mode (Section 7.4.7), which means that inquiry implementations, where they exist, are used to interrogate the
environment (knowledge base, upper model, etc.) rather than having a user intervene in the generation process.

The menu showing available examples can be set to show either:

● all examples,
● the examples relevant for a particular language or set of languages.

In addition, the example selection menu can show examples identifying them either by the target string (i.e., a pre-specified desired result for
reference during debugging), or by the generated string (i.e., the string that was actually produced last time the example was generated).
These are controlled by the appropriate flags under the ROOT:<Flags> command. Restriction to current language(s) works prior to any further
restriction of example displays. The default settings are for language restricted display of the example targets.

The command <Generate Again> restarts generation for the previous example generated. gif If no previous example was generated, then this
command is equivalent to <Generate Sentence>.

KPML offers a variety of ways of inspecting the results of generation.

The simplest is to display the string produced (or strings, if the input was not specific enough) directly in the interaction results pane. This is
what has happened in Figure 7.1 above. Here two options are provided, also shown in the figure: either the string can be printed as is (the
second string shown), or it can be printed with an explicit marking of constituency structure (the first string shown). Explicitly marking the
constituency has the advantage that it is easier to see the underlying structure in order to directly select constituents by mouse for further
information gathering. For this reason, this display is the default when KPML is newly configured; this can be changed under the ROOT:<Flags>

command. gif

An alternative presentation form is to produce a summary of the structure generated in the Interaction Results pane. The display of this
structure can be activated by setting the appropriate flag by means of the <Flags> command. An example of this structure is shown in

Figure 7.2. The generated string is also displayed along with a summary of any warnings that may have occured during generation. gif

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node168.html (1 von 3) [11.12.2004 18:35:59]

Starting generation

Figure: Example structural result of generation

Both the generated string and the display structure are mouse sensitive and allow for several further resource maintenance and debugging
commands as described in Section 10.3.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node168.html (2 von 3) [11.12.2004 18:35:59]

Starting generation

next

up

previous

contents

index

Next: Generation and the multilingual Up: Generation: basics Previous: Introduction to generation with

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node168.html (3 von 3) [11.12.2004 18:35:59]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation and the multilingual modes

next

up

previous

contents

index

Next: Monolingual generation Up: Generation: basics Previous: Starting generation

Generation and the multilingual modes

An appropriate use of the multilingual modes can in many cases remove the need for explicit language
switching. The interaction of these modes with generation is described in this section. It should be
noted, that whenever a language switch is carried out automatically as a consequence of the
multilingual mode settings, the full side-effects of explicit language switching as set out in
Section 7.11 will occur.

● Monolingual generation
● Contrastive generation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node169.html [11.12.2004 18:36:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Monolingual generation

next

up

previous

contents

index

Next: Contrastive generation Up: Generation and the multilingual Previous: Generation and the
multilingual

Monolingual generation

When the monolingual generation mode is selected, sentence generation (as long as it is started by
<Generate Sentence> or <Example Operations: Example Runner>) proceeds for the currently active
language only. This is the behavior closest to that of Penman (with the current language obligatorily
set to :english).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node170.html [11.12.2004 18:36:08]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Contrastive generation

next

up

previous

contents

index

Next: Semantic defaults and macros Up: Generation and the multilingual Previous: Monolingual
generation

Contrastive generation

When the contrastive generation mode is selected, sentence generation (as long as it is started by
<Generate Sentence> or <Example Operations: Example Runner>) proceeds for all the languages for
which KPML is currently configured (or the subset of those languages declared to be in focus via
language focusing: Section 5.6.2). A given SPL specification is attempted for each language variety for
which it is declared relevant.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node171.html [11.12.2004 18:36:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Semantic defaults and macros

next

up

previous

contents

index

Next: Run-time cautions Up: Generation: basics Previous: Contrastive generation

Semantic defaults and macros

 Various semantic defaults may need to be initialized before using provided linguistic resources for
generation. Moreover, individual language resources may define their own SPL macros. Failing to
correctly set up the required default environments can be a cause of completely mystifying generation
failures. It is therefore worthwhile being aware of the default mechanisms, although KPML attempts to
make the loading and activating of defaults largely transparent to the user.

In any realistically sized resources there are a large number of inquiries defined for each language
(typically around 600) and many of these control aspects of generation variation that are not directly
derivable from a barebones `propositional content'--i.e., they do not belong to the ideational
metafunction. To simplify the use of such resources for generation, applications may define sets of
defaults that are to be used for providing the responses to selected inquiries. A set of defaults, called a
default environment, can be defined and then activated and deactivated at will. The default
environment mechanism was implemented for Penman by Bob Kasper in 1988-89 and is inherited and
made partially multilingual in KPML code. For more information about the possibilities for default
definitions, therefore, see the SPL descriptions in the Penman documentation (Penman Project). Their
definition forms are described in Section 12.2.2.2.

Definitions of SPL macros and default environment definitions are automatically loaded as part of the
default <load linguistic resources> command. The files concerning these definitions are as follows
(see Section 12.2.14):

● a file basic-spl-macros.lisp: which holds the SPL macro definitions,
● a file basic-spl-defaults.lisp: which holds the SPL default environment definitions.

 When a set of inquiries are being used for generation, each inquiry may have an active default. The
initial value for the active default comes most straightforwardly from the trivialdefault slot of
the inquiry definition (see Section 12.2.7). Subsequent activation of default environments may,
however, alter the active default. Subsequent deactivations of default environments restore the
previously present active default.

When a set of linguistic resources, particularly of inquiries, is freshly loaded, the active defaults are
undefined. If generation is attempted in this state, it will usually fail since insufficient information is
present in the input semantic specifications. (Of course, if the semantic specification is complete, then
no defaults will be required.) Setting the desired defaults is then a two step process:

1. the base case defaults present as trivialdefaults are made current (i.e., are copied into

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node172.html (1 von 2) [11.12.2004 18:36:20]

Semantic defaults and macros

the activedefault slots);
2. further defaults are activated by issuing `begin default environment' commands. A set of

default environments that are to be standardly assumed for a resource set is typically held in a
file: properties.lisp.

If KPML can establish that defaults have not been activated, then the above two steps will be triggered
automatically when generation is attempted. A message to this effect will be given to the user. This
will only affect the defaults of the current language.

next

up

previous

contents

index

Next: Run-time cautions Up: Generation: basics Previous: Contrastive generation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node172.html (2 von 2) [11.12.2004 18:36:20]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Run-time cautions

next

up

previous

contents

index

Next: Run-time warnings Up: Generation: basics Previous: Semantic defaults and macros

Run-time cautions

 Cautions may be produced during run time. They indicate that, although there is not necessarily
anything wrong yet, a possible problem has been recognized. e.g. if the realization operation
(conflate Subject Agent) is specified before one of the operators has been inserted, a
caution to that effect will be given. If, by the end of the pass through the grammar, this function has
still not been inserted, then a warning will be given.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node173.html [11.12.2004 18:36:27]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Run-time warnings

next

up

previous

contents

index

Next: Running modes Up: Generation: basics Previous: Run-time cautions

Run-time warnings

 Warnings can often be produced during generation, especially if the resources are not fully
debugged. Some of the most common warnings (and the actions that are taken) are:

● lexical item not known - an appropriate lexical item with the required grammatical features is
created,

● association changed - the new association replaces the old (this is a warning since it indicates
that a non-monotonic operation is involved that would have failed in a purely declarative
rendering of the resources),

The most serious warning is the following:

● no hub specified for grammatical function.

 This indicates that a pointer to semantic information necessary for continuing generation has not
been made available by means of an appropriate identification in an identifying inquiry (cf.
Section 12.2.7). Without such information the generation process cannot continue and so the user is
asked whether an association is to be provided by hand. Normally, however, resources should not get
themselves into this situation and so the problem should be dealt with in the resource definitions
rather than being worked around. Failing to give an association can easily bring the generation process
to an ungraceful halt, even landing in the calling Lisp process. The option for continuing the process
of the development window should then be taken.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node174.html [11.12.2004 18:36:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Running modes

next

up

previous

contents

index

Next: Boundary conditions Up: Generation: basics Previous: Run-time warnings

Running modes

The inquiries defined by linguistic resources usually include both a `formal' and an `informal' form.
As described in Section 12.2.7, the informal form is a predefined natural language question which
represents the semantic characterization presented by the inquiry (for ask operators) or a description
of the type of semantic entity demanded (for identify operators).

The informal form can be used to guide computational implementations of the inquiries, since they
provide a high-level gloss of what each inquiry is intended to do, or they can be treated as questions
that a user can answer directly during generation. This is the basis of the mode of using a grammar
where the user simulates the `environment', that is, everything that lies outside a given set of

resources, manually; this mode is called deimplemented mode. gif Deimplemented mode is useful
for gaining familiarity with the linguistic resources themselves, without needing to attend to any
knowledge distinctions or text planning issues. Also available under deimplemented mode is the
possibility of having the inquiry responses taken from a pre-stored example record (see Chapter 10
and Section 12.2.9). This facility, combined with sets of pre-run example records (such as the exercise
set for the Nigel grammar of English, originally compiled by Lynn Poulton for the Penman system),
provides a very useful resource in its own right for coming to understand what the grammar can do
and how it does it, as well as assisting in resource maintenance and development. KPML provides a
significantly extended set of operations on such example records compared to those of the Penman
system. These are described separately in Chapter 10.

The formal version of an inquiry generally consists of just the inquiry's name and certain additional
information concerning the inquiry's function; the complete definition specification is illustrated in
Section 12.2.7. Relevant here, however, is the notion of implementing an inquiry. Code for answering
inquiry questions automatically is called the implementation of the inquiry. Each inquiry that is
implemented includes the name of a Lisp function that is the code that actually runs when the
grammar needs to determine which selection of grammatical feature is appropriate. Accordingly, the
mode of using the linguistic resources where the inquiries operate automatically without user
intervention is termed implemented mode. This is the normal mode of use that is started under the
<Generate Sentence> main command menu option.

next

up

previous

contents

index

Next: Boundary conditions Up: Generation: basics Previous: Run-time warnings

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node175.html (1 von 2) [11.12.2004 18:36:38]

Running modes

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node175.html (2 von 2) [11.12.2004 18:36:38]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Boundary conditions

next

up

previous

contents

index

Next: Tracing and debugging during Up: Generation: basics Previous: Running modes

Boundary conditions

There are a number of circumstances that can arise which cause the normal flow of generation to be
interrupted. This is, of course, far more likely to happen while linguistic resources are being
developed and debugged. Most foreseeable boundary conditions are caught by the KPML window
interface and are handled by presenting menu options to the user. It is, however, possible that
unforeseen kinds of errors might throw the user back into the Lisp debugger. This will occur in the
calling Lisp process, not the KPML window interface. For this reason, it is best to maintain access to
the calling Lisp process, so that an appropriate restart can be initiated from the debugger in the normal
way.

Whenever a choice boundary condition is reached, whether genuinely or by virtue of a forcing flag
(see Section 7.5.2 below), the following set of options appears:

1. Force a choice and continue: shows the user the available grammatical features that the system
offers and asks the user to select one. This becomes the feature chosen in that system and any
chooser information is ignored.

2. Make no choice and continue: the generation process continues with no choice being made in
that grammatical system. This removes an expected grammatical feature from the selection
expression and so downstream systems depending on any of the features of that system will not
be entered. The final result of the generation will therefore be incomplete to a degree
dependent upon the number of systems whose entry was forbidden.

3. Run chooser again: re-executes the chooser that is associated with the system at that time. This
could lead to a different result if

❍ the example record has been edited, so changing the responses that the inquiries receive
(in deimplemented mode),

❍ the chooser itself has been edited,
❍ the inquiries or inquiry implementations have been edited, or
❍ the environment has altered (in implemented mode).

4. Run chooser again in manual mode: re-executes the chooser that is associated with the system
at that time but insists that the user supply the necessary responses to the inquiries that are
asked.

5. Associate a new chooser with this system: asks the user to supply a new chooser that replaces
the existing one; not recommended for normal grammar use.

6. Enter debugger: simply enters the normal Lisp debugger; not recommended for normal
grammar use, but a fairly harmless way of suspending generation for a period while
information on the state of generation is inspected.

next

up

previous

contents

index

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node176.html (1 von 2) [11.12.2004 18:36:43]

Boundary conditions

Next: Tracing and debugging during Up: Generation: basics Previous: Running modes

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node176.html (2 von 2) [11.12.2004 18:36:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Tracing and debugging during generation

next

up

previous

contents

index

Next: Introduction to generation debugging Up: The KPML Development Window Previous:
Boundary conditions

Tracing and debugging during
generation

● Introduction to generation debugging under KPML
● Generation tracing modes

❍ Show Constituent Starts
❍ Show System And Inquiry Activity
❍ Show Why System Is Firing
❍ Show Disabled Candidate Systems
❍ Show System Entry Dependencies
❍ Show Preselections
❍ Show Immediate Realizations
❍ Show Lexical Selection
❍ Show Lexical Features
❍ Show Ordering Constraints
❍ Show Ordering Events
❍ Show Ordering Results
❍ Show Associations
❍ Show Inquiry Answer Source
❍ Show entailed inquiry response

● Generation process control options
❍ Realize Selectively
❍ Realize until constituent number
❍ Single Step
❍ Enter Debugger on Warnings

● Generation result focusing modes
❍ Cumulate System and Inquiry Activity
❍ Update Example Record Fields

● Viewing focused results
❍ The cumulative history window commands

■ Redisplay

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node177.html (1 von 2) [11.12.2004 18:36:48]

Tracing and debugging during generation

■ Clear history
■ Display options
■ Quit

❍ Example of use

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node177.html (2 von 2) [11.12.2004 18:36:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction to generation debugging under KPML

next

up

previous

contents

index

Next: Generation tracing modes Up: Tracing and debugging during Previous: Tracing and debugging
during

Introduction to generation debugging under KPML

 Whereas the sole mode of generation debugging supported by the Penman system can be described
as one of `tracing', KPML supports an additional mode best described as `result focusing'.

`Tracing' refers to displaying more or less detail of the generation process as it occurs and attempting
to intervene when things go wrong. This mode of interaction could sometimes be suitable for getting
to know how the system operates. In this mode, the user can, in the extreme case, single step through
the generation operations observing each decision made.

`Result focusing' refers to selectively indicating information that could be relevant for the debugging
process, allowing generation to proceed, and then focusing in on the selected `results'. This is a very
much faster way of debugging resources since it provides (i) pinpoint inspection of the aspects of the
generation process requested rather than less fine `tracing', (ii) systematic overviews of some selected
aspect of the resources during generation, and (iii) the ability to check up on selected decisions as and
when they show themselves in need of checking, rather than during the generation process. The
success of the method in general relies, of course, on how effectively one can determine the
appropriate places to inspect: here also, therefore, KPML provides a significant set of tools.

It is also possible within KPML to set the information to be gathered during generation sufficiently
broadly that the result approximates that of tracing. The only difference is that the `result focusing' is
not available interactively: it is a collection of the information used during generation and not, as with
tracing, a step-by-step report on what the generator is doing.

The two modes can also be mixed, in that generation can be allowed to proceed to particular selected
points and then interrupted so that tracing can be used.

This section describes these options in detail. We start with the tracing options inherited from the
Penman system and then list the process result options specific to KPML. Both kinds of options are
reached by the command <Generation Modes> . This command brings up a further menu to the user
whereby various levels of information detail can be set during generation.

The command <Reset Generation Modes> then resets the options displayed in the <Generation
Modes> menu so that no tracing or display during generation is activated.

An example of the menu in the state following initial loading of the KPML system is shown in

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node178.html (1 von 3) [11.12.2004 18:36:55]

Introduction to generation debugging under KPML

Figure 7.3; the initial value of flags is nil, meaning `off'. gif As indicated above, most of these
modes are for tracing and are directly inherited from the Penman system. The more focused
debugging and development options that KPML provides are placed under the heading `Result
focusing'. An additional group of commands (some new, some old) includes those options that effect
the generation process itself in some way rather than the information that is to be presented. Each
group is described in detail in the following subsections.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node178.html (2 von 3) [11.12.2004 18:36:55]

Introduction to generation debugging under KPML

Figure: Generation tracing and result focusing modes

Note that it may be necessary to scroll this menu to find all the options presented.

next

up

previous

contents

index

Next: Generation tracing modes Up: Tracing and debugging during Previous: Tracing and debugging
during

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node178.html (3 von 3) [11.12.2004 18:36:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation tracing modes

next

up

previous

contents

index

Next: Show Constituent Starts Up: Tracing and debugging during Previous: Introduction to
generation debugging

Generation tracing modes

 In this section we describe those tracing modes that allow information to be given concerning
various aspects of the generation process during generation. Some of these might particularly be
useful for the novice gaining familiarity with the workings of the system during generation, or for
very difficult to diagnose problems that arise with user-defined resources.

● Show Constituent Starts
● Show System And Inquiry Activity
● Show Why System Is Firing
● Show Disabled Candidate Systems
● Show System Entry Dependencies
● Show Preselections
● Show Immediate Realizations
● Show Lexical Selection
● Show Lexical Features
● Show Ordering Constraints
● Show Ordering Events
● Show Ordering Results
● Show Associations
● Show Inquiry Answer Source
● Show entailed inquiry response

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node179.html [11.12.2004 18:37:00]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Constituent Starts

next

up

previous

contents

index

Next: Show System And Inquiry Up: Generation tracing modes Previous: Generation tracing modes

Show Constituent Starts

Each pass through the grammar is responsible for the realization of some particular part of the
structure that is being built. Parts of structure are defined in terms of bundles of grammatical functions
that previous cycles through the grammar have composed and assigned preselections to. When
realizing such a cycle therefore, it can be relevant to know both the members of the function bundle
that that cycle is to be concerned with and the preselections that have been established for it.

When this flag is set, at the beginning of each pass through the grammar the message:

Realizing bundle: ((FUNCTION1 FUNCTION2 ... FUNCTIONn)
 ((Preselect FUNCTIONi FEATUREi)
 (Preselect FUNCTIONj ...)
 ...
))

appears. The first sub-list contains the functions that collectively form the function bundle that the
pass will be concerned with. These will be functions that the pass through the grammar responsible
for their higher level of structure had conflated. The second sub-list contains all the preselection
realization statements that that higher level pass performed with respect to any of the members of the
bundle. The pass about to be begun will therefore be committed to selecting all of the grammatical
features mentioned in the preselection list and all the features that these entail.

The special case of the first pass through the grammar produces a similar message, citing the pseudo
function bundle TOP, any preselections that may have been set manually, and the knowledge
representation hub that is to have a linguistic result generated for it.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node180.html [11.12.2004 18:37:05]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show System And Inquiry Activity

next

up

previous

contents

index

Next: Show Why System Is Up: Generation tracing modes Previous: Show Constituent Starts

Show System And Inquiry Activity

Traces the system that is entered, the chooser entered, the inquiry questions asked, their results and the choice that the system makes, in a
convenient form. This is all that is necessary to see the traversal of the grammar network in progress and the chooser decisions that were made
to control that traversal. Under the new-style inteface a Generation History window is brought up that shows the successive decisions made
during generation; under the old-style interface, several panes are already present for showing this information.

The successive tracing of the generation process is useful for getting to know a set of resources and how it functions in generation. Even for
simple sentences, however, this option presents a great deal of information. For serious resource development the more focused tracing aids
provided by KPML should be used.

An example of the generation history window is given in Figure 7.4. It consists of two main panes, set across the middle of the window: the
system history and the inquiry history. The system history pane shows each system and the feature selected in that system; thus the first line of
this pane informs us that in the system CAUSE-ADJUNCT, the feature `noncause' was selected. The inquiry history pane shows the asked inquiry
and the response that it received; the first complete entry here informs us that the inquiry certainty-q was asked and received the reponse
notcertain. Above these are displayed on the left the current system that has been reached in network traversal (here: AGENCY), and on the
right the current inquiry that is being asked in chooser traversal (here: verbal-process-q). Below the central panes is a single long pane
displaying the natural language gloss of the current inquiry. All of the linguistic objects mentioned are mouse-sensitive.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node181.html (1 von 2) [11.12.2004 18:37:17]

Show System And Inquiry Activity

Figure: Generation History Window

Since there are very many inquiries and systems that are entered for each grammatical unit generated, it is usual that this option is combined
with the Realize selectively option.

next

up

previous

contents

index

Next: Show Why System Is Up: Generation tracing modes Previous: Show Constituent Starts

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node181.html (2 von 2) [11.12.2004 18:37:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Why System Is Firing

next

up

previous

contents

index

Next: Show Disabled Candidate Systems Up: Generation tracing modes Previous: Show System And
Inquiry

Show Why System Is Firing

Prints the last feature that caused the entry condition of the system being entered to become satisfied.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node182.html [11.12.2004 18:37:24]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Disabled Candidate Systems

next

up

previous

contents

index

Next: Show System Entry Dependencies Up: Generation tracing modes Previous: Show Why System
Is

Show Disabled Candidate Systems

Systems may be disabled. A disabled system can be entered but it has no effect. If this flag is on a
message will be printed whenever a disabled system is entered. The user may disable and enable
systems at will by using the appropriate commands that are obtained by right-clicking on any mouse-
sensitive system name that appears in the window interface (cf. Section 6.5.2). The commands
INSPECTOR:<:Disable system system-name> and INSPECTOR:< :Enable system system-name> can also
be given. Disabling a system is sometimes convenient while debugging linguistic resources. You may
load several different versions of a system (as long as they have distinct names!). By disabling all but
one of the versions you may check out the functionality of the enabled system. Each different version
of a system in turn can be checked out this way. This is easier than reloading a new grammar each
time you want to check out the effect of changing only one system. See also Section 7.8.1.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node183.html [11.12.2004 18:37:29]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show System Entry Dependencies

next

up

previous

contents

index

Next: Show Preselections Up: Generation tracing modes Previous: Show Disabled Candidate
Systems

Show System Entry Dependencies

Shows what systems are ready to be entered, and the system which is actually selected from that list to

be entered. gif

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node184.html [11.12.2004 18:37:34]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Preselections

next

up

previous

contents

index

Next: Show Immediate Realizations Up: Generation tracing modes Previous: Show System Entry
Dependencies

Show Preselections

If this flag is set, at the beginning of each cycle or pass through the grammar, the preselections that
will be enforced during that cycle are shown. This information is given in two forms: first, as a list of
the grammatical features that appeared in the preselection realization statements that called for the
pass, and second as the path augmented list of preselections derived from the first list. This latter
contains all the features that would need to be selected in order to ensure that those of the first set
were also; i.e. for each feature preselected, all those features on the path that runs from the starting
system (that of rank) to the feature required, need to be selected also - this is done automatically and

is called path augmentation. gif

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node185.html [11.12.2004 18:37:39]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Immediate Realizations

next

up

previous

contents

index

Next: Show Lexical Selection Up: Generation tracing modes Previous: Show Preselections

Show Immediate Realizations

The grammatical features that form the output of grammar systems may have realizations associated
with them. As described above, these realisations are applications of the functional operators by which
the structural output of the grammar is built up: i.e. during the generation process the operators that
are executed impose constraints upon the structural output. With the Show Immediate Realizations
flag on, a message containing the system name and the realization that is being performed is printed as
soon as its associated feature is selected.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node186.html [11.12.2004 18:37:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Lexical Selection

next

up

previous

contents

index

Next: Show Lexical Features Up: Generation tracing modes Previous: Show Immediate Realizations

Show Lexical Selection

Prints information about the choice of lexical items from the lexicon; i.e. whenever a lexify realization
statement is performed, a message of the form The chosen word is: X is produced. In addition, when
certain lexical items are decided on purely grammatical grounds (for example, verbal auxiliaries), an
account of their determination is produced. This account is in terms of the lexical feature list of the
constituent, the classify list, the outclassify list, the list of lexical terms conforming to the classify list,
and the revised list after filtering with respect to the outclassify list.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node187.html [11.12.2004 18:37:53]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Lexical Features

next

up

previous

contents

index

Next: Show Ordering Constraints Up: Generation tracing modes Previous: Show Lexical Selection

Show Lexical Features

Yet more lexical selection tracing.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node188.html [11.12.2004 18:37:58]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Ordering Constraints

next

up

previous

contents

index

Next: Show Ordering Events Up: Generation tracing modes Previous: Show Lexical Features

Show Ordering Constraints

Prints information showing the effect that the default order of constituents has on the resulting
ordering. Default orders are specified in a file named ordering-constraints.gram (see
Section 12.2.12).

The information that is produced concerns four phases of ordering:

● Potential Default Orderings: shows just those default orders defined by the grammar that might
be relevant to the presently generated structure;

● Added Default Orderings: removes any of the possibly relevant default orders that in fact
violate or are inconsistent with the positive statements of ordering made by realization
statements during the traversal of the grammar;

● Compiled Precedence Constraints: ordering is defined in terms of two kinds of information -
precedence and adjacency. The partition realization operator provides precedence information
only; the order realization operator provides both precedenced and adjacency information. The
information given here is a list of pairs showing the combined precedence information taking
into account the filtered default orderings shown previously;

● Compiled Adjacency Constraints: the information here is a list of pairs showing the adjacency
information taking into account the filtered default orderings shown previously.

Throughout these displays conflation aliases are used for the function bundles that are ordered rather
than the literal function names that may have been used in actual realization statements. A Conflation
alias is the first function in a function bundle.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node189.html [11.12.2004 18:38:08]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Ordering Events

next

up

previous

contents

index

Next: Show Ordering Results Up: Generation tracing modes Previous: Show Ordering Constraints

Show Ordering Events

When this flag is set, realizations having to do with ordering, i.e. Order, OrderAtFront, OrderAtEnd,
Partition, are printed as they occur, along with the system responsible for their being performed.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node190.html [11.12.2004 18:38:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Ordering Results

next

up

previous

contents

index

Next: Show Associations Up: Generation tracing modes Previous: Show Ordering Events

Show Ordering Results

Setting this flag produces information concerning the order that the grammar has decided upon for
each level of structure. At the end of each cycle, i.e. when each level of structure has been completed,
Orderings information for the cycle is shown in two forms:

1. Function structure: this is an ordered list of the function bundles (i.e. the constituents that have
been constructed by function conflation and insertion for the cycle) showing those bundles'
member functions.

2. Realization: this is the result string that can be produced on the basis of the information
accumulated so far; i.e. lexicalisations will appear as actual words but constituents that still
need to be generated by further passes through the grammar are shown in terms of their
function bundles e.g. (FUNCTION1+FUNCTION2+ ``is'' FUNCTION6+FUNCTION7)

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node191.html [11.12.2004 18:38:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Associations

next

up

previous

contents

index

Next: Show Inquiry Answer Source Up: Generation tracing modes Previous: Show Ordering Results

Show Associations

 The association between grammatical functions and entities in the knowledge base that permits
inquiries to interrogate the appropriate parts of the knowledge during generation are maintained in the
function association table (Section 12.2.7). The level of indirection that this introduces permits
inquiries always to be expressed in terms of the grammatical functions defined in the grammar; these
functions' case-by-case reference to appropriate knowledge representation entities is thus ensured by
the function association table.

When this flag is set information concerning the establishment of these grammatical function and
knowledge base hub associations is given during generation. In particular, whenever a hub association
is created by copying one functions association on to another, the following kind of message appears:

In system SYSTEM-NAME, copyhub FUNCTION1 --> FUNCTION2.

In addition, at the end of each pass through the grammar--or, if the `Show System and Inquiry
Activity' flag is also set (Section 7.5.2.2), as they occur in a separate window--the function association
table entries are shown. Each of these entries consists of five fields of information,

● Function: the grammatical function participating in the association;
● Concept: the knowledge base hub participating in the association;
● Presentation-spec: a specification of the particular details of the hub that are to be expressed in

this mention of it;
● Term set: the set of possible lexical items that the grammar has selected as being potentially

appropriate for the expression of the concept in the current mention of it;
● Term: the actual lexical item that came to be used for the concept.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node192.html [11.12.2004 18:38:21]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Inquiry Answer Source

next

up

previous

contents

index

Next: Show entailed inquiry response Up: Generation tracing modes Previous: Show Associations

Show Inquiry Answer Source

When this flag is set and the resources are being used in `implemented' mode (the default case: see
Section 7.4.7), the source of each response that an inquiry receives is displayed. The possible sources
are:

● operator code: the implemented form of the inquiry ran and returned a result,
● SPL keyword: the response was directly specified in the input SPL,
● default: neither of the previous two options applied and a default response was used.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node193.html [11.12.2004 18:38:25]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show entailed inquiry response

next

up

previous

contents

index

Next: Generation process control options Up: Generation tracing modes Previous: Show Inquiry
Answer Source

Show entailed inquiry response

Prints a message whenever a response to an inquiry operator entailed by some preselection is used.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node194.html [11.12.2004 18:38:29]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation process control options

next

up

previous

contents

index

Next: Realize Selectively Up: Tracing and debugging during Previous: Show entailed inquiry
response

Generation process control options

● Realize Selectively
● Realize until constituent number
● Single Step
● Enter Debugger on Warnings

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node195.html [11.12.2004 18:38:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Realize Selectively

next

up

previous

contents

index

Next: Realize until constituent number Up: Generation process control options Previous: Generation process control
options

Realize Selectively

As sketched in Section 2.3.1, generation proceeds in cycles through the grammar network. This flag permits the user,
at the beginning of each pass through the grammar, to decide whether to perform that cycle or not - i.e. whether to
realize the constituent that cycle is responsible for generating or to skip realization of that constituent. This is
convenient for debugging when you are trying to examine what happens in certain constituents but do not care about
others. It also provides convenient pre-given points for pausing so that tracing modes can be altered.

The form of the option that is presented to the user is:

 This presents the members of the function bundle defining the constituent that is about to be realized and the
preselections, classifies, lexifies, and inflectifies defined for that constituent via constraints imposed on the member
functions of the bundle during the just completed traversal of the grammar network. An actual example would be:

Realizing Bundle:
 ((VOICE FINITE TEMPO0)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node196.html (1 von 2) [11.12.2004 18:38:38]

Realize Selectively

 ((INFLECTIFY FINITE PAST-FORM)
 (INFLECTIFY FINITE SINGULAR-FORM)
 (INFLECTIFY FINITE THIRD-PERSON)
 (CLASSIFY FINITE OUTCLASSIFY-NEGATIVE)
 (CLASSIFY FINITE OUTCLASSIFY-REDUCED)
 (CLASSIFY VOICE OUTCLASSIFY-NEGATIVE)
 (CLASSIFY VOICE BEAUX)))

This display also shows which grammatical function contributes which constraint in the constraint set as a whole. That
is, the constituent shown here is constrained to possess the lexical features [Past-form], [Singular], [Third-person], and
[BeAux] and not to have the lexical features [Negative] and [Reduced], and, in addition, we know that it is the
component grammatical function Finite which brought the constraints concerning past form, singular form, third
person, and reduced, while it was the function Voice that brought the constraint `BeAux'. Both functions were also
constrained not to be negative.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node196.html (2 von 2) [11.12.2004 18:38:38]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Realize until constituent number

next

up

previous

contents

index

Next: Single Step Up: Generation process control options Previous: Realize Selectively

Realize until constituent number

This flag, another exception to those that take t or nil as value, expects an integer identifying a
particular constituent in the structure of a generated sentence to be given. These numbers can be
directly read off the print form of the grammatical functions as they appear, for example, in their
graphed or textual form (see, e.g., Figure 7.2). They represent the network traversal cycle that
introduced the constituent into the structure. When set to an integer, generation will proceed with
whatever other flag values have been set until the identified constituent is reached. Then generation
will pause and the Generation Modes menu will be presented with the option `realize selectively'
already activated. This can be used for quickly locating and going to a problematic constituent during
debugging of the grammatical resources. It is not necessary, as was the case with Penman, to step

through the previously generated constituents by hand. gif

Note: this option is now incorporated implicitly in the command options for generated strings
(Section 10.3), which provides a more convenient and quicker way of achieving the same effect
without the user needing to identify the constituent number.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node197.html [11.12.2004 18:38:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Single Step

next

up

previous

contents

index

Next: Enter Debugger on Warnings Up: Generation process control options Previous: Realize until
constituent number

Single Step

Causes the generation process to pause at the end of each inquiry. At this point, various data structures
can be examined. A menu prompts for continued execution. This can best be combined with the
`Show System and Inquiry Activity' flag to step through the generation process inquiry by inquiry: in
fact, since single stepping without at least this information is probably not useful, unless the `System
and Inquiry Activity' flag at least is also set, single stepping will not occur.

The user dialog box that is brought up on single stepping also allows several other operations in
addition to continuing. In particular, generation may be aborted or the generation modes (cf. the
command DEVELOPMENT: <Generation Modes>) altered.

Note that in all cases either `yes' or `no' must be selected finally in order to exit from the dialog
box.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node198.html [11.12.2004 18:38:46]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Enter Debugger on Warnings

next

up

previous

contents

index

Next: Generation result focusing modes Up: Generation process control options Previous: Single
Step

Enter Debugger on Warnings

Whenever this flag is set, all warning conditions that are reported to the user are followed by an
immediate entry to the Lisp debugger. This is clearly not intended for the normal kind of resource
debugging that users will carry out, but provides one fairly straightforward way of suspending the
generation process temporarily. The `continue' option offered by Lisp will normally continue the
generation process.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node199.html [11.12.2004 18:38:51]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation result focusing modes

next

up

previous

contents

index

Next: Cumulate System and Inquiry Up: Tracing and debugging during Previous: Enter Debugger on
Warnings

Generation result focusing modes

In this section we describe the focusing operations that allow information to be picked out of the final
and interim results of generation. This includes not only the final strings generated, but all partial
results (such as syntactic structures, associations of syntactic and semantic objects, inquiry responses,
chooser decisions) that are reached during generation. Unlike the generation tracing modes described
below, it is normally the case during result focusing that the user actively specifies particular
linguistic events that are to be monitored during generation. This is done by selecting the tracing
options offered for objects of particular linguistic types. These options are also described here.

● Cumulate System and Inquiry Activity
● Update Example Record Fields

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node200.html [11.12.2004 18:38:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Cumulate System and Inquiry Activity

next

up

previous

contents

index

Next: Update Example Record Fields Up: Generation result focusing modes Previous: Generation
result focusing modes

Cumulate System and Inquiry Activity

This flag provides the basic option of result focusing. Three levels of cumulation are possible:

● off (nil), where no information is preserved (the default),
● traced, where only information concerning explicitly traced linguistic objects and events is

preserved,
● all, where all information concerning traversal of the systemic network during generation is

preserved--i.e., systems entered, features selected, choosers used, inquiry responses received.

The latter extends on the information available when the flag < Generation Modes>: `Show System
and Inquiry Activity' is set. Examples of use are given in Section 7.5.5.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node201.html [11.12.2004 18:39:00]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Update Example Record Fields

next

up

previous

contents

index

Next: Viewing focused results Up: Generation result focusing modes Previous: Cumulate System
and Inquiry

Update Example Record Fields

Whenever set, this flag causes the generation of examples to update any prestored information
maintained in the records of those examples.

This flag must be set if creating a fully recorded set of examples that support the use of example
selection by features (see Section 6.2.1), retrieval of selection expressions, etc.

When this flag is not set, then the generation history of an example is not recorded: only the generated
string and associated rich mouseable structure is transfered to the example record.

The use of examples and example records is described fully in Chapter 10.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node202.html [11.12.2004 18:39:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Viewing focused results

next

up

previous

contents

index

Next: The cumulative history window Up: Tracing and debugging during Previous: Update Example
Record Fields

Viewing focused results

Whereas generation tracing (Section 7.5.2) will immediately show any information traced (either in
the Development window itself or in special purpose windows brought up for particular types of
information), cumulated information is maintained in the background and is only displayed when
requested.

This is done by issuing the command DEVELOPMENT:<Show Cumulative History> . This brings up a
Cumulative Generation History window that contains the information selected for cumulation:
typically system or inquiry activity. An example of the window is shown in the lower half of
Figure 7.5; this example is discussed below.

● The cumulative history window commands
❍ Redisplay
❍ Clear history
❍ Display options
❍ Quit

● Example of use

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node203.html [11.12.2004 18:39:08]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The cumulative history window commands

next

up

previous

contents

index

Next: Redisplay Up: Viewing focused results Previous: Viewing focused results

The cumulative history window commands

The cumulative history window has a few specific commands of its own described as follows.

● Redisplay
● Clear history
● Display options
● Quit

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node204.html [11.12.2004 18:39:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Redisplay

next

up

previous

contents

index

Next: Clear history Up: The cumulative history window Previous: The cumulative history window

Redisplay

The command CUMULATIVE-HISTORY:<Redisplay> forcibly causes the contents of the window to be
redisplayed; this might be useful if generation has been continued and a new state of affairs is to be
shown in the history window.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node205.html [11.12.2004 18:39:22]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear history

next

up

previous

contents

index

Next: Display options Up: The cumulative history window Previous: Redisplay

Clear history

 The command CUMULATIVE-HISTORY:<Clear history> clears the window.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node206.html [11.12.2004 18:39:27]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Display options

next

up

previous

contents

index

Next: Quit Up: The cumulative history window Previous: Clear history

Display options

The command CUMULATIVE-HISTORY:<Display options> controls what kind of information is given
concerning inquiries. Any number of the following modes can be selected:

● hubs: when this mode is set, then the symbol identifying the semantic hubs (typically SPL
terms) used in the particular inquiry ask or identify are shown in the display.

● id: when this mode is set, the unique identifier of the semantic hub (or SPL term) is shown in
the display.

● formal-parameters: when this mode is set, the formal parameters used in the inquiry call as
specified in the particular chooser at issue are shown in the display.

Setting none of these modes gives information equivalent to that shown in the Generation History
window when the tracing flag `Show System and Inquiry Activity' is set.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node207.html [11.12.2004 20:33:16]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Quit

next

up

previous

contents

index

Next: Example of use Up: The cumulative history window Previous: Display options

Quit

The command CUMULATIVE-HISTORY:<Quit> exits and removes the history window.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node208.html [11.12.2004 20:33:34]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Example of use

next

up

previous

contents

index

Next: Activating result focusing and Up: Viewing focused results Previous: Quit

Example of use

Figure 7.5 shows an example of the use of the cumulated generation history window. In this example, the chooser for the system NOMINAL-LIKE-
GROUP-CLASS (graphed in the top window in the figure) has been traced (see Section 7.6) and a sentence has been generated. Issuing
DEVELOPMENT:< Show Cumulative History> then brings up the window shown in the bottom of the figure. Since the formal parameters for the
inquiries are shown in the chooser graph, the display options have been set to :hubs only. The cumulative history window shows for each
time the traced chooser was used, the system with which it is associated, the feature selected at that time, the inquiries asked, and their
parameters and response. It is therefore straightforward to recover which path was taken through the chooser during each of its instantiations
during generation and why that path was selected.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node209.html (1 von 2) [11.12.2004 20:33:52]

Example of use

Figure: Example of using the cumulative generation history

The first box in the Cumulative Generation History window, for example, gives here the following information. In the system NOMINAL-LIKE-
GROUP-CLASS the feature `nominal-group' was selected. This was because the inquiries property-q and quantity-q were both asked of
the semantic term HEAD and received the responses notproperty and notquantity respectively. Comparing this with the chooser
shown in the upper part of the figure, we can see that the first inquiry to be asked, property-q has two possible responses (property and
notproperty) and is asked of the grammatical function `Onus'. The function association for `Onus' must therefore have been the semantic
term HEAD. Following the obtained notproperty path in the chooser leads on to the second inquiry posed. The response here,
notquantity then results in `nominal-group' being selected as seen.

The 7 instances of NOMINAL-LIKE-GROUP-CLASS shown in the Cumulative Generation History include examples of the three possible paths
through the associated chooser.

All of the semantic terms shown in the window are mouse sensitive supporting further information inspection.

next

up

previous

contents

index

Next: Activating result focusing and Up: Viewing focused results Previous: Quit

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node209.html (2 von 2) [11.12.2004 20:33:52]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Activating result focusing and tracing for particular linguistic objects

next

up

previous

contents

index

Next: Activation of tracing Up: The KPML Development Window Previous: Example of use

Activating result focusing and tracing
for particular linguistic objects

● Activation of tracing
❍ Individual system tracing
❍ Individual chooser tracing
❍ Individual inquiry tracing

● Clearing tracing selections

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node210.html [11.12.2004 20:34:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Activation of tracing

next

up

previous

contents

index

Next: Individual system tracing Up: Activating result focusing and Previous: Activating result
focusing and

Activation of tracing

 Additional linguistic object type-specific commands are provided for activating selective tracing and
information cumulation during generation. These are generally available by direct typing of the
command name in the interaction window, or by right clicking on an appropriately object.

When selected, the use of a linguistic object (system, chooser, or inquiry) can either be reported
during generation tracing or by showing the cumulative generation history following generation. If
the `Cumulate System and Inquiry Activity' flag is not set, then the information will be produced in
tracing mode in a Generation History window (cf. Figure 7.4). If the cumulation flag is set, then no
tracing information is produced until the user explicitly calls for it with DEVELOPMENT:<Show
Cumulative History> .

The relevant commands are as follows.

● Individual system tracing
● Individual chooser tracing
● Individual inquiry tracing

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node211.html [11.12.2004 20:34:14]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Individual system tracing

next

up

previous

contents

index

Next: Individual chooser tracing Up: Activation of tracing Previous: Activation of tracing

Individual system tracing

 The right-click menu command <trace system> causes the clicked upon system to be added to the
list of currently traced systems. When any system on this list is entered, the following information is
produced in the Development result pane:

● the preceding system and feature whose selection was responsible for the entry conditions of
the traced system being fully met,

● the feature selected in the traced system.

In addition, if the `Cumulate System and Inquiry' flag is set, the information that the traced system has
been entered and which feature was selected is added to the cumulative history.

Individual systems can be removed from the tracing list by selecting the matching <untrace system>
command.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node212.html [11.12.2004 20:34:23]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Individual chooser tracing

next

up

previous

contents

index

Next: Individual inquiry tracing Up: Activation of tracing Previous: Individual system tracing

Individual chooser tracing

The only meaningful way of tracing choosers is to trace the full set of inquiries that any chooser uses. The right-click
menu command <Trace inquiries of chooser> therefore causes all the inquiries used by the clicked upon chooser to be
traced. The operation of tracing inquiries is described in the following section. All inquiries for a chosen chooser can
also be removed from tracing by issuing the corresponding <Untrace inquiries of chooser> command.

An additional option that individual chooser tracing supports when the `Cumulate System and Inquiry Activity' flag is
set is to take the cumulated inquiry information for a chooser (that can be shown by the DEVELOPMENT:<Show
Cumulative History> command), and to fold this into the graphical chooser display available under INSPECTOR:<Print
Chooser> (Section 6.3.2.2) or any of its equivalents. Setting the `Cumulate System and Inquiry Activity' to :all
naturally provides this option for all choosers.

For this option to be activated, the flag CHOOSER-GRAPH:< Chooser Display Modes> `Generation Paths Shown' has to be
selected (which it is by default in a newly loaded KPML system).

An example of the default behavior when a chooser has been traced and graphed is shown in Figure 7.6. This shows
one traversal through the English PRIMARY-TENSE chooser. The definition of this chooser (i.e., without traversal paths)
was shown in full in Figure 6.10. The present figure shows just the middle portion of the chooser that was actually
effected during the traversal at hand.

The inquiry query and response shown in a traced and graphed chooser can be varied by altering the setting under the
CUMULATIVE-HISTORY:<Display Options> command (Section 7.5.5). In the present example, the options of hubs and
formal parameters have been selected. This shows for each inquiry, all of its formal parameters and their semantic
associations. The semantic results of identifying inquiries are also shown. The central portion of the chooser shown in
Figures 6.10 and 7.6 can therefore be compared node for node. The path taken through the chooser is also highlighted
(by being in color on color screens, and by a shade of grey on monochrome screens). We can directly see that, in this
case, the traversal path follows the arcs `noncounterfactual', `extensional', `notlogicotemporal', and `precedes'; this
results in the choice of the grammatical feature `past'. Chooser nodes that do not lie on the traversal path (for example,

that below the final `notprecedes' arc) are shown as they are in the straightforward chooser definition graph. gif

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node213.html (1 von 3) [11.12.2004 20:34:33]

Individual chooser tracing

Figure: Example of graphed chooser showing generation path

Note that this combined graphical and traversal option does not make the use of the cumulative history window
redundent. The cumulative history window (as illustrated in Figure 7.5) gives an overview of several instantiations of
any given chooser--as many instantiations as were invoked during generation since the last clear of the cumulated
history. Asking for a graphically displayed chooser for which several instantiations are on record brings up a set of

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node213.html (2 von 3) [11.12.2004 20:34:33]

Individual chooser tracing

windows, one for each instantiation. Each window shows one traversal through the selected chooser. For choosers that
are used frequently, this may become less simple to interpret than the simple overview given in the history window.

next

up

previous

contents

index

Next: Individual inquiry tracing Up: Activation of tracing Previous: Individual system tracing

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node213.html (3 von 3) [11.12.2004 20:34:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Individual inquiry tracing

next

up

previous

contents

index

Next: Clearing tracing selections Up: Activation of tracing Previous: Individual chooser tracing

Individual inquiry tracing

The right-click menu command <trace inquiry> causes the clicked upon inquiry to be added to the
list of currently traced inquiries.

When the `Cumulate System and Inquiry Activity' flag is unset, using any inquiry on this list results in
the normal inquiry related information being displayed directly in the Generation History window as
illustrated in Figure 7.4.

When the `Cumulate System and Inquiry Activity' flag is set, full information concerning the system,
inquiry formal and actual parameters, the inquiry response, and the feature selected in the system are
cumulated for display in the cumulative generation history if required. In this case, no information is

produced in a Generation History window. gif

Individual inquiries can be removed from the tracing list by selecting the matching <untrace inquiry>
command.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node214.html [11.12.2004 20:34:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clearing tracing selections

next

up

previous

contents

index

Next: Graphical representation of systemic Up: Activating result focusing and Previous: Individual
inquiry tracing

Clearing tracing selections

The command DEVELOPMENT:<Clear Tracing Option> brings up a menu from which particular classes
of tracing selections, including those of the previous subsection, can be selected for clearing. The
options in full are:

● Clear all tracing
● Clear traced systems
● Clear traced choosers
● Clear traced inquiries
● Clear paused inquiries (cf. Section 7.8.2)
● Clear collected features (cf. Section 6.2.3.4)
● Clear resource graph stop points (cf. Section 6.2.3.5)

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node215.html [11.12.2004 20:34:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graphical representation of systemic network traversal

next

up

previous

contents

index

Next: Traversal and resource graphs Up: The KPML Development Window Previous: Clearing
tracing selections

Graphical representation of systemic
network traversal

In addition to the particular tracing of generation paths through individually selected choosers, KPML
also maintains information about the traversal path through the systemic network as a whole.

● Traversal and resource graphs
● Dynamic traversal tracing

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node216.html [11.12.2004 20:34:58]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Traversal and resource graphs

next

up

previous

contents

index

Next: Dynamic traversal tracing Up: Graphical representation of systemic Previous: Graphical
representation of systemic

Traversal and resource graphs

When the grapher display mode RESOURCE-GRAPH:<Display Modes> `Show previous generation path'
is set, then any systemic networks that are graphed (e.g., with DEVELOPMENT:<Graph Grammar>) also
show highlighted for each system the last feature that was selected in that system during some
traversal. This display mode can also be set from the commands
DEVELOPMENT:<Grapher Display Modes> and CHOOSER-GRAPH:<Chooser Display Modes> . The
default on new loading of the KPML system is that it is activated.

Note that it is the last feature selected in a system on any previous traversal of the systemic network
that is highlighted. This may be confusing if one is only interested in seeing the most recent traversal
path through the network. This is because features will be highlighted in systems which were not even
used in the most recent traversal.

It is also possible to focus on just the last traversal so that only those systems that were actually used
in the last traversal have their feature selections highlighted. Whenever the
DEVELOPMENT:<Generation Modes> `realize selectively' flag is set (Section 7.5.2), then only those
features selected during the last traversal are highlighted. The realize selectively flag forces the
generation process to pause after each grammatical unit generated--i.e., after each traversal cycle
through the systemic network; graphing the systemic network at this point will highlight the features
from the selection expression of that grammatical unit only.

An example of using the `show previous generation path' mode for both the systemic network and
choosers is given in Figure 7.7.

Figure: Example of generation path tracing

Here we see a trace of a traversal through the TENSE region of the Nigel grammar of English. The
larger graph in the lower portion of the figure shows an extract of the grammar systemic network

beginning with the system SECONDARY-TENSE. gif We can see that on the last traversal through the
grammar, the feature `secondary-tense' was selected, leading on to two systems: SECONDARY-TENSE-

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node217.html (1 von 3) [11.12.2004 20:35:08]

Traversal and resource graphs

TYPE and TERTIARY-TENSE. The highlighting of the selection expression in the graph tells us that the
features `present-secondary' and `no-tertiary' respectively were chosen in these two systems. The tense
selected was therefore some primary tense followed by a present secondary tense; in other words, one
of:

am/is/are running
was/were running
will be running

Examples showing these realizations of the selected tense could also have been displayed by
collecting the critical tense features and then invoking, for example, RESOURCE-GRAPH:<Show Examples
with Collected Features> (cf. Section 6.2.3.4).

Now, if the user wishes to find out the temporal semantic conditions to which such a tense selection
corresponds, then left mouse-clicking on the features `secondary', `no-tertiary', and `present-
secondary' brings up the three choosers responsible, shown in the Figure from left to right. Since the
previous generation path mode is activated, these chooser graphs also have folded into their display
the inquiry questions and associated semantic specifications that held for the traversal in question. The
semantic conditions can then be immediately collected; i.e., with the time intervals TEMPOn denoting
a sequence of reference times that relate the speaking time to the EVENTTIME:

TEMPO1 = RT515 (a time interval)
EVENTTIME = ET513 (a time interval)
TEMPO1 EVENTTIME
TEMPO2 = ET513
TEMPO2 = EVENTTIME
TEMPO1 not-precede TEMPO2
TEMP02 not-precede TEMPO1

That is, the reference time and the event time are overlapping but
not equal, and there are no further reference times intervening
before the event time.

Any portion of a specified systemic network can have its semantic
commitments displayed in this way, thereby providing relatively
quick access to the semantic motivations for particular grammatical
choices or forms according to the linguistic resource used.

next

up

previous

contents

index

Next: Dynamic traversal tracing Up: Graphical representation of systemic Previous: Graphical
representation of systemic

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node217.html (2 von 3) [11.12.2004 20:35:08]

Traversal and resource graphs

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node217.html (3 von 3) [11.12.2004 20:35:08]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Dynamic traversal tracing

next

up

previous

contents

index

Next: Additional generation process control Up: Graphical representation of systemic Previous: Traversal
and resource graphs

Dynamic traversal tracing

It is also possible to inspect the paths taken through the systemic network dynamically during generation. The
command INSPECTOR: <:Traversal Graph> brings up a window in which features are added dynamically as
they are selected on traversal. The dependency relations between features selected are also shown, producing
an extracted graph from the systemic network as a whole. The nodes of the traversal graph consist of the
feature selected and the system to which that feature belongs. Both system and feature are mouse-sensitive in
the normal ways (cf. Section 6.5.2 and 6.5.3 respectively). In addition, the options for pruning a systemic
network graph described in Section 6.2.3.5 also hold for the dynamic traversal graphs.

A sequence of successive views of a traversal graph taken at the outset of generation for an example is shown
in Figure 7.8. This contains the first 7 steps in generation. The latest growth is in each case shown in a
different colour or shade of grey. Note that this growth would normally be shown in a single window: the
cumulative view shown here is for illustrative purposes only. The graphs show the progressive refinement in
linguistic specification that occurs when the systemic network is traversed. The first decision indicates that
clauses should be generated, this is then refined to the subtype of clause `clause', which is in turn refined to the
subtype of clause `full', etc. The graph gives more information than the straightforward list of a selection
expression since a systemic network includes conjunction in its connectivity definition: thus, the penultimate
graph here shows that the unit being generated is both `nonconjuncted' and `mood-unit', and these subtypes
both further specify the type `clause-simplex'. Finally, in the last snapshot taken we can see that the type
`independent-clause-simplex' is dependent on both `independent-clause' and `mood-unit'; note also that here
two new nodes appear (`independent-clause' and `independent-clause-simplex') with respect to the situation
shown in the preceding graph. This is because the first of these is a gate (i.e., a system of one choice). The
traversal path is therefore free to go directly to this gate's successors whenever they may be selected.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node218.html (1 von 4) [11.12.2004 20:35:23]

Dynamic traversal tracing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node218.html (2 von 4) [11.12.2004 20:35:23]

Dynamic traversal tracing

Figure: Successive views of the features selected during network traversal

Traversal graphs can be useful for exploring how particular sets of features are related to one another. The
information given is equivalent to the selection expressions obtained from graphed structure nodes
(Sections 7.9.3.1 and 10.2.5) or from constituents of a generated string (Section 10.2.5.1). The selection
expressions shown by these other methods are displayed as simple lists of features however. This means that
the dependencies between features will not be clear unless one is reasonably familiar with the resources being
used.

More selective areas of traversal can be selected by combining traversal graphs with collected features
(Section 6.2.1.3). When features have been collected, a started traversal graph will only consider features
dependent on those collected features. If no features are selected that are dependent on the collected features,
then the traversal graph will show no growth. An example of dynamic traversal with three collected features
(`temporal-location', `temporal', and `declarative') is shown in Figure 7.9; this example also shows the
contribution of graph pruning: some of the descendents of the feature `declarative' have been removed from
the graph.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node218.html (3 von 4) [11.12.2004 20:35:23]

Dynamic traversal tracing

Figure: Example of selective traversal tracing by collecting features

Dynamic traversal will keep on adding to the displayed graph as long as that graph is the most recently started
and as long as generation continues. It is usually desirable to have a trace of the features selected during a
single traversal: therefore use of traversal graphs is normally to be combined with the `Realize selectively'
generation mode (cf. Section 7.5.3.1). A given traversal graph will in any case only show features from a
single rank (i.e., it will not mix features selected from, e.g., clauses and nominal groups), since each node can
only show at most one selected feature.

Note that dynamic traversal is only activated when the result focusing flag `Cumulate System and
Inquiry Activity' (cf. Section 7.6) is set to all. In addition, the traversal graph command should be given
prior to starting generation--otherwise it may become confused about the state of generation.

next

up

previous

contents

index

Next: Additional generation process control Up: Graphical representation of systemic Previous: Traversal
and resource graphs

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node218.html (4 von 4) [11.12.2004 20:35:23]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Additional generation process control options

next

up

previous

contents

index

Next: Disabling and enabling systems Up: The KPML Development Window Previous: Dynamic
traversal tracing

Additional generation process control
options

● Disabling and enabling systems
● Pausing on inquiries
● Pausing and restarting generation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node219.html [11.12.2004 20:35:41]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Disabling and enabling systems

next

up

previous

contents

index

Next: Pausing on inquiries Up: Additional generation process control Previous: Additional
generation process control

Disabling and enabling systems

 Any system may be right-clicked upon to produce a further menu of operations. Two commands
here, <Disable system> and <Enable system> , have consequences for the generation process. When a
system is disabled, it is temporarily removed from those systems that are considered during
generation. That is, such systems will not be entered during generation and no feature from such
systems will be selected. A disabled system may subsequently be re-instated by a corresponding
<Enable system> command.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node220.html [11.12.2004 20:35:54]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pausing on inquiries

next

up

previous

contents

index

Next: Pausing and restarting generation Up: Additional generation process control Previous:
Disabling and enabling systems

Pausing on inquiries

The two commands DEVELOPMENT:<:Pause on inquiry> and DEVELOPMENT:< :Stop pausing on
inquiry> provide a means of generating until a particular inquiry, or member of a set of inquiries, is
reached. Generation then pauses (entering the Lisp debugger).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node221.html [11.12.2004 20:35:59]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pausing and restarting generation

next

up

previous

contents

index

Next: Inspecting the results of Up: Additional generation process control Previous: Pausing on
inquiries

Pausing and restarting generation

At any time during generation, the generation process may be paused by issuing the command
DEVELOPMENT:<Pause> and restarted with the command DEVELOPMENT:<Resume> .

Generation can be abandoned at any time with the command DEVELOPMENT:<Abort> .

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node222.html [11.12.2004 20:46:05]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspecting the results of generation: Graph Structure

next

up

previous

contents

index

Next: Introduction to structure graphs Up: The KPML Development Window Previous: Pausing and
restarting generation

Inspecting the results of generation:
Graph Structure

● Introduction to structure graphs
● Structure Grapher Options
● Operations available on structure constituents

❍ Selection expression
❍ Preselections
❍ Orderings
❍ Lexical constraints
❍ Associations
❍ All structural constraints

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node223.html [11.12.2004 21:12:52]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction to structure graphs

next

up

previous

contents

index

Next: Structure Grapher Options Up: Inspecting the results of Previous: Inspecting the results of

Introduction to structure graphs

The most direct way of inspecting the results of generation, including the decisions that were made to get to that result, is by graphing the
sentence structure. The command DEVELOPMENT:<Graph Structure> brings up a graph of the last structure that was generated (or part thereof,
if generation is incomplete but sufficient information for a graph representation was obtained). This can be used as the starting point for
inspecting all aspects of the generated result.

An example of such a structure is given in Figure 7.10. The grammatical structure is shown `sideways' as a graph with the largest constituent

placed on the left and successively decomposed into its constituent parts moving to the right. gif Each constituent is shown in terms of the
functions that go to make up its function bundle. The structure shown is the Nigel example sentence REUTERS11 from the ISI 1993 Penman

release. gif

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node224.html (1 von 2) [11.12.2004 21:37:52]

Introduction to structure graphs

Figure: Example of structure graphing

Each of the non-terminal nodes of the structure graph are mouse-sensitive. Clicking on them gives a further menu that allows diverse
information concerning the generation process responsible for the structure to be shown. One very commonly used option is that which shows
the selection expression, i.e., the list of grammatical features that were selected for its generation, of that node. Other possible operations
allow inspection of various constraints that were used to construct the structure. They are described in full in Section 7.9.3.

In all cases it is important to note that it is the full internal data structure used during generation that is inspected. The options here provide,
therefore, the most detail that can be obtained concerning the generated structure. This differs from the superficially very similar looking
graphed structures that may be produced from stored examples or example records. These latter, as described in detail in Chapter 10, contain
only a subset of the full information, usually leaving out generation-process internal constraints that could be reconstructed from the definition
of the grammar. As an added reminder of the difference, when available, the result of generation structure graph is printed blue and the
example record structure is printed black. Example records are already very large: at present the space-cost seems to outweigh the information
loss. The missing information can always be reconstructed be re-generating the particular example.

A postscript file of the graphed structure suitable for printing or including as figures can be created in the normal way under the GRAPH:<Print
Graph> command (cf. Section 6.2.2).

The structure graph command <Quit> exits from the structure graph and then removes the window.

next

up

previous

contents

index

Next: Structure Grapher Options Up: Inspecting the results of Previous: Inspecting the results of

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node224.html (2 von 2) [11.12.2004 21:37:52]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Structure Grapher Options

next

up

previous

contents

index

Next: Operations available on structure Up: Inspecting the results of Previous: Introduction to structure graphs

Structure Grapher Options

 Issuing the command STRUCTURE-GRAPH:<Options> brings up a menu analogous to the corresponding menu for systemic
networks discussed in Section 6.2.1.5. There is only one content-oriented option for structure graphs, however:

● Highlight currently/last generated node: when this flag is set (the default), the grammatical constituent that was most
recently generated (or, if graphing is invoked prior to completing its generation, the unit still being generated) is
highlighted in the structure graph. If generation is complete, then no node is highlighted. This option is particularly
useful if an unexpected problem that suspends generation occurs and no tracing was being produced to indicate where in
the generation process one was.

Figure 7.11, for example, shows four successive views of a structure during generation: each view was produced immediately
after completing a single grammatical unit and prior to commencing the next (by means of the realize selectively flag under
DEVELOPMENT:<Generation Modes> : Section 7.5.2). The node highlighted in each case, therefore, is the larger grammatical unit
immediately containing the unit that is about to be realized.

In the first snapshot, the generation process has just produced the structure for the `Sentence' and is about to commence
generating this unit's substructure. The next unit to be realized can generally be recognized as the topmost unfilled child of the
highlighted unit: i.e., in the first snapshot, the grammatical constituent labelled `Topical/Medium/Subject'. In the second
snapshot, the `Topical/Medium/Subject' constituent has been generated and generation is about to commence on its (only)
child, `Thing'. Similarly in the third snapshot, which has moved on to the (only) child of the `Thing' grammatical unit, the
`Stem'. This latter grammatical unit is immediately realized (probably morphologically), and does not need another traversal of
the systemic network. In the fourth and final snapshot, therefore, the child of `Stem' (`Head') has already been filled in and the
`Topical/Medium/Subject' constituent of the sentence as a whole is complete. The containing grammatical unit then reverts to
the `Sentence'. The first and second subconstituents of the `Sentence' have now both been filled, and so the next unit to be
realized is that labelled as `Spacelocative'.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node225.html (1 von 3) [11.12.2004 21:40:30]

Structure Grapher Options

Figure: Successive structural snapshots during generation indicating `last' generated node

The remaining structure grapher options concern layout and production of hardcopy versions of the structure graph:

● Send created postscript files to printer: if this flag is set, any postscript file produced by invoking the < Printgraph>

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node225.html (2 von 3) [11.12.2004 21:40:30]

Structure Grapher Options

command is sent directly to the default printer rather than simply being left in the hardcopy directory. The printer
command used is lpr.

● Structure graph orientation: this flag controls the orientation of graphs; the possibilities are :horizontal (the
default) and :vertical.

● Vertical scaling: the distance between elements vertically.
● Hardcopy vertical scaling: the distance between elements that will be used in postscript files for hardcopying.
● Hardcopy directory: the directory where postscript files for hardcopying will be stored (when the printgraph menu

option is used).
● Hardcopy with header: this flag determines whether header information (containing the current language, and, if

hardcopy, the date of production of the graph) is shown in the graph or not.
● Suitable for eps: when set, this flag causes hardcopy versions of graphs to be produced in `single page' mode. Postscript

files for inclusion in text documents should normally be produced with this flag set, otherwise extended postscript will
not produce the right results.

next

up

previous

contents

index

Next: Operations available on structure Up: Inspecting the results of Previous: Introduction to structure graphs

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node225.html (3 von 3) [11.12.2004 21:40:30]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Operations available on structure constituents

next

up

previous

contents

index

Next: Selection expression Up: Inspecting the results of Previous: Structure Grapher Options

Operations available on structure constituents

The full list of available inspection options for particular constituents in the graphed grammatical is as
follows. The options are reached by left-clicking on the desired grammatical constituent. With the
exception of selection expressions, the information presented always appears in the Inspector
window: this is because this information is typically used as the starting point for further information
searches of the kind described under information chains in Section 6.5. Further details of the
realization constraints referred to here are given in Section 12.2.5.

● Selection expression
● Preselections
● Orderings
● Lexical constraints
● Associations
● All structural constraints

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node226.html [11.12.2004 21:40:39]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Selection expression

next

up

previous

contents

index

Next: Preselections Up: Operations available on structure Previous: Operations available on structure

Selection expression

Produces a list of the features selected during the traversal of the systemic network that was
responsible for the generation of the clicked upon node. The list either appears in the INSPECTOR's
interaction result pane or in a pop-up window of its own as toggled by the appropriate switch under
the ROOT:< Flags> command. Each of the feature names shown is mouse-sensitive and can be clicked
upon for further graphing of resources or for listing the definitions of the systems involved, etc.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node227.html [11.12.2004 21:40:59]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Preselections

next

up

previous

contents

index

Next: Orderings Up: Operations available on structure Previous: Selection expression

Preselections

Prints in the interaction results window a list of the preselection realization constraints that were
imposed upon the clicked upon node by its parent grammatical unit. The features specified as
preselections are mouse-sensitive.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node228.html [11.12.2004 21:41:06]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Orderings

next

up

previous

contents

index

Next: Lexical constraints Up: Operations available on structure Previous: Preselections

Orderings

Prints in the interaction results window a list of the ordering realization constraints that were imposed
upon the the clicked upon node by its parent grammatical unit.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node229.html [11.12.2004 21:41:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Lexical constraints

next

up

previous

contents

index

Next: Associations Up: Operations available on structure Previous: Orderings

Lexical constraints

Prints in the interaction results window a list of the lexical realization constraints (i.e., classify,
inflectify and lexify realization statements) that were imposed upon the the clicked upon node by its
parent grammatical unit.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node230.html [11.12.2004 21:41:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Associations

next

up

previous

contents

index

Next: All structural constraints Up: Operations available on structure Previous: Lexical constraints

Associations

 Prints in the interaction results window a list of the function associations made during the generation
of the clicked upon node. These associations are displayed as a sequence of lists where the first
element in each identifies the grammatical function, the second the semantic unit associated with the
grammatical function, the third the set (if any) of lexemes selected for the constituent, and the fourth
the single lexeme selected for the constituent's realization. All are mouse sensitive as appropriate.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node231.html [11.12.2004 21:41:21]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

All structural constraints

next

up

previous

contents

index

Next: Inspecting the results of Up: Operations available on structure Previous: Associations

All structural constraints

This option is only intended for difficult to find problems that may have been caused by non-standard
implementations of inquiries, or new choosers and inquiries. It pushes onto the global variable
nodes in the Kpml package a pair consisting of:

● a list of the component grammatical functions making up the clicked upon node;
● the complete internal data structure constructed and accessible from that node.

As long as the internal data structure is that created by Penman-inherited code (i.e., for the
grammatical structures in KPML), its contents are extremely verbose. All information is present there,
albeit in a very unwieldy form. All the standard information can be reached more appropriately and
conveniently from the other graph node options described here--this option is therefore intended to be
used when non-standard additions to the standard capabilities are being experimented with, and where
access to the internal data structures themselves is required.

Note: applications should not build code that depends on the internal form of these data
structures. There is no guarantee that it will be preserved across subsequent KPML releases.
Interaction with KPML-internal details of generation should only be defined in terms of
recognized interface structures, such as those produced as a possible result of the say function,
for example (Section 14.1).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node232.html [11.12.2004 21:41:26]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspecting the results of generation: Operations on the produced strings or textual structure displays

next

up

previous

contents

index

Next: Switching Languages Up: The KPML Development Window Previous: All structural
constraints

Inspecting the results of generation:
Operations on the produced strings or
textual structure displays

It should be noted here that a further possibility for inspecting the partial results of generation is
offered by direct mouse-clicks on both the generated string and, if it is displayed, the textual version
of the final structure produced in the Development results pane. This can be a quicker way of finding
information than going via the structure graph. It is important to understand, however, that the mouse
operations here are operating not on the internal data structures used during generation, but on the
example record that was cumulated during generation. The options are, therefore, slightly different
and not limited to the last sentence that was generated. The full possibilities here are given in
Section 10.3. A detailed introduction to KPML example records is given in Chapter 10.

When `generated strings' are on the activated pop-up windows given under the ROOT: <Flags>
command, then strings generated are brought up in their own display window. The results shown in
this window respect the same display flags as results shown in the Interaction results pane on the
DEVELOPMENT window. The results are exhibit the same mouse sensitivity as strings shown in the
Development window with all the normal options for generated strings (cf. Section 10.2.5.1).

The pop-up window provides a convenient way of maintaining several generated results on screen at
the same time, as well as supporting diverging fonts (cf. Section 12.2.2.3). When generating in
contrastive mode, individual windows are popped up for each language.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node233.html [11.12.2004 21:41:31]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Switching Languages

next

up

previous

contents

index

Next: Summary of generation process Up: The KPML Development Window Previous: Inspecting
the results of

Switching Languages

The command DEVELOPMENT:<Set Language> allows the user to set the `current language'. This is the
language that KPML assumes for all generation and displays of information. The default KPML
behaviour is that language switching is an entirely KPML-internal affair. That is, language switching
involves no additional reading or re-reading of external linguistic resource definitions and is achieved
solely on the basis of the KPML-internal multilingual data structures.

Alternative means of generating in different languages are provided by the multilingual modes as
described in the following subsection. Moreover, if a particular example is defined only for a single
language, then that it is the language that will be used during generation unless this is explicitly
overriden.

Note that any necessary changes that go beyond the systemically expressed resources (e.g., language
specific changes to the upper model, etc.) are beyond that supported automatically under this
command. Such changes are in any case to be avoided: the natural language conditionalization
mechanisms provided by KPML should be used instead. See also the comments on this topic in
Section 12.1.

Although largely a relic of less multilingually consistent sets of resource definitions, it is possible to
cause language switching to have a variety of side-effects. When the internal flag *patch-
loading-on-language-switching* is set, then switching languages causes language specific
files to be loaded for the language being switched into. These files are any inquiry implementations,
orderings, punctuation and KPML code patches that are found in the concerned language variety
directory (see Section 12.1 for the file names and directory structure). Loading the file inquiry-
implementations.lisp overwrites all existing inquiry implementations! If present, this file
should clearly contain definitions of all inquiry implementations needed by the language in question,
since existing definitions are either flushed (in overwriting mode) or simply overwritten (in merging
mode). Language specific implementations that are to be used in addition to the standard
implementations rather than instead can be placed in a file inquiry-increment.lisp.

For optimal switching between language it is best if a language variety directory contains no language
specific inquiry implementations or code patches. Only then is language switching a completely KPML-
internal affair, requiring no loading of files for further information. When resource sets are not
mutually compatible and changes to the system by means of file-loading is required, the frequent
changing of current language is made unattractive. In such cases, detailed contrastive work is
probably better performed by making a number of instantiations of the system, one for each language

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node234.html (1 von 2) [11.12.2004 21:41:36]

Switching Languages

required.

next

up

previous

contents

index

Next: Summary of generation process Up: The KPML Development Window Previous: Inspecting
the results of

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node234.html (2 von 2) [11.12.2004 21:41:36]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Summary of generation process information chains

next

up

previous

contents

index

Next: How to debug resources: Up: The KPML Development Window Previous: Switching
Languages

Summary of generation process
information chains

The tracing and inspection facilities described in this chapter provide a further set of possible
information chain transitions over and above those for the linguistic resources summarized in
Section 6.6. These provide chains of information involving the actualization of the potential
represented by the linguistic resources: i.e., the results and decisions made during the generation
process itself.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node235.html (1 von 2) [11.12.2004 21:41:47]

Summary of generation process information chains

Figure: Summary of actualization process information chains

These are summarized in Figure 7.12. The arrows pointing to unboxed linguistic objects printed in
italics (inquiries, systems, etc.) mark points of entry to the linguistic potential information chains
shown in Figure 6.12. The boxes with a black circle in their top right hand corners have points of
entry provided by explicit KPML commands in addition to possible activation by mouse-clicks.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node235.html (2 von 2) [11.12.2004 21:41:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

How to debug resources: a sketch of a method

next

up

previous

contents

index

Next: The `old-style' KPML interface Up: The KPML Development Window Previous: Summary of
generation process

How to debug resources: a sketch of a
method

The following is one straightforward way of debugging resouces when they do not perform as
expected or required. There are other ways, and individuals will probably develop their own preferred
styles of working. Situations may also arise which are too complex for the simple strategy outlined
here--but as a starting point it would still serve well.

When a sentence or other linguistic unit has been generated and is known not to produce the correct
result, the following steps can be performed without any additional tracing activated:

1. Generate (or attempt to generate) the unit desired, starting from the assumed semantics, with
either DEVELOPMENT:< Generate Sentence> or from Lisp: (say '<SPL-spec>).

2. When something has been generated (or generation has broken), examine the structure
produced with DEVELOPMENT:<Graph Structure> . (For large structures, more selective structure
graphing can be used as set out in Section 10.3.)

3. Find an examle in the structure of a constituent that did not generate as expected.
4. Click the parent node (if any) and examine the constraints set on the problematic constituent

(particularly the preselections and lexical constraints: cf. Section 7.9.3): are these correct and
sufficient for the desired behaviour?

5. If not, it is the parent node that is at fault: go back to step (4) this time considering the parent
node.

6. If correct, bring up the selection expression of the problematic node (cf. Section 7.9.3).
7. Find the first feature on the selection expression list that deviates from that necessary for

desired behaviour. (When more familiar with the resources being used, this can be very quickly
established since one knows what the features are for. With more unfamiliar resources, some of
the inspection tools (Chapter 6) and examples (Chapter 10) may be usefully applied.)

8. Examine the system where the wrong feature was selected in order to find out why:
❍ if there is a chooser, then this can be traced (cf. Section 7.6.1.2), generation can be

redone, and the chooser examined in order to find which inquiries produced
inappropriate responses--debugging can here move to the interpretation of the semantic
input, checking that the given inquiry implementations find the necessary semantic
distinctions;

❍ if there is no chooser, then the correct feature must be selected by preselection: this may
indicate that insufficient constraints were brought to bear from the parent node.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node236.html (1 von 2) [11.12.2004 21:41:52]

How to debug resources: a sketch of a method

next

up

previous

contents

index

Next: The `old-style' KPML interface Up: The KPML Development Window Previous: Summary of
generation process

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node236.html (2 von 2) [11.12.2004 21:41:52]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The `old-style' KPML interface

next

up

previous

contents

index

Next: Description of the interface Up: No Title Previous: How to debug resources:

The `old-style' KPML interface

The old-style KPML interface provides an interface very similar to that available with the Penman

system, with slightly extended graphical and mouse-oriented facilities. gif This interface consists of a
single top level interaction window which combines panes for presenting the most useful information
for debugging linguistic resources of the multilingual systemic-functional type. It also includes a main
root menu of available operations; many of the main commands for the distinct new-style interface
command menus are reachable here via submenus.

 The old-style window interface is available for both Allegro and Lucid Common Lisp, CLIM-1 and
CLIM-2. It is the only option available if Allegro Common Lisp is not being used, or if CLIM-2 is not
present. The old-style window interface is not being actively developed at this time.

The top level interaction windows and their contents are as follows:

The Operation Menu includes the most common actions that a resource developer will require, but
does not exhaust the commands available. Further commands can be typed directly at the Command
Interaction window and by special keystrokes. Details of all these commands are given in the sections
below, organized by desired functionality.

Results of operations performed are displayed in the Interaction Results window.

The Current System Name, System and Feature History, Current Inquiry Name, and Inquiry Response
History windows are present for the display of particular kinds of information concerning the text

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node237.html (1 von 3) [11.12.2004 21:42:10]

The `old-style' KPML interface

generation process and the traversal of the grammar; some of them are `live', i.e. mouse-sensitive for
the ready display of useful information concerning their contents. Moving the mouse around a
window will quickly reveal the mouse-sensitive portions.

The Target Sentence window shows a target form for a sentence that is being generated: this form is
associated with example input structures by the user as a reminder of what the input structures are
intended to generate.

Finally, as is generally the case with KPML, it is recommended that the user sets up the screen so that
the calling Lisp listener can also be seen in the background while working with KPML (as can be seen
on the left of the screendump shown in Figure 8.1).

● Description of the interface `sub-windows'
● Basic Old-Style Interface Operations

❍ Clear
❍ Flags
❍ Pause
❍ Quit
❍ Resume
❍ Reset
❍ Show Linguistic Object
❍ Generation Display Modes
❍ Resource Maintenance
❍ Multilingual Operations
❍ Graph Grammar
❍ Graph Sentence Structure
❍ Ready SPL Defaults
❍ Generate Again

● Further type-in commands
❍ Abort
❍ Environment Directories
❍ Show Path To
❍ Evaluate Lisp Expression

● Various mouse-click triggered commands

next

up

previous

contents

index

Next: Description of the interface Up: No Title Previous: How to debug resources:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node237.html (2 von 3) [11.12.2004 21:42:10]

The `old-style' KPML interface

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node237.html (3 von 3) [11.12.2004 21:42:10]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Description of the interface `sub-windows'

next

up

previous

contents

index

Next: Basic Old-Style Interface Operations Up: The `old-style' KPML interface Previous: The `old-style' KPML interface

Description of the interface `sub-windows'
An example of the top level interface in the middle of an interaction session is shown in Figure 8.1.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node238.html (1 von 4) [11.12.2004 21:42:35]

Description of the interface `sub-windows'

Figure: Old-style top level interface window

Running from top to bottom on the left-hand side of the screen, the windows are:

● System Name: displays the grammar system that is currently being traversed through. Left-clicking on the system name in this window will display the definition of that system in the
Interaction Results window on the right-hand side of the screen. Right-clicking will present a menu of options, one of which is to enter the grammar system network browser that displays
the conectivity of the linguistic resource network in graphic form. This possibility is more fully described under the Graph Grammar operation (Section 6.2).

● System Feature History: maintains a scrollable list of the systems that have been traversed through and the choice of feature that was made in each of those systems; clicking on any entry
allows the system concerned to be inspected in a similar way to that available in the System window.

● Current Inquiry Name: shows the formal name of the current inquiry that is being put to the environment; the english gloss of this inquiry is shown in the Inquiry question window.
Clicking on the inquiry's name in this window causes the definition of the inquiry to be displayed.

● Current Inquiry Definition: as long as the appropriate flag from the Generation Display Modes menu (Section 7.5.2) is set the informal natural language form of the current inquiry
appears here.

● Inquiry Response History: is a scrollable window showing the names of all the inquiries that have been put to the environment and the responses that were received. Clicking on any of the
entries in this window causes the definition of the selected inquiry to be displayed.

● Target text or Input text: shows the text that the grammar is trying to generate. This is set in the case of examples from a field in the example record data structure. It serves as a reminder
to the user of the form that the example will generate. This is the targetform field of an example record; the user can set this as a suitable reminder of what the linguistic resources are
being used for in order to generate.

● Command Interaction Window: all commands (including those selected by clicking on the operation menu) that the user gives are entered here. Also, any responses that the user needs to
supply which are not handled via separate menus are entered here. This is also, therefore, where the prompts for such information appear.

On the right-hand side of the screen there are two windows:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node238.html (2 von 4) [11.12.2004 21:42:35]

Description of the interface `sub-windows'

● Operation Menu: the most commonly required operations available to the user. These menu options provide for starting, pausing, and ending the generation process, setting the quantity of
information that is given during generation, examining particular aspects of the generation process as it occurs, examining the linguistic resources (paradigmatic specifications) and the
results of using those resources (syntagmatic structure), and loading and saving linguistic resources.

This main menu appears as follows. gif

Most of these commands can also be typed in directly at the Interaction window; those with submenus typically allow the submenu commands to be typed at the interaction window also.

The functions and uses of those menu options particularly concerned with controlling the window interface are given in detail below in Section 8.2.
● Interaction Response: this is the window that holds all the general information that may be given during generation because of the flags that are set from the Generation Display Mode

menu option and the specific information that the user can ask to be displayed at any time, such as, for example, the displaying of systems, choosers, or inquiries by clicking on the mouse-
sensitive window areas described above.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node238.html (3 von 4) [11.12.2004 21:42:35]

Description of the interface `sub-windows'

next

up

previous

contents

index

Next: Basic Old-Style Interface Operations Up: The `old-style' KPML interface Previous: The `old-style' KPML interface

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node238.html (4 von 4) [11.12.2004 21:42:35]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Basic Old-Style Interface Operations

next

up

previous

contents

index

Next: Clear Up: The `old-style' KPML interface Previous: Description of the interface

Basic Old-Style Interface Operations

The interface oriented basic operations offered by the operation menu are as follows.

● Clear
● Flags
● Pause
● Quit
● Resume
● Reset
● Show Linguistic Object
● Generation Display Modes
● Resource Maintenance
● Multilingual Operations
● Graph Grammar
● Graph Sentence Structure
● Ready SPL Defaults
● Generate Again

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node239.html [11.12.2004 21:42:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear

next

up

previous

contents

index

Next: Flags Up: Basic Old-Style Interface Operations Previous: Basic Old-Style Interface Operations

Clear

Immediately (or as soon as the process gets a chance...) clears all windows, including the scrolling
windows history.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node240.html [11.12.2004 21:43:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Flags

next

up

previous

contents

index

Next: Pause Up: Basic Old-Style Interface Operations Previous: Clear

Flags

Brings up a menu containing a host of flags that control the finer running of the KPML system. This can
typically ignored until a more precise idea of the possibilities that KPML offers has been gained. These
options are as described in Section 5.4.2.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node241.html [11.12.2004 21:43:10]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Pause

next

up

previous

contents

index

Next: Quit Up: Basic Old-Style Interface Operations Previous: Flags

Pause

Temporarily stops the generation process. While the process is stopped one may use any of the
display functions to look at the current state of the generation process. Note that pause only works for
generation started in the window interface with commands such as <Resource Maintenance:
Operations on Examples: Generate Sentence> , <Generate Again> , etc., and not for generation
started elsewhere (for example directly in the Lisp listener via the say function as described in
Section 14.1).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node242.html [11.12.2004 21:43:14]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Quit

next

up

previous

contents

index

Next: Resume Up: Basic Old-Style Interface Operations Previous: Pause

Quit

This command exits from the interface window and then destroys that window.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node243.html [11.12.2004 21:43:18]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resume

next

up

previous

contents

index

Next: Reset Up: Basic Old-Style Interface Operations Previous: Quit

Resume

Continues the generation after a <Pause> .

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node244.html [11.12.2004 21:43:22]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Reset

next

up

previous

contents

index

Next: Show Linguistic Object Up: Basic Old-Style Interface Operations Previous: Resume

Reset

Immediately (or as soon as the process gets a chance...) clears all windows, including the scrolling
windows history, and forces any existing generation process that has been started to exit.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node245.html [11.12.2004 21:43:26]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Linguistic Object

next

up

previous

contents

index

Next: Generation Display Modes Up: Basic Old-Style Interface Operations Previous: Reset

Show Linguistic Object

Leads to the inspection options--mostly similar to those described for the Inspector window in
Chapter 6.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node246.html [11.12.2004 21:43:31]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generation Display Modes

next

up

previous

contents

index

Next: Resource Maintenance Up: Basic Old-Style Interface Operations Previous: Show Linguistic
Object

Generation Display Modes

Sets the generation modes as described in Section 7.5.1; these modes can then be reset with the <Reset
Generation Modes> command.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node247.html [11.12.2004 21:43:37]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource Maintenance

next

up

previous

contents

index

Next: Multilingual Operations Up: Basic Old-Style Interface Operations Previous: Generation
Display Modes

Resource Maintenance

Leads on to options similar to those available under the Development window of the new-style
interface (Chapter 7).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node248.html [11.12.2004 21:43:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual Operations

next

up

previous

contents

index

Next: Graph Grammar Up: Basic Old-Style Interface Operations Previous: Resource Maintenance

Multilingual Operations

Leads on to options similar to those available under the Root window of the new-style interface
(Chapter 5).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node249.html [11.12.2004 21:43:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph Grammar

next

up

previous

contents

index

Next: Graph Sentence Structure Up: Basic Old-Style Interface Operations Previous: Multilingual
Operations

Graph Grammar

Provides similar functionality to the INSPECTOR:<Graph Grammar> command (Section 6.2). The
modes for graphical display can be set by the command <Grapher Display Modes> .

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node250.html [11.12.2004 21:44:00]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph Sentence Structure

next

up

previous

contents

index

Next: Ready SPL Defaults Up: Basic Old-Style Interface Operations Previous: Graph Grammar

Graph Sentence Structure

Displays the grammatical constituency of the last generated sentence or linguistic unit (cf.
Section 7.9).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node251.html [11.12.2004 21:44:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Ready SPL Defaults

next

up

previous

contents

index

Next: Generate Again Up: Basic Old-Style Interface Operations Previous: Graph Sentence Structure

Ready SPL Defaults

Older versions of the system required that default values for inquiries be explicitly set if required (cf.
Section 7.4.4). This command activates defaults on demand.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node252.html [11.12.2004 21:44:30]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generate Again

next

up

previous

contents

index

Next: Further type-in commands Up: Basic Old-Style Interface Operations Previous: Ready SPL
Defaults

Generate Again

Generates the last example again, as with DEVELOPMENT:< Generate Again>.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node253.html [11.12.2004 21:44:46]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Further type-in commands

next

up

previous

contents

index

Next: Abort Up: The `old-style' KPML interface Previous: Generate Again

Further type-in commands
The following commands can be typed directly at the interaction window and are not available from
the menu. Command completion is provided.

● Abort
● Environment Directories
● Show Path To
● Evaluate Lisp Expression

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node254.html [11.12.2004 21:44:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Abort

next

up

previous

contents

index

Next: Environment Directories Up: Further type-in commands Previous: Further type-in commands

Abort

Commands being typed in at the interactor window can be aborted at any time by typing a control-Z.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node255.html [11.12.2004 21:45:00]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Environment Directories

next

up

previous

contents

index

Next: Show Path To Up: Further type-in commands Previous: Abort

Environment Directories

Brings up a menu in which the environmental file directories that the KPML system uses for various
kinds of information access and display. The directories currently maintained here are:

● Root of resources: the directory where all linguistic resources hang.
● Hardcopy directory: the directory where postscript versions of graphed information are sent.
● Merging results directory: the directory that records the actions taken when resources are being

merged during loading rather than overwritten when the most verbose tracing flags are set (see
Section 5.7.2.2).

● Example runner results directory: the directory where the results of attempting to generate all
loaded examples (see Section 9) are recorded.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node256.html [11.12.2004 21:45:07]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show Path To

next

up

previous

contents

index

Next: Evaluate Lisp Expression Up: Further type-in commands Previous: Environment Directories

Show Path To

This shows the path through the loaded systemic network that is necessary to reach the specified
linguistic feature. This may be incomplete if complex entry conditions (i.e., disjunctions) are found on
the backward chaining path. See also Section 6.5.3.4.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node257.html [11.12.2004 21:45:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Evaluate Lisp Expression

next

up

previous

contents

index

Next: Various mouse-click triggered commands Up: Further type-in commands Previous: Show Path
To

Evaluate Lisp Expression

This command is given by typing a comma ``,'' as the command name in the Interaction window. The
user is then expected to type in a Lisp expression. This is evaluated and the results are shown in the
General Information window.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node258.html [11.12.2004 21:45:16]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Various mouse-click triggered commands

next

up

previous

contents

index

Next: Static Integrity Checks: Resource Up: The `old-style' KPML interface Previous: Evaluate Lisp
Expression

Various mouse-click triggered
commands
In general, a left mouse click over a mouse-sensitive object in the Interaction results window will
print a definition or description of the object selected. In addition, however, a right mouse click will
offer a menu of further commands which vary depending on the type of object selected. For the
display type options, see the descriptions given in Section 6.3; for the options that effect generation
(tracing, enabling, etc.), see Chapters 9 and 10.

The options for a grammatical system are to:

● print the description of the system,
● disable the system from use in generation,
● enable the system for use in generation,
● trace the system when it is used in generation,
● stop tracing the system,
● graph the network beginning at the system selected.

The options for a systemic feature (i.e., a term in a systemic network system) are to:

● print the description of the feature (showing the systems which have the feature as an input
condition and the system where the feature is defined),

● only show systems having the feature as input,
● only show systems having the feature as output,
● print the path through the systemic network leading to the systemic feature,
● show the list of loaded examples that use the feature.

Note: this option will only show examples where the selection expressions have already
been provided by generation (Chapter 10). In order to save space, many examples do not
include this information. It can be added, of course, by generating the example with the
Update Example Record Fields option set (Section 7.5.2).

The options for an inquiry are to:

● print the inquiry definition,
● print the definition of the inquiry implementation,
● show who can ask the inquiry,

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node259.html (1 von 2) [11.12.2004 21:45:22]

Various mouse-click triggered commands

● show who can identify the inquiry,
● pause when the inquiry is used in generation,
● stop pausing when the inquiry is used in generation.

Any options marked as translator should probably be avoided under Lucid Common Lisp's
CLIM.

next

up

previous

contents

index

Next: Static Integrity Checks: Resource Up: The `old-style' KPML interface Previous: Evaluate Lisp
Expression

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node259.html (2 von 2) [11.12.2004 21:45:22]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Static Integrity Checks: Resource maintenance

next

up

previous

contents

index

Next: Background concepts Up: No Title Previous: Various mouse-click triggered commands

Static Integrity Checks: Resource
maintenance

● Background concepts
❍ Static tests during resource loading
❍ Static tests on whole resource set

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node260.html [11.12.2004 21:45:27]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Background concepts

next

up

previous

contents

index

Next: Static tests during resource Up: Static Integrity Checks: Resource Previous: Static Integrity
Checks: Resource

Background concepts
The resource debugging support tools offered by KPML can be divided into three broad classes:

● static tests during resource loading,
● static tests on whole resource set,
● generation tests.

Static tests examine the resources as defined and attempt to determine inconsistencies, possible
mistakes, etc. These tests are described more fully below. Generation tests involve using the linguistic
resources for generation: this will typically bring out far more detailed inconsistences or errors than
the static tests can.

The warnings issued by the static tests carried out during loading should always be carefully
attended to. Inherently inappropriate or incorrect resource definitions can lead to resource sets
that are difficult to debug using the generation tests!

There are in addition two classes of messages that the system will give while running static tests or
during generation: warnings and cautions. Warnings are issued when an error is known to have
occurred in the system. Cautions are issued when a potential error or suspect condition is recognized.

● Static tests during resource loading
● Static tests on whole resource set

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node261.html [11.12.2004 21:45:34]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Static tests during resource loading

next

up

previous

contents

index

Next: Static tests on whole Up: Background concepts Previous: Background concepts

Static tests during resource loading

The most common warning given here is that a grammatical feature is defined for some grammatical
system and that feature was already known as being defined for some other grammatical system. This
is an untenable situation since a grammatical feature can only be used uniquely. When this occurs,
therefore, a warning is given and the previously existing grammatical system is disabled. Disabled
grammatical systems play no further role for integrity checking or for generation. They are, however,
still present in the system and can be reactivated (assuming that the originating error condition no
longer applies) with the <:Enable system> command (cf. Section 7.8.1).

The uniqueness condition for grammatical features holds only within a single language however. It is,
of course, acceptable to have distinct languages which assign a grammatical feature of the same name
to distinct grammatical systems. Disablement of a system is therefore always relative to particular
languages. It is possible for a system to be disabled for one language but enabled for another.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node262.html [11.12.2004 21:45:39]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Static tests on whole resource set

next

up

previous

contents

index

Next: Resource Verification: Example Sets Up: Background concepts Previous: Static tests during
resource

Static tests on whole resource set

The INSPECTOR:<:Grammar Consistency Tests> command carries out a range of general consistency

checks on the resources as loaded. gif

In addition, prior to generation with any resource set, KPML runs through a standard set of network
connectivity checks which can produce various warnings. Note that this is a required step before using
the resources for generation and is thus triggered automatically if generation is requested before
connectivity has been established. During this phase, a number of start-up tests are run. Problems here
are given as warnings as follows:

● Output features of systems which are not reachable from entry features - ideally there should
not be any of these as this type of warning indicates a mismatch between some of the systems
of the grammar.

● Input features not recognized as the output of any system. There should always be just one of
these - the feature Start, which is the input for the system RANK. This is the topmost level of the
grammar and therefore is not the output of a system. Any other features in this list indicate
some error in the grammar.

● Lexical features not called for by any Classify or OutClassify - Note that lexicons may also be
intended for use by other systems and somany contain features which are not used by the
currently loaded resources; such features are listed in the start up warnings.

● Features demanded by Classify or OutClassify but not present in the lexicon. This warning
indicates that there is a mismatch between the lexical features that the grammar expects to be
able to call on, and those that actually exist. If such a warning occurs, then either the grammar
or the lexicon should be adjusted to eliminate them.

● Words demanded by Lexify but not present in the lexicon. Anything appearing under this
warning should be added to the lexicon.

● Features demanded by preselect but not chosen in the grammar. This means that there are
systems which are trying to preselect for features that don't exist in the grammar. This should
not occur.

● Chooser for system choosing differently to the system. If a chooser for some system contains a
possible choice of a feature that is not one of the output features of its associated system, then
this is an error; the chooser or grammatical system probably needs to be fixed.

It is possible to call for more stringent start-up tests by selecting the Show Cautions flag (see
Appendix A). Then cautions such as the following will be given:

● Too many void features on system. This means that the system outputs named in the warning
are ones which neither serve as input for other systems nor have any terminal realization.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node263.html (1 von 2) [11.12.2004 21:45:45]

Static tests on whole resource set

When resources are being developed, there tend to be quite a few of these, usually marking the
starting points where further development is intended.

● Chooser for system choosing differently to the system. If the chooser has been designed to
choose only some of the available options in the system to which it is attached, then it will be
reported here. Usually this is because the other options in the system lead to undeveloped areas
of the grammar or they are always handled by preselection.

next

up

previous

contents

index

Next: Resource Verification: Example Sets Up: Background concepts Previous: Static tests during
resource

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node263.html (2 von 2) [11.12.2004 21:45:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource Verification: Example Sets and Test Suites

next

up

previous

contents

index

Next: Example sets and test Up: No Title Previous: Static tests on whole

Resource Verification: Example Sets
and Test Suites

One of the main tasks that an environment such as KPML has to support is the ongoing verification that
the resources defined do what they are supposed to do. That is, in this case, that a correctly formed
semantic specification will lead to an appropriate linguistic realization of that specification in the
desired languages. The principle means adopted to achieve this is by supporting extensive test suites,
or example sets, for any resource set released. A test suite is constructed by generating from a wide
range of semantic specifications, attempting to cover as many components of the grammar as is
possible. Developing such test suites relies heavily on the generation functionality of KPML and the
extensive resource debugging aids provided.

● Example sets and test suites
● The example operations

❍ Load Examples
❍ Write Examples
❍ Clear Examples
❍ Generate from example SPL
❍ Graph example structure

■ Display generated string
❍ Show examples with features
❍ Copy examples with new names
❍ Delete some examples
❍ Example runner

■ Starting the example runner
■ Levels of detail while example running
■ Low detail example running
■ Medium detail example running
■ High detail example running

❍ Features used in examples survey
● Operations on example strings and textually displayed structures

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node264.html (1 von 2) [11.12.2004 21:45:50]

Resource Verification: Example Sets and Test Suites

❍ Operations on displayed strings
■ Show corresponding fundle
■ Graph corresponding constituent and below
■ Inspect selection expression
■ Inspect corresponding semantic term
■ Partial re-generation

❍ Operations on displayed structures
■ Graph this constituent and below
■ Show selection expression
■ Show corresponding semantic term
■ Generate again up to but not including this constituent

● Full summary of linguistic resource information chains

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node264.html (2 von 2) [11.12.2004 21:45:50]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Example sets and test suites

next

up

previous

contents

index

Next: The example operations Up: Resource Verification: Example Sets Previous: Resource Verification: Example Sets

Example sets and test suites

While debugging or maintaining a set of resources it is usual that a standard set of examples be maintained. This is a list of
either semantic specifications or records of responses to inquiries for a complete sentence. The form of an example record is
described in Section 12.2.9. Example sets are a crucial way of verifying that a resource set is consistent and adequate. Since
it is not feasible to check all combinations of defined features when resources become realistic in size, the consequences of
changes and extensions can be monitored by verifying that the generation of the example set has not been compromised.
When adding new features to the resources, corresponding examples should be added to the example sets. The ideal is to
achieve for each language variety an exercise set that includes sufficient examples to `exercise' every feature of the linguistic
resource defining the variety.

Example records are created by storing particular kinds of information concerning the sentences that are generated by a
linguistic resource. Each time the generator runs, a particular example record is either selected--explicitly by the user from
menus of prestored examples--or created--if semantic input is specified directly (by providing an SPL specification for
example). This selected/created example record is updated according to the details of the generation process for the
linguistic units generated. The example record therefore provides an abbreviated record of the results of the generation
process.

Some information is always stored to the currently active example record. This minimal information is that used for
presenting the final generated string to the user (the string that is printed in the Development window or in its own pop-up
window following generation); this is the `mouseable structure' described in detail in Section 14.5. The string display of this
mouseable structure can be used for recovering information about the generated linguistic unit without updating any of the
stored example records. As long as such a string is shown in the Development window, the minimal associated information
remains inspectable. This information is sufficient for supporting the commands on generated strings for graphing structure
and showing associated semantic specifications, but not for the commands for showing selection expressions. If this further
information is sought for example records that are not sufficiently complete, the message:

No information maintained for this node.

or something similar will be displayed.

Even the minimal `mouseable structure' information that is always produced is not automatically transfered to the
information associated with the named example with which generation was started. Simple generation does not, therefore,
alter information that has been loaded from example sets. In order that any information be stored to the maintained example
records and maintained, the flag DEVELOPMENT:<Generation Modes> `Update Example Record Fields' (Section 7.5.4.2) must
be set.

With this flag set, the basic information plus additional information is added to the current example record and, following
generation, used to update the maintained example record associated with the selected example name. The full information
collected is then:

● the semantic entity that is the principal `hub' for any traversal of the grammar (i.e., the head semantic term),
● the set of features selected (the selection expression) during traversal of the systemic network for each such hub,
● the complete set of inquiries posed, their actual parameters and their responses,
● the grammatical structure generated as represented in the `rich mouseable structure' form (Section 14.5).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node265.html (1 von 3) [11.12.2004 21:45:58]

Example sets and test suites

This provides the necessary information for additional operations such as showing all examples that use some set of
systemic features and presenting the selection expressions and semantic information associated with each grammatical
constituent generated. It also supports useful on-line example-based documentation and debugging capabilities.

Most of the standardly released linguistic resources include at least one prestored set of full example records. These files are
generally quite large, and so are available separately from the resource definitions. Loading these files enables examples to
be found for the defined systemic network features, as well as all the grammatical structures to be inspected, without having
to generate the example first.

Prestored full example sets are created simply by invoking the example runner over the chosen set of examples with (i) the
updating flag set, and (ii) the degree of example runner detail (described in Section 10.2.9) set to :complete. The user
can, therefore, extend these full example sets, or make new such sets, freely at any time.

The operation of the `Update Example Record Fields' flag is shown graphically in Figure 10.1. This extends the information
chain diagram for the generation process of `actualizing' linguistic resources given in Figure 7.12. The dashed arrows mark
the additional information flow that occurs whenever the updating flag is set.

Figure: The relation of the generation process to example records

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node265.html (2 von 3) [11.12.2004 21:45:58]

Example sets and test suites

Having a set of full example records loaded also extends the possibilities for following information chains described in
Chapter 6 considerably. The complete set of information chain transitions is summarized in Section 10.4.

Note that the example record only records the last generated version of an example in the last language for which generation
proceeded. Other information is accessible from the interface as long as the generated strings for any example are being
displayed (cf. Section 10.3). In order to save the information for multiple languages, individual save examples should be
carried out following generation in the desired languages. The information saved in an example is extensive and it is
probably desirable to break this down into as small a packets as possible. Hence single example records do not accumulate
any more than the basic results of generation in multiple languages.

next

up

previous

contents

index

Next: The example operations Up: Resource Verification: Example Sets Previous: Resource Verification: Example Sets

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node265.html (3 von 3) [11.12.2004 21:45:58]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The example operations

next

up

previous

contents

index

Next: Load Examples Up: Resource Verification: Example Sets Previous: Example sets and test

The example operations
This section describes all of the operations that may be performed on examples. This includes both the
commands available under the DEVELOPMENT:<Example Operations> command and those commands
that are reached by clicking on mouse-sensitive example names in any of the KPML windows.

● Load Examples
● Write Examples
● Clear Examples
● Generate from example SPL
● Graph example structure

❍ Display generated string
● Show examples with features
● Copy examples with new names
● Delete some examples
● Example runner

❍ Starting the example runner
❍ Levels of detail while example running
❍ Low detail example running
❍ Medium detail example running
❍ High detail example running

● Features used in examples survey

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node266.html [11.12.2004 21:46:05]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Load Examples

next

up

previous

contents

index

Next: Write Examples Up: The example operations Previous: The example operations

Load Examples

Whereas the standard behaviour for loading described in Section 5.7 loads by default all example set
definitions for a language variety, it is also possible to be more selective about which sets of examples
are loaded into the KPML environment.

The command <Example Operations: Load Examples> brings up a menu of the example sets
available for a selected language variety. Selecting from this menu loads the selected set only. This
permits particular example sets to be worked with. The example sets offered in the Load Examples
menu consist of those files with extension .spl found in the appropriate language directory as set out
in Section 12.1.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node267.html [11.12.2004 21:46:09]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Write Examples

next

up

previous

contents

index

Next: Clear Examples Up: The example operations Previous: Load Examples

Write Examples

The command <Example Operations: Write Examples> writes out the currently loaded examples to
the appropriate directory of the selected language variety. The directory structure of the loaded
examples is preserved.

The amount of information in the examples written is limited to:

● the name of the example,
● the target form of the example,
● the logical form of the example.

This enables basic sets of example to be created.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node268.html [11.12.2004 21:46:13]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Clear Examples

next

up

previous

contents

index

Next: Generate from example SPL Up: The example operations Previous: Write Examples

Clear Examples

 The command <Example Operations: Clear Examples> clears all loaded examples--i.e., not just the
examples for the current language variety.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node269.html [11.12.2004 21:46:18]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generate from example SPL

next

up

previous

contents

index

Next: Graph example structure Up: The example operations Previous: Clear Examples

Generate from example SPL

The command <Example Operations: Generate from example SPL> brings up a menu of examples,
selection of one of which initiates generation by appeal to the semantic specification stored in that
example (rather than by user interaction or by rote from an example file). Generation is nevertheless
normally undertaken in `implemented' mode (Section 7.4.7), which means that inquiry
implementations, where they exist, are used to interrogate the environment (knowledge base, upper
model, etc.) rather than having a user intervene in the generation process or having inquiries take their
responses directly from the example record. The menu showing available examples can be
configured in various ways as described in Section 7.4.2.

As described in Section 7.4.2, generation of examples can also be started by the command
DEVELOPMENT:<Generate Sentence> .

In addition, clicking left on any mouseable example name, or selecting the first option in the right-
click menu from any mouseable example name, also invokes generation for the clicked upon example.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node270.html [11.12.2004 21:46:22]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph example structure

next

up

previous

contents

index

Next: Display generated string Up: The example operations Previous: Generate from example SPL

Graph example structure

 The command <Example Operations: Graph example structure> brings up a menu of examples as for <Generate
from example SPL> and DEVELOPMENT:<Generate Sentence> (Sections 10.2.4 and 7.4.2 respectively). Selecting an
example from this menu brings up a graph representing the generated structure associated with the selected
example. The structure graph for an example only exists, if

● the example has already been generated within the current session with KPML, or
● the example has been loaded from a suitably complete example set (cf. Section 10.2.9).

Note that although the graphed structure usually looks very similar to that graphed following generation by the
DEVELOPMENT:< Graph Structure> command (Section 7.9), the example structure is, of course, based on the example
record and not on the internal data structures manipulated during generation. This has two consequences:

1. the inspection possibilities are limited to the information preserved in the example record,
2. the graph reflects the mouseable sentence structure rather than the true grammatical structure--while these

are by default in KPML equivalent, they need not be as Section 14.5 describes. Figure 10.2 illustrates this by
showing several graphs of the same grammatical structure but with decreasing discrimination of
constituents. The top-right graph is the default, with all constituents and terminals mouse sensitive. The
bottom-right graph has, in contrast, no terminals mouse sensitive and only those constituents that are either
nominal groups or prepositional phrases. Thus only these constituents (nominal groups: the Subject ``the
news'', the Addressee ``him'', and the Minirange ``noon''; prepositional phrases: the Spacelocative ``at noon'')
have their functional labels shown in the graph. The top-left graph distinguishes only the nominal groups.
Finally, the bottom right has no mouseable grammatical units and reflects simply the sequence of strings
(including punctuation) representing the generated result.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node271.html (1 von 3) [11.12.2004 21:46:33]

Graph example structure

Figure: Reducing constituent discrimination in example structure graphs

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node271.html (2 von 3) [11.12.2004 21:46:33]

Graph example structure

The inspection possibilities for graphed example structures are reached by clicking left on any constituent shown in
the graph. The options are:

● Selection Expression
● Semantic Expression

Of note here is that the identification of selection expressions proceeds on the basis of the head semantic term
associated with a constituent--in most released resources this is the semantic entity associated with the pseudo-
grammatical function Onus during each systemic network traversal. Selection expressions will be shown for all
traversals of the systemic network that are concerned with the same semantic head. This means that selecting the
selection expression for a given constituent can result in several selection expressions being shown.

Example graph structures are displayed in black (rather than, when KPML is running in colour, the blue of the
generated structures graphs). Another difference, briefly noted above, is that since the example graphs reflect more
the structure of the final string rather than the actual grammatical structure, these graphs include any punctuation
that the string has been allocated.

● Display generated string

next

up

previous

contents

index

Next: Display generated string Up: The example operations Previous: Generate from example SPL

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node271.html (3 von 3) [11.12.2004 21:46:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Display generated string

next

up

previous

contents

index

Next: Show examples with features Up: Graph example structure Previous: Graph example structure

Display generated string

The command <Display generated string> is to be found on the right-click menu associated with any
mouseable example name. Invoking this command brings up in the Development window a printed
representation of the generated string associated with the clicked-upon example. This representation
obeys the general layout flags for generated strings present under the ROOT:< Flags> command. The
mouseable constituency of the string is always determined when the example is generated: this cannot
subsequently be changed without re-generating.

An important additional functionality of this command is to make the displayed string sensitive to the
current set of collected features (cf. Section 6.2.3.4). If there are some collected features, then any
constituents in the displayed generated string that contain these features in their selection expressions
will be highlighted.

A relatively complex example combining this functionality with several of the features offered by
KPML is shown in Figure 10.3. Here we see on the top left portion of the figure two overlapping
systemic resource graphs (cf. Section 6.2) leading from the RANK system (not shown in partly covered
graph) to the MINOR-PROCESS-TYPE system for the language variety Dutch. Here we have focused in on
just one feature, `portion process', removing all others from the graph with the graph pruning facility
(cf. Section 6.2.3.5).

Assume that we are interested in seeing how this grammatical feature is in fact realized in sentences--
what role does it play?

To begin to get a sense of its use, we collect the feature by right-clicking and selecting the collect
feature option (cf. Section 6.2.3.4). We can then ask, by means of the command <Show examples with
collected features> in the grapher menu, which of the loaded examples use this feature. The result of
this operation is shown in the Inspector pane bottom left. Right-clicking on any of the example names
shown there and selecting the `display generated string' option produces the corresponding string in
the Development window on the right of the figure. A selection of the examples have been printed in
this way. The constituents of the example sentences using the collected feature are highlighted (in
colour on color screens; on monochrome screens they show up as a shade of grey). Thus we can
immediately see that the feature `portion process' occurs in phrases such as the following: ``van een
eigen huis'', ``van Mannesmann AG'', ``van de eeuw'', etc.--probably already giving a general
impression of the role of this grammatical feature.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node272.html (1 von 3) [11.12.2004 21:46:44]

Display generated string

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node272.html (2 von 3) [11.12.2004 21:46:44]

Display generated string

Figure: Using collected features and example string displays

next

up

previous

contents

index

Next: Show examples with features Up: Graph example structure Previous: Graph example structure

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node272.html (3 von 3) [11.12.2004 21:46:44]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show examples with features

next

up

previous

contents

index

Next: Copy examples with new Up: The example operations Previous: Display generated string

Show examples with features

The command DEVELOPMENT:<Example Operations: Show examples with features> is equivalent to
the commands available directly from the resource grapher window GRAPH:<Show example with
collected features> (Section 6.2.1.3) and from the Inspector window INSPECTOR:<Examples using
features> .

Any invocation of the command produces in the Inspector window a list of example names where the
features currently collected (see Section 6.2.3.4) occur in some network traversals responsible for
generating the examples is produced. The list is mouse sensitive thus allowing the further mouse-click
commands for examples:

● `Say example' for generating the example (Section 10.2.4),
● `Rename example' for copying the contents of the example to a new example record with a

different name (Section 10.2.7), gif

● `Graph structure' for graphing the associated structure (Section 10.2.5), and
● `Display string' for displaying the associated generated string (Section 10.2.5.1).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node273.html [11.12.2004 21:47:01]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Copy examples with new names

next

up

previous

contents

index

Next: Delete some examples Up: The example operations Previous: Show examples with features

Copy examples with new names

The command DEVELOPMENT:<Example Operations: Copy examples with new names> makes a copy
of a set of specified examples and prompts for new names for these copies. Subsequently the new
names will also appear on the list of examples offered to the user for selection for generation or
inspection.

This command may be used for saving a working version of an example, and then changing either the
example or the resources in order to be able to compare the effects of the change side-by-side with the
situation before the change (since if the original example contains generation process information
such as the selection expressions, this information will naturally have been preserved).

Since this feature can be very useful in checking successive alterations to a set of resources, the flag
DEVELOPMENT:< Generation Modes> `Automatically create new examples' provides this as the standard
behaviour whenever an example is generated. Thus setting this mode and issuing
DEVELOPMENT:<Generate Sentence> for the example Behrens4, for example, first causes the
example record labelled Behrens4 to be copied to a new example (named: Behrens4[hh-mm-
ss], where the extension denotes the time of creation of the new example), and then initiates
generation on the new example not on the old. This means that the original example record is
preserved untouched and can be inspected and compared with the new.

Issuing a DEVELOPMENT:<Generate Again> command in this mode will have precisely the same effect:
i.e., the previous example generated is first copied, and the new example record is then used for
generation. Invoking generation by mouse-clicking appropriately on an example name is also effected
in the same way.

With this mode in force, no example record is ever changed: all invocations of generation always
produce a new example record and work with this. Different versions of examples are therefore
maintained simultaneously. Subsequently, versions that are to be kept can be renamed and unwanted
versions can be deleted.

next

up

previous

contents

index

Next: Delete some examples Up: The example operations Previous: Show examples with features

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node274.html (1 von 2) [11.12.2004 21:47:34]

Copy examples with new names

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node274.html (2 von 2) [11.12.2004 21:47:34]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Delete some examples

next

up

previous

contents

index

Next: Example runner Up: The example operations Previous: Copy examples with new

Delete some examples

The command <Example Operations: Delete some examples> brings up a menu of examples as for
<Generate from example SPL> and DEVELOPMENT:<Generate Sentence> (Sections 10.2.4 and 7.4.2
respectively). Any number of examples may be selected from this menu. The selected examples are
then deleted--i.e., removed from the example list. They are then no longer accessible in any way.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node275.html [11.12.2004 21:47:41]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Example runner

next

up

previous

contents

index

Next: Starting the example runner Up: The example operations Previous: Delete some examples

Example runner

● Starting the example runner
● Levels of detail while example running
● Low detail example running
● Medium detail example running
● High detail example running

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node276.html [11.12.2004 21:47:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Starting the example runner

next

up

previous

contents

index

Next: Levels of detail while Up: Example runner Previous: Example runner

Starting the example runner

An exercise set can be run in its entirety to test the loaded and active linguistic resources. This may be
initiated by selecting the command DEVELOPMENT:<Example Operations: Example runner> . Example
running is a batch operation: no interaction is expected with the user when generation is proceeding in
this mode. Progress during example running is reported in the originating Lisp listener from which
KPML was started--not in one of the KPML windows. Any errors that arise that would necessitate user
interaction (such as anwering an inquiry, deciding on a feature selection, etc.) are trapped and result in

the generation of the effected examples `failing'. gif Following example running, any examples that
failed are listed.

The results of an example run are typically written to a file. The name of the file created consists of
eg-runner- and the date and time. The directory of this file can be changed by using the the ROOT:
<Environment Directories> command (Section 5.4.1); initially the default directory is /tmp.

The example runner can run both over semantic specifications in the form of SPL examples and over
records of the inquiry responses obtained. If the linguistic resources loaded are adequate for the
examples, this operation should run all the way through without any warnings being issued. Any
warnings that do occur appear in the example running file as comments.

Note: since it is not possible to further interact with KPML during the execution of the example
runner, all flags required should be set appropriately beforehand.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node277.html [11.12.2004 21:47:53]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Levels of detail while example running

next

up

previous

contents

index

Next: Low detail example running Up: Example runner Previous: Starting the example runner

Levels of detail while example running

Four different levels of detail are provided for the output produced during example running. The level
of detail desired may be set by the corresponding flag in the ROOT:<Flags> menu.

The levels differ in the quantity and form of the information written to the example runner file. They
can be described briefly thus:

● :low - minimal detail (the default): this shows only the example name and the strings
generated.

● :medium - this shows the logical specifications used and strings generated from these.
● :high - this shows all of the information for low and medium detail and the textual structure

display of the structure generated. If the `Update environment record' option is activated
(Section 10.1 and Figure 7.3), the selection expressions of the generated examplesare also
shown.

● :complete - this mode causes complete example definitions (as described in Section 12.2.9)
to be written to the example running file. These definitions contain all of the information
associated with an example record. This mode can therefore be used to create sets of prestored
example sets suitable for supporting on-line documentation and the availability of string,
structure, and selection expression information for all examples loaded.

The :complete mode turns off all warnings and forces the values produced by inquiries to
be accepted without question. This option should only, therefore, be used when the example
records to be written have been debugged sufficiently to serve as a proper example set.

All of the created files can be read as Lisp files for further automatic processing: although only the
files under the :complete detail mode setting are explicitly intended for this. Indeed, the
:complete example running files are usually so long that they would normally only be used in this
way.

Corresponding extracts from an example runner execution for the first three levels of detail are shown
in the following subsections. Regular use of the example runner is recommended for ensuring that a

set of linguistic resources under development remains consistent as the resources grow. gif

next

up

previous

contents

index

Next: Low detail example running Up: Example runner Previous: Starting the example runner

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node278.html (1 von 2) [11.12.2004 21:47:59]

Levels of detail while example running

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node278.html (2 von 2) [11.12.2004 21:47:59]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Low detail example running

next

up

previous

contents

index

Next: Medium detail example running Up: Example runner Previous: Levels of detail while

Low detail example running

The following is an extract from the beginning of the example runner file created under the :low
detail setting. The sentences are for illustration purposes only and do not represent actual resources.

The general form of the low detail output file is therefore:

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node279.html [11.12.2004 21:48:09]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Medium detail example running

next

up

previous

contents

index

Next: High detail example running Up: Example runner Previous: Low detail example running

Medium detail example running

The following is an extract from the beginning of the example runner file created under the :medium detail setting. The sentences are as for the :low
detail example.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node280.html (1 von 3) [11.12.2004 21:48:20]

Medium detail example running

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node280.html (2 von 3) [11.12.2004 21:48:20]

Medium detail example running

The general form of the medium detail output file is therefore:

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node280.html (3 von 3) [11.12.2004 21:48:20]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

High detail example running

next

up

previous

contents

index

Next: Features used in examples Up: Example runner Previous: Medium detail example running

High detail example running

The following is an extract from the beginning of the example runner file created under the :high detail setting. Only the first example of those
shown for :low and :medium detail is shown.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node281.html (1 von 4) [11.12.2004 21:48:33]

High detail example running

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node281.html (2 von 4) [11.12.2004 21:48:33]

High detail example running

... etc.

The general form of the high detail output file is therefore: gif

Note that, since the information here is produced from the associated example records, the amount of detail given for the function structures obeys the
specifications for mouseable structures as illustrated in Figure 10.2 and described in Section 14.5.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node281.html (3 von 4) [11.12.2004 21:48:33]

High detail example running

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node281.html (4 von 4) [11.12.2004 21:48:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Features used in examples survey

next

up

previous

contents

index

Next: Operations on example strings Up: The example operations Previous: High detail example
running

Features used in examples survey

The command DEVELOPMENT:<Example Operations: Features used in examples survey> displays in
the Development window a list of all the systemic network features that are selected in the selection
expressions to be found in the currently loaded set of example records, and a list of all systemic
network features that are not selected. This command could be used, for example, to check
completeness of an exercise set that is intended to cover all features that a linguistic resource defines.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node282.html [11.12.2004 21:48:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Operations on example strings and textually displayed structures

next

up

previous

contents

index

Next: Operations on displayed strings Up: Resource Verification: Example Sets Previous: Features
used in examples

Operations on example strings and
textually displayed structures

Usually, all of the strings that are generated within the window interface and appear in the Interaction
Results pane of the Development window, as well as their grammatical structure display versions (cf.
Section 7.4.2), are mouse sensitive and can be used as the starting points for inspecting various
aspects of the generation process.

As noted in Chapter 7 and above, this mouse sensitivity operates not via the internal data structures
used during generation, but via the stored example records that are maintained by the KPML system
whenever the flag DEVELOPMENT:<Generation Modes> `Update environment record fields' is set
(Section 10.1). Since not all information is stored, this restricts somewhat the information that can be
retrieved (when compared with the options under the DEVELOPMENT:< Graph Structure> (Section 7.9)
command for example, where the internal generation data structures are used). It also, however,
makes available a more representative selection of possible information, since all loaded examples are
always available for inspection and comparison. As illustrated in Section 10.2.5, the `mouseability'--
i.e., which components are mouse sensitive--of the resulting generated strings can be further fine-
tuned by the user as set out in Section 14.5.

The following subsections describe the commands that may be invoked directly from the mouse
sensitive constituents in a displayed string or in the textually displayed grammatical structure.

● Operations on displayed strings
❍ Show corresponding fundle
❍ Graph corresponding constituent and below
❍ Inspect selection expression
❍ Inspect corresponding semantic term
❍ Partial re-generation

● Operations on displayed structures
❍ Graph this constituent and below

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node283.html (1 von 2) [11.12.2004 21:48:47]

Operations on example strings and textually displayed structures

❍ Show selection expression
❍ Show corresponding semantic term
❍ Generate again up to but not including this constituent

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node283.html (2 von 2) [11.12.2004 21:48:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Operations on displayed strings

next

up

previous

contents

index

Next: Show corresponding fundle Up: Operations on example strings Previous: Operations on
example strings

Operations on displayed strings

The menu of commands for operations on the strings displayed in the Development window are
reached by mouse-clicking right on a highlighted constituent. Constituency is made more visible by
ensuring that the flag ROOT:<Flags> `Show constituency display in generated strings' is set. Moving
the mouse over the string will in any case quickly show the constituents which are mouse-sensitive.
The default KPML behaviour when newly installed is that all constituents and terminals are mouse
sensitive.

The string-mousing commands are as follows.

● Show corresponding fundle
● Graph corresponding constituent and below
● Inspect selection expression
● Inspect corresponding semantic term
● Partial re-generation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node284.html [11.12.2004 21:48:52]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show corresponding fundle

next

up

previous

contents

index

Next: Graph corresponding constituent and Up: Operations on displayed strings Previous:
Operations on displayed strings

Show corresponding fundle

This command displays in the Development window the full functional label (the `function bundle')
(e.g., TOPICAL#10/MEDIUM#10/SUBJECT#10) of the clicked upon constituent. The number
following each functional description is the `traversal cycle number' that is also shown in structure
graphs.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node285.html [11.12.2004 21:48:57]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph corresponding constituent and below

next

up

previous

contents

index

Next: Inspect selection expression Up: Operations on displayed strings Previous: Show
corresponding fundle

Graph corresponding constituent and below

This command brings up a example structure graph as described in Section 10.2.5 but only for the
substructure of the clicked upon constituent. This is, of course, particularly useful for focusing in
during debugging or maintenance on some part of a complex sentence.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node286.html [11.12.2004 21:49:07]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspect selection expression

next

up

previous

contents

index

Next: Inspect corresponding semantic term Up: Operations on displayed strings Previous: Graph
corresponding constituent and

Inspect selection expression

This command shows the selection expressions for all grammatical units sharing the same head
semantic term (or `onus') as the clicked upon constituent. The selection expressions are shown
according to the mode set in the ROOT:<Flags> menu.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node287.html [11.12.2004 21:49:13]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inspect corresponding semantic term

next

up

previous

contents

index

Next: Partial re-generation Up: Operations on displayed strings Previous: Inspect selection
expression

Inspect corresponding semantic term

 This command shows in the Inspector window the semantic term (typically an SPL expression) that
provides the semantics for the clicked upon constituent.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node288.html [11.12.2004 21:49:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Partial re-generation

next

up

previous

contents

index

Next: Operations on displayed structures Up: Operations on displayed strings Previous: Inspect
corresponding semantic term

Partial re-generation

The right-click menu command <...: Generate up to but not including a constituent with this number>
invokes generation for the selected example and suspends the generation process when a traversal
cycle is about to be started with a traversal cycle number equal to that of the clicked upon constituent.
This provides a speedy way of skipping over generation until a problematic or interesting constituent
is reached. When generation is suspended, the DEVELOPMENT:< Generation Modes> menu
(Section 7.5.1) is brought up with the flag `Realize Selectively' automatically set. Any additional flags
required can be set at this point. Then, on exiting the generation modes menu and as long as the
realize selectively option was not deactivated, the user is asked whether the paused upon constituent is
to be realized or not. At this point, further information can be obtained from the structure graph or the
inspection options.

If the string clicked upon represents the last example generated, then this command is equivalent to
requesting that generation be restarted but should stop just prior to generation of the clicked upon
constituent.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node289.html [11.12.2004 21:49:28]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Operations on displayed structures

next

up

previous

contents

index

Next: Graph this constituent and Up: Operations on example strings Previous: Partial re-generation

Operations on displayed structures

The menu of commands for operations on textually displayed grammatical structures displayed in the
Development window are reached by mouse-clicking left on a highlighted constituent. Grammatical
structurees are shown following generation when the appropriate flag in the ROOT:<Flags> menu is
set. Moving the mouse over the structure will in any case quickly show the constituents which are
mouse-sensitive. The default KPML behaviour when newly installed is that all constituents and
terminals are mouse sensitive.

These commands form a subset of those for string-mousing. Since the structure display already shows
the functional label of a constituent, this option is not present. The structure-mousing commands are
therefore as follows.

● Graph this constituent and below
● Show selection expression
● Show corresponding semantic term
● Generate again up to but not including this constituent

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node290.html [11.12.2004 21:49:44]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Graph this constituent and below

next

up

previous

contents

index

Next: Show selection expression Up: Operations on displayed structures Previous: Operations on
displayed structures

Graph this constituent and below

This command brings up a example structure graph as described in Section 10.2.5 but only for the
substructure of the clicked upon constituent. This is, of course, particularly useful for focusing in
during debugging or maintenance on some part of a complex sentence.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node291.html [11.12.2004 21:50:14]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show selection expression

next

up

previous

contents

index

Next: Show corresponding semantic term Up: Operations on displayed structures Previous: Graph
this constituent and

Show selection expression

This command shows the selection expressions for all grammatical units sharing the same head
semantic term (or `onus') as the clicked upon constituent. The selection expressions are shown
according to the mode set in the ROOT:<Flags> menu.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node292.html [11.12.2004 21:50:19]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Show corresponding semantic term

next

up

previous

contents

index

Next: Generate again up to Up: Operations on displayed structures Previous: Show selection
expression

Show corresponding semantic term

This command shows in the Inspector window the semantic term (typically an SPL expression) that
provides the semantics for the clicked upon constituent.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node293.html [11.12.2004 21:50:24]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generate again up to but not including this constituent

next

up

previous

contents

index

Next: Full summary of linguistic Up: Operations on displayed structures Previous: Show
corresponding semantic term

Generate again up to but not including this constituent

This command performs the same operation as the equivalent command for string-mousing
(Section 10.3.1.5): that is, generation is restarted and is suspended when a constituent with a traversal
cycle number equal to the clicked upon constituent is reached.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node294.html [11.12.2004 21:50:28]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Full summary of linguistic resource information chains

next

up

previous

contents

index

Next: Maintenance: Resource Patching Up: Resource Verification: Example Sets Previous: Generate again up to

Full summary of linguistic resource information chains

We can now extend the view of information chains given in Chapter 6 to include the possibilities offered by examples sets discussed in this
chapter. Figure 10.4 extends the diagram of Figure 6.12 accordingly.

Figure: Information chain possibilities: potential and realizations

As Figure 10.4 shows, there are two distinct kinds of linguistic object which are maintained by KPML: objects that represent the linguistic
potential--i.e., the linguistic resource definitions themselves, and objects that represent the result of using that potential--i.e., the realizations,
or linguistic structures, that are produced (grammatical structures) or consumed (semantic structures) during generation. The possibilities for
inspecting resources were described in Chapter 6; the information concerning realizations extends these possibilities considerably. Most
information concerning realizations is stored as part of example sets: as emphasized above, information here is only available if example sets
have been created during the generation or if pre-loaded (cf. Section 10.1).

Once stored or loaded, it is possible from any example to retrieve its associated grammatical structures, selection expressions (i.e., traversals
through the systemic network), generated strings, and original semantic specification. These then can form the starting points for further
resource exploration as Figure 10.4 indicates.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node295.html (1 von 2) [11.12.2004 21:50:39]

Full summary of linguistic resource information chains

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node295.html (2 von 2) [11.12.2004 21:50:39]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Maintenance: Resource Patching

next

up

previous

contents

index

Next: Introduction Up: No Title Previous: Full summary of linguistic

Maintenance: Resource Patching

● Introduction
● Patching and loading linguistic resources
● Patching and saving linguistic resources
● Some further consequences of using the patching facility
● Modifying linguistic resources
● Example record versioning
● Acquiring lexical items

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node296.html [11.12.2004 21:50:49]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next

up

previous

contents

index

Next: Patching and loading linguistic Up: Maintenance: Resource Patching Previous: Maintenance:
Resource Patching

Introduction
 When working with KPML for the construction and development of linguistic resources for
generation, it is usually the case that sets of resources will be successively modified and tested. To
support this process, KPML provides for linguistic resource patches. This facility allows changes to be
isolated from a stable background set of resource definitions. Once the changes have been sufficiently
tested, it is then possible to incorporate them in the main body of definitions.

Since the use of the patching facility has several repercussions for the behaviour of the system, the
default situation is that patch usage is not activated. The use of patching and these repercussions is
described in the following subsections: first the consequences for loading linguistic resources are
described, then the consequences for saving linguistic resources, and finally some general
consequences of working with the patching facility are listed. When the patching facility is not
activated, loading and saving behavior is as defined in the sections above and any patches specified in
the linguistic resources are not loaded. This is the default system behavior.

In order to activate the patching facility, one simply needs to add the pseudo linguistic `object'
resource-patches to the focused linguistic object list. This is done with the normal KPML
command <Focusing Operations> in the root window (Section 5.6).

For the present, the selective patching facility is limited to definitions of systems, choosers, and
inquiries since these are the objects that primarily define linguistic resources. Versioning of examples
is, however, also provided.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node297.html [11.12.2004 21:51:01]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Patching and loading linguistic resources

next

up

previous

contents

index

Next: Patching and saving linguistic Up: Maintenance: Resource Patching Previous: Introduction

Patching and loading linguistic
resources

When :resource-patches is on the list of focused linguistic objects, loading linguistic resources
with the command <Load linguistic resources> will in addition to the behaviour described for that
command in Section 5.7 also load any patches defined for the linguistic resource being loaded. Such
patches must be placed in subdirectories of the main directory for the language variety being patched
and have names ending with the string Patches. The internal structure of these patch subdirectories
is an exact mirror of the resource directory itself.

If there are several Patch directories available, the system will ask the user which is to be loaded. If
there is only one, this will be loaded without user intervention.

For example, if a set of resources named `french' is to be patched with respect to systems and
choosers of the region MOOD, then the directory structure should be as follows. (See Chapter 12 for the
general directory structure.)

All components of the main directory (i.e., the directory FRENCH in the current example) may be
patched in this way. The patches should have the same multilinguality properties--either monolingual
or multilingual--as those of the definitions being patched.

As is usually the case, the set of object types to be loaded is defined by the list of objects on the
focused linguistic object list (see Section 5.6). Thus, if systems only are focused and patching is
activated, issuing a <Load linguistic resources> command will only load systems: first the main
definitions and then any patches concerned with systems.

If no linguistic objects are specified as focused apart from resource-patches, then all objects
will be loaded in the normal fashion, followed by patches.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node298.html (1 von 3) [11.12.2004 21:51:11]

Patching and loading linguistic resources

Region focusing (Section 5.6.3) may be used to further restrict patch loading if required.

Once a set of linguistic resources has been loaded then, as long as resource patching is activated, all
system, chooser and inquiry definitions that are loaded--regardless of whether via an explicit load
instruction from Lisp, an evaluation in an Emacs-buffer, etc.--are marked as patches with respect to
the original language definitions for their corresponding language varieties. This means that it is
possible to make arbitrary changes to a set of resources, and then (see next section) to save these
changes without affecting the original language definitions. The only definitions that are immune to
this are main linguistic resource definitions (i.e., those not in Patch-directories) that are loaded with
the KPML <Load linguistic resources> command. Any patches loaded in this way remain, of course,
marked as patches.

One way of creating the patches for French MOOD referred to above is then as follows:

1. load the original French resources (which would not yet have had any patches defined),
2. ensure that the patching facility is activated,
3. edit the required definitions of the MOOD systems and choosers,
4. evaluate/load the changed definitions,
5. save the French resources.

This would create the two files that appear in the Patches directory above and the necessary additional
directory structure without changing any of the original definitions.

Care should be exercised when loading/evaluating definitions in order that the desired loading
behavior is enforced. For example, unless merging is activated (Section 5.7.2.2) any definition loaded
will replace all definitions of the same named object for other languages. If this is not required, then
merging mode must be explicitly selected and the language restriction for the object to be loaded must
be set as appropriate. For example, if resources for English, German and French are loaded and it is
only required to patch the definition of the chooser ADVERBIAL-TYPE-CHOOSER for German, leaving
definitions (if they exist) for English and French untouched, then a chooser definition beginning:

should be evaluated with merging (i.e., not overwriting) mode set. If the :german restriction is not
present, then the definition will be taken as holding for all known languages; if merging mode is not
present, then overwriting mode will force all other objects of the same name to be deleted when this
one is loaded.

 If the user knows that patches are going to be made for a single language, then it is possible to set up
a context in which all definitions will automaticallly be restricted to a given language without needing
to explicitly add a language restriction. This is enforced by the command ROOT:<Set Default

Language> . gif It is then possible to evaluate definitions without the explicit language restriction

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node298.html (2 von 3) [11.12.2004 21:51:11]

Patching and loading linguistic resources

and still to obtain the behavior described above where only the definitions of a single language are
patched.

This is clearly more convenient if, for example, a resource definition file has been loaded into an
Emacs buffer, and a definition has been edited and then evaluated. Typically definitions in a file do
not have individual language conditionalizations, and would therefore, without the <Set Default
Language> command, be interpreted incorrectly when evaluated.

next

up

previous

contents

index

Next: Patching and saving linguistic Up: Maintenance: Resource Patching Previous: Introduction

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node298.html (3 von 3) [11.12.2004 21:51:11]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Patching and saving linguistic resources

next

up

previous

contents

index

Next: Some further consequences of Up: Maintenance: Resource Patching Previous: Patching and
loading linguistic

Patching and saving linguistic
resources

When :resource-patches is present on the list of focused linguistic objects, saving behavior
initiated by the command ROOT:<Store linguistic resources> is affected as follows. First it is assumed
that the user is working using patches rather than with any direct alterations to source linguistic
resource definition files, and so only linguistic objects marked as belonging to patches are to be saved.
This will then be noted explicitly in the save dialog box that is brought up. If this is not intended, then
it is possible at this point to override this. As with loading, the types of linguistic object saved can be
further restricted by setting the list of focused objects; if only resource-patches is set, however,
then all patched systems, choosers, and inquiries are saved in an appropriate patch subdirectory.
Whenever resource-patches is set, no changes are ever made to any non-patch linguistic
resource definitions.

Whenever patches are saved, new versions of the default ordering and punctuation files are also
written out within the patch directory (unless, of course, there is an object focusing restriction
excluding them).

A save linguistic resources command that involves writing patches will create a patch directory of the
form yyddmm-hhmmss-Patches indicating the time of creation.

If a save linguistic resources is used to create a new language variety, then this new resource will be
created with any patches present already folded into the main definitions. If it is required to create a
new set of resources for a language inheriting both the definitions and the patch structure from some
other language, then the patches need to be saved explicitly.

If a save linguistic resources is used when region focusing is present, then only those regions focused
will be saved as patches.

Note that the patch saving facility is generous in the directory structures that it creates. The patches
subdirectory will be a full mirror of the originating resource directory even if there are no patches
present at that time to fill it. That is, even if there are no files present containing patch-specific lexicon
entries, there will still be a Lexicon subdirectory created automatically within the patches directory.
The user can delete these if required; they are not crucial to the operation of the patching facility.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node299.html (1 von 2) [11.12.2004 21:51:16]

Patching and saving linguistic resources

next

up

previous

contents

index

Next: Some further consequences of Up: Maintenance: Resource Patching Previous: Patching and
loading linguistic

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node299.html (2 von 2) [11.12.2004 21:51:16]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Some further consequences of using the patching facility

next

up

previous

contents

index

Next: Modifying linguistic resources Up: Maintenance: Resource Patching Previous: Patching and saving
linguistic

Some further consequences of using the
patching facility
When the patching facility has been activated, systems, choosers and inquiries may have one of two statuses:
either patched or non-patched. It may sometimes be useful to know whether a linguistic object that is being
examined during resource development and testing belongs to the original resource definitions or to a patch.
To aid this, resources that are defined in patches are displayed in italics when inspected in the KPML inspection
window. This allows them to be readily identified as patches. Note that once an object has been patched, it is
not possible to examine the pre-patch version.

It is, of course, possible that a linguistic object of a given name is only patched for some subset of the
languages for which it is defined. For example, the screendump of Figure 11.1 shows various views on the
system (which were produced by printing the system named COMPARATIVE-PROCESS-TYPE; these views were
produced by giving the command in the interactor pane in contrastive display mode: cf. Section 6.3.3.2. The
resulting display shows that this system has only been patched in its German version--the other variants are as
given in the main source definitions and so are not marked as patched.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node300.html (1 von 2) [11.12.2004 21:51:26]

Some further consequences of using the patching facility

Figure: Selective patching according to language

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node300.html (2 von 2) [11.12.2004 21:51:26]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Modifying linguistic resources

next

up

previous

contents

index

Next: Example record versioning Up: Maintenance: Resource Patching Previous: Some further
consequences of

Modifying linguistic resources

KPML provides direct interaction with GNU Emacs (or GNU Mule: see Section 12.2.2.3) to support
the editing or modification of loaded linguistic resources. This is only supported when KPML is started

as a subprocess of Emacs/Mule. gif All the basic linguistic objects (systems, choosers, inquiries,
lexical items, and examples) presented in a KPML window have an option < Edit...> in their right-click
mouse menus. Selecting this option brings up an editor buffer in the originating Emacs/Mule
containing just the definition of the clicked upon linguistic object. The presentation form of the
linguistic object as it appears in the editor buffer is controlled by the multilingual flags as described
and illustrated in Section 6.3.3. The object brought up in the editor buffer may then be freely edited.

The originating KPML window waits for control to return from Emacs/Mule. Return may be made in
two ways:

● the changes made in the editor buffer may be accepted by giving an Emacs command: cntrl-C
cntrl-C. The modified definition is then made part of the currently loaded resource definitions.
If the patch mode is activated (which it probably should be when editing resources in this
fashion), then the modified linguistic object is appropriately marked as a patch.

● the changes (if any) made in the editor buffer may be discarded by giving an Emacs command:
cntrl-C cntrl-Z. Control is returned to KPML but there is no effect on loaded resources.

Note that the usual considerations with evaluating linguistic resource definitions apply: if these
definitions do not themselves explicitly contain appropriate language conditionalizations, then such
conditionalization should be indicated with the ROOT: < Set Default Language> command (cf.
Section 11.2).

One exception to the above is for inquiry implementations: it is also possible to issue <Edit Inquiry
Implementation> commands. Such a command loads the appropriate Lisp file containing the
definition of the clicked upon inquiry implementation (typically a file
inquiry-implementations.lisp or inquiry-increment.lisp: cf. Section 12.1) and
positions the editor cursor at the required Lisp definition. If no such inquiry implementation is known
to the Lisp process, then a new editor buffer is started with a skeleton definition of an appropriate
inquiry implementation in place for editing. The user should write this definition to a file (the Emacs
buffer proposes a default consisting of the date of creation and the inquiry name) and then evaluate as

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node301.html (1 von 2) [11.12.2004 21:51:34]

Modifying linguistic resources

normal (EMACS: <cntrl-C cntrl-S> under the Allegro Emacs protocol).

Editing commands can also be given directly from the Inspector window.

If KPML is started from Emacs, additional resource definitions can also be straightforwardly evaluated
in any other Emacs buffer, but it then remains the task of the user to find the appropriate files for
editing.

There is never any automatic updating of the originating resource files--this remains the responsibility
of the user. If the patching facility is activated, then it is possible, as described above, to write out just
those changes that have been made during a session to a patch directory. If patching has not been
activated, then writing out resources following a session where modifications have taken place will
create a new resource set incorporating the changes made. Note: care must be taken that this does
not prematurely destroy the existing resources!

The additional steps necessary for installing the Emacs/Mule interface are described in Section 3.2.

next

up

previous

contents

index

Next: Example record versioning Up: Maintenance: Resource Patching Previous: Some further
consequences of

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node301.html (2 von 2) [11.12.2004 21:51:34]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Example record versioning

next

up

previous

contents

index

Next: Acquiring lexical items Up: Maintenance: Resource Patching Previous: Modifying linguistic
resources

Example record versioning
 As described in Section 10.2.7, the flag DEVELOPMENT:<Generation Modes> `Automatically create
new examples' causes each new generation request to create a new version of the specified example
record. These distinct versions can either be deleted when no longer required, or saved in the normal
way. This facility therefore provides a basic versioning capability for example sets.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node302.html [11.12.2004 21:51:39]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Acquiring lexical items

next

up

previous

contents

index

Next: Resource Organization and Definition Up: Maintenance: Resource Patching Previous:
Example record versioning

Acquiring lexical items
The normal KPML generation behaviour when an unknown lexical item is requested follows that of the
Penman system. That is, a temporary lexical item whose spelling is the upper case variant of the
associated concept name is inserted.

Thus, with the following SPL input,

assuming that the concepts nondirected-action and person are defined (which they are in the
standardly released upper model), and that the proper name John is also defined (which it is not
usually), but the lexical item skip is not defined, then the following strings would be generated for
English: either

``John SKIP''

without morphology and

``John SKIPs''

with morphology. The capitalization is the indication that a required lexical item has not been found.

With KPML it is possible to activate an automatic lexical acquisition mode in which all required lexical
items that are not defined are created on the fly with a default set of lexical and morphological
features appropriate for the grammatical context in which they appear in their sentences of use. This
mode is activated by the flag ROOT:<Flags> `Acquire Lexical Items'. When set, the above SPL input
would not only produce ``John skips'' but also leave a new lexeme defined for English called skip
(i.e., the form given in the SPL specification).

This mode is most useful when a set of examples containing unknown lexical items is run through (by
using the example runner, for example). The lexical items newly acquired can then be written to a file
of lexeme definitions by means of the function
make-new-lexical-items-file. This allows new definitions to be straightforwardly added to
the linguistic resources for the concerned language variety; naturally it might then be necessary to
provide idiosyncratic or non-default morphological information for these new lexemes.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node303.html (1 von 2) [11.12.2004 21:51:45]

Acquiring lexical items

This function is used from a Lisp listener and has the details:

 [function]

next

up

previous

contents

index

Next: Resource Organization and Definition Up: Maintenance: Resource Patching Previous:
Example record versioning

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node303.html (2 von 2) [11.12.2004 21:51:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource Organization and Definition Formats

next

up

previous

contents

index

Next: Directory structure and contents Up: No Title Previous: Acquiring lexical items

Resource Organization and Definition
Formats

The KPML system assumes (and creates when the resource manipulation operations are used) a
particular organization of linguistic resources. Those resources are in turn represented in an extended
form of that defined by the Penman system. In general, KPML can interpret Penman-style resources,
although the reverse does not hold. This section describes in detail the KPML resource organization and
definition format.

● Directory structure and contents
● Resource definition formats

❍ Resource definition files
❍ General language property declarations

■ Morphology style declarations
■ Standard default environments
■ Language-font associations
■ Disabling systems

❍ Language variety range declarations
❍ Systems
❍ Realization Statements

■ Introduction
■ Basic realization constraints
■ User-defined realization operators
■ Morphological realization constraints

❍ Choosers
❍ Inquiries
❍ Lexicons
❍ Examples
❍ Punctuation
❍ Non-systemic system dependencies
❍ Default orderings

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node304.html (1 von 2) [11.12.2004 21:51:50]

Resource Organization and Definition Formats

❍ Domain concepts and links with the lexicon
❍ SPL macros and defaults

● Language variety conditionalization
● Requirements for resource definitions

❍ Special inquiries
❍ Special semantic concepts and relations

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node304.html (2 von 2) [11.12.2004 21:51:50]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Directory structure and contents

next

up

previous

contents

index

Next: Resource definition formats Up: Resource Organization and Definition Previous: Resource
Organization and Definition

Directory structure and contents

KPML maintains a global variable (*root-of-resources* in the user and kpml packages)
which defines one directory to be the root of linguistic resources. This variable is normally set up
during system configuration but can also be set from the window interface by using the <Environment
Directories> command (see Section 5.4.1). Each language variety or multilingual resource set for
which separate resource definitions are required then occupies a subdirectory to this root directory. A
typical initial form of the directory on initialization of the system would be:

 |-- GENERAL
 |
 |-- ENGLISH
 |
root-of-resources----- GERMAN
 |
 |-- DUTCH
 |
 |-- ML-BASELINE

The general file organization for linguistic resources maintained by KPML within any language variety
directory is illustrated in the following maximal example. The directory structure for multilingual
resources (i.e., a directory containing the combined definitions of several languages, such as ml-
baseline) is identical to this. Not all of the files need to be present in any given language variety
definition.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node305.html (1 von 4) [11.12.2004 21:51:58]

Directory structure and contents

For directories containing definitions of several language varieties there may be several sets of inquiry
implementations. For such cases it is also possible to use a subdirectory
Inquiry-implementations parallel to Grammar, etc. where the inquiry implementation files
can be kept. All files with extension .lisp found in the inquiry implementations subdirectory will be
loaded.

Each such directory contains either:

● the complete monolingual definition of the grammar and semantics for the language indicated
by its name, or

● the complete multilingual definition of a set of languages where the name is a label for the
resource set.

Such definitions consist of several distinct kinds of information. The linguistic resources proper are
held in the subdirectory Grammar in files with extensions .systems, .choosers, and
.inquiries. One distinction between systemic-functional resources as they are generally
maintained and supported in KPML and earlier versions of, for example, Penman, is that the resources
are divided into functional regions (see Section 2). Although always present in the Nigel grammar of
English, this information was not previously used for maintenance and modification. Now, all of the
multilingual development support tools and the graphical displays operate in terms of regions. Thus,
each linguistic resource file normally corresponds to the resources of a particular `functional region'.
This is not enforced in any way, but files created automatically by the Save Linguistic Resources
command (Section 5.9.1) will follow this principle.

Note that any standard KPML resource definitions released were in fact created in precisely this way.
The <Store Linguistic Resources> command was given successively for each of the languages

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node305.html (2 von 4) [11.12.2004 21:51:58]

Directory structure and contents

available, the individual monolingual definitions often being drawn from a pooled multilingual
resource.

The form of entries in each type of the linguistic resource files is given in the next subsection.

Note: in the case that resource files are not found, check that the path definition given in this file
is correct for the current directory configuration that is being used.

In addition to the linguistic resources proper, loading linguistic resources from one of the above
directories with the ROOT:<Load Linguistic Resources> command (Section 5.7) will also load the
following files or file types:

● a file properties.lisp: if such a file exists, it is assumed to hold general declarations
applying to the language variety or varieties as a whole (see Section 12.2.2).

● a file language-range.lisp: if such a file exists, it is assumed to hold a declaration of
the range of language varieties dealt with by its containing resource directory (see
Section 12.2.3).

● a file inquiry-implementations.lisp: if such a file exists, it is assumed to hold the
Lisp code that implements the inquiries defined by the linguistic resources (in the files with
extension .inquiries). Note: unless the merging mode is in force (Section 5.7.2.2), any
implementations currently loaded will be lost or replaced during this operation! If the
resources use standard inquiry implementations, then no such file should appear in the
language-specific directory.

● a file inquiry-increment.lisp that may contain additional inquiry implementations
over and above the standard ones. Placing inquiries here avoids the default removal of existing
inquiry implementations once a file inquiry-implementations.lisp has been found.
Any inquiry implementations placed in the inquiry implement should, however, by compatible
with other inquiry implementations--this should not be used as a way of patching existing
inquiries either since this may not be picked up when switching back to use other language
resources.

● all files in a subdirectory Lexicons with extensions .lexicon: used for adding language
specific lexical items. These files can also be loaded as a group separately from other resource
components by the appropriate linguistic object focusing (Section 5.6.1) or by the command
ROOT:< :Load lexicon> (see Section 12.2.8).

● in a subdirectory Domains, all files with extensions .loom: used for adding domain concepts
for particular examples.

● if it exists, all files in a directory Examples that have the extension .ex and .spl: used for
storing test suites for linguistic resources. These files can also be loaded separately by means
of the command <load-examples> (see Section 10.2.1).

The following files provide further language specific conditions or changes to the KPML system and are
not required (or recommended!) for general use.

● a file code-patches.lisp: used for defining additions that go beyond the current

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node305.html (3 von 4) [11.12.2004 21:51:58]

Directory structure and contents

language conditionalizations that KPML offers for its resources. This file is loaded when the
resources as a whole are loaded only when the relevant `linguistic object' focusing is activated.
(Section 5.6.1). The default action is that such files are not loaded.

Note: the injudicious use of any code-patches files in a set of resources makes that entire set
subject to their requirements. That is, if language variety X uses a code-patch, then all other
varieties should then be in a position either to work with the changes introduced or to undo the
effects of that code-patches (for example, via their own code-patches!). Using code-
patches thus potentially compromises the integrity of all resources defined. Changes that
apply to all language varieties are properly positioned as KPML (possibly user-specific) patches
(see Section 3.4) and not subordinate to particular language variety directories.

Any other files in the directory will be ignored (unless, of course, code-patches explicitly uses
them).

The result of performing the operation ROOT:<Load Linguistic Resources> is that a complete resource
set (monolingual or multilingual) is loaded as the current set of active linguistic resources. Generation
can then proceed for the language(s) defined by those resources.

next

up

previous

contents

index

Next: Resource definition formats Up: Resource Organization and Definition Previous: Resource
Organization and Definition

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node305.html (4 von 4) [11.12.2004 21:51:58]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource definition formats

next

up

previous

contents

index

Next: Resource definition files Up: Resource Organization and Definition Previous: Directory
structure and contents

Resource definition formats

● Resource definition files
● General language property declarations

❍ Morphology style declarations
❍ Standard default environments
❍ Language-font associations
❍ Disabling systems

● Language variety range declarations
● Systems
● Realization Statements

❍ Introduction
❍ Basic realization constraints
❍ User-defined realization operators
❍ Morphological realization constraints

● Choosers
● Inquiries
● Lexicons
● Examples
● Punctuation
● Non-systemic system dependencies
● Default orderings
● Domain concepts and links with the lexicon
● SPL macros and defaults

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node306.html [11.12.2004 21:52:06]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Resource definition files

next

up

previous

contents

index

Next: General language property declarations Up: Resource definition formats Previous: Resource
definition formats

Resource definition files

Each linguistic resource file is, for historical reasons, assumed to be in the Lisp package kpml. They
all begin, therefore, with the Lisp declaration (in-package "KPML"). Also, in addition to this, a
linguistic resource file may include as initial in-line commands:

● (in-region :name Region): which defines the resources following the command to
belong to the functional region named.

● (in-language :languages L): which defines the resources following to belong to the
language specified (L may also be a list of languages).

These commands may be combined as follows: (in-region :name Region :languages
L)

Resource files created by ROOT:<Store linguistic resources> will
have appropriate in-region and in-language commands inserted
automatically.

The scope of an in-region command in ended either by the end of file
or by a matching: (end-region)

This is also inserted automatically in files created by <Store
linguistic resources>.

The individual types of objects in the linguistic resources
supported by the development environment and their definition forms
are discussed in Sections 12.2.4-12.2.13.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node307.html [11.12.2004 21:52:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General language property declarations

next

up

previous

contents

index

Next: Morphology style declarations Up: Resource definition formats Previous: Resource definition
files

General language property declarations

It is possible to define general properties that the language variety or varieties maintained in a
directory should have as a whole: these are placed in the file properties.lisp. Currently three
kinds of information are maintained in this file:

● language morphology style declarations,
● standard inquiry default environment sequences to be used on starting generation with the

resource set,
● associations between particular languages and fonts,
● disabled systems

These are used as follows.

● Morphology style declarations
● Standard default environments
● Language-font associations
● Disabling systems

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node308.html [11.12.2004 21:52:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Morphology style declarations

next

up

previous

contents

index

Next: Standard default environments Up: General language property declarations Previous: General
language property declarations

Morphology style declarations

Various options are available for handling morphology. The most common ones are:

● Systemic morphology is adopted: that is, the resource definitions include systemic networks
that describe that various morphological patterns of a language variety and their realizations.

● Resource-external morphology is adopted: that is, the resource definitions assume that the
morphological features that they use will be interpreted by some non-systemic component of
KPML. One example of such a resource definition is the Nigel grammar of English, for which
the Penman system provided hardcoded English morphology. This hardcoded morphology is

inherited by KPML and so can be used if required. gif

● KPML-external morphology is adopted: that is, the the resource definitions assume that the
morphological features that they use will be interpreted by some component that is entirely
external to KPML. The German grammar variant used in the TechDoc project (Rösner & Stede),
for example, uses the MORPHIX component for German morphology (Finkler & Neumann)
rather than a KPML component. Such interfacing is straightforward, but requires redefinitions of
two internal KPML-functions.

The first two options are supported by the following declaration:

This defines the language variety LANGUAGE to either assume systemicized morphology (when TF is
true) or not (when TF is nil), and to use the function FN as the mapping from features used in the
systemic linguistic resources (i.e., in classify and inflectify realization statements: see Section 12.2.5)
to features that are found in the lexicon for the language (see Section 12.2.8). The latter is optional
and if not provided the resources are assumed to use the same features in lexicon and systemic

networks. gif If resources are created by inheritance, they also inherit the morphology requirements,
including the generator function.

For use of the latter option, interested users should contact the author.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node309.html (1 von 2) [11.12.2004 21:52:23]

Morphology style declarations

next

up

previous

contents

index

Next: Standard default environments Up: General language property declarations Previous: General
language property declarations

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node309.html (2 von 2) [11.12.2004 21:52:23]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Standard default environments

next

up

previous

contents

index

Next: Language-font associations Up: General language property declarations Previous: Morphology
style declarations

Standard default environments

As described in Section 7.4.4, it is possible to define sets of inquiry defaults that may be activated and
deactivated at will during generation. It is also common that a given language variety defines a
standard set of environments that simplify the semantic specifications that need to be given for that
variety (see also Section 12.2.14). For example, both the English and Dutch resources assume that the
following default environments hold.

● present-tense
● basic-assertion

These mean that any semantic specification that does not specify otherwise will receive inquiry
responses that are appropriate for constraining a simple positive assertion in present tense to be
generated. Importantly, if a semantic specification is given that lacks the necessary information, and
no defaults are present, generation will be suspended and the user or calling process will be asked to
provide this information.

Since the use of such defaults is commonplace for Penman-style linguistic resources, the following
form is provided for declaring a standard set of environments that will be activated whenever
generation is attempted with the language variety concerned. This ensures that switching into a
language variety does not lose the minimal sets of defaults necessary for simple generation.

The LIST-OF-DEFAULTS should be a list of defined default environment names. The definition for
English is, for example:

The definition forms for these default environments are described below in Section 12.2.14.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node310.html (1 von 2) [11.12.2004 21:52:27]

Standard default environments

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node310.html (2 von 2) [11.12.2004 21:52:27]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Language-font associations

next

up

previous

contents

index

Next: Disabling systems Up: General language property declarations Previous: Standard default environments

Language-font associations

It is possible to define particular associations between fonts and languages. This can be used to alter the appearance of generated texts in various
KPML windows. More significantly, it permits the use of languages with other writing systems than English. The mechanism described here provides
support for single-byte font encodings; the selected fonts must have been installed for the X-server being used in the normal way (see the system
administrator if necessary).

Font selections normally only have an effect for generated results pop-up windows (Section 7.10) and generated structure graphs (Section 7.9

and 10.2.5). gif Examples of these usages are shown in Figures 12.1 and 12.2. In Figure 12.1 contrastive generation has produced popup generation
windows for English and Greek; only the window for Greek is affected by the font change.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (1 von 8) [11.12.2004 21:52:45]

Language-font associations

Figure: Contrastive generation in English and Greek using font associations for Greek pop-up generated result windows

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (2 von 8) [11.12.2004 21:52:45]

Language-font associations

Figure: Generated structure graph using font associations for Greek

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (3 von 8) [11.12.2004 21:52:45]

Language-font associations

Language-font associations can be defined most simply with a declaration of the form:

This means that, whenever English generated results are produced, they will be shown using the X-font with the name identified under the :font
parameter. The font identifier is that used for the X-release font aliases.

The following slight variation on this allows differing selections of fonts for the inspector window and the generated string popups.

Note: it is in all cases the responsibility of the user to ensure that the requested fonts exist and are accessible to the KPML process! Setting a font
requirement without access causes a string of error messages concerning the unlocatable or unknown font.

If particular resources require non-standard fonts, this will be clearly documented in the individual resource descriptions. Information about where to
obtain the necessary fonts should also be given there.

 One further possibility for displaying generated strings with different writing systems is to pass the results of generation back to GNU Mule. gif
This can be triggered automatically by using the special font name :mule in a language font requirement declaration. GNU Mule must have been
installed previously and KPML started within a Lisp buffer within Mule as usually done within Emacs; as always, the user is responsible for ensuring
the appropriate software has been installed.

When Mule is specified for the generated string pop-up window font of a language, strings generated in that language will appear in a newly created
Mule editor buffer instead of in a Generated Result pop-up window from KPML. As an example of use, the following declaration defines the language
variety :Japanese to use Mule as its output medium. Note that it makes no sense (and is ignored) to specify :mule as the output font for the
inspector.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (4 von 8) [11.12.2004 21:52:45]

Language-font associations

Subsequently, generating examples with the pop-up generated string flag set causes the strings generated to appear in Mule editor buffers. This is
illustrated in Figure 12.3 where two generations of a single example are shown--one using lexical items defined using the Roman alphabet and one
using lexical items defined using Mule character codes for Japanese. Such results might be obtained by generating in contrastive generation mode,
for example.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (5 von 8) [11.12.2004 21:52:45]

Language-font associations

Figure: Use of Mule for extended character displays

Since the character codes for Mule are largely incompatible for those used within Common Lisp, it will not make sense to display generated strings
or structures using such lexical items within KPML-maintained windows, such as the Inspector or the structure graphers. However, since the
information displayed in the Mule editor buffer is also sensitive to the Flag options for displaying constitutent structure (Section 5.4.2), it is possible
to obtain a view of the grammatical structure of such strings. An example showing the grammatical structure displayed in a Mule buffer is shown in
Figure 12.4.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (6 von 8) [11.12.2004 21:52:45]

Language-font associations

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (7 von 8) [11.12.2004 21:52:45]

Language-font associations

Figure: Use of Mule for showing grammatical structures filled by Mule-compatible lexeme definitions

next

up

previous

contents

index

Next: Disabling systems Up: General language property declarations Previous: Standard default environments

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node311.html (8 von 8) [11.12.2004 21:52:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Disabling systems

next

up

previous

contents

index

Next: Language variety range declarations Up: General language property declarations Previous:
Language-font associations

Disabling systems

The only language specific customizations foreseen at present are differing `disable system'
declarations (cf. Section 7.5.2.4). These declarations have the following form:

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node312.html [11.12.2004 21:52:49]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Language variety range declarations

next

up

previous

contents

index

Next: Systems Up: Resource definition formats Previous: Disabling systems

Language variety range declarations

 Particularly for multilingual resource sets, it is important the KPML system knows which language
conditionalizations it must expect in the resource definitions. For this reason, a file language-
range.lisp will typically define the varieties dealt with by a given language directory.

The contents of the language range file is typically of the form:

 This ensures that KPML can interpret language conditionalizations involving the specified languages.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node313.html [11.12.2004 21:53:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Systems

next

up

previous

contents

index

Next: Realization Statements Up: Resource definition formats Previous: Language variety range declarations

Systems

A typical system is shown below; this is the system called APPARENT-REALITY which has two features that may be
selected - [real] and [apparent]. The first of these has no realization statements associated with it but the second
does; realization statements are described in Section 12.2.5 below. The entry conditions for the system are rather
complex; they are given as the logical formula under the :inputs slot. Only when this condition is true is the
choice represented by the system available to be made.

The meaning of the additional slots is as follows:

● chooser: gives the name of the chooser (see below) corresponding to this system,
● selector: gives the name of the function that chooses between grammatical features (only one such

function is provided by the system: the function kpml::choice-master; if the user wanted to provide
some other function, however, this is where it could be specified),

● region: the functional region to which this system belongs,
● metafunction: the metafunction to which the region belongs.

Definitions can be evaluated as ordinary Lisp forms once the development environment is loaded.

Note that if an individual grammatical system is redefined in any language, then it is necessary for the system to
reestablish the network connectivity for that language. KPML tries to recognize when this is necessary itself in
order to remove this from the actions the user has to perform. The operation is actually performed by invoking the

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node314.html (1 von 2) [11.12.2004 21:53:15]

Systems

Lisp function reset-system-network (Section 14).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node314.html (2 von 2) [11.12.2004 21:53:15]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Realization Statements

next

up

previous

contents

index

Next: Introduction Up: Resource definition formats Previous: Systems

Realization Statements

● Introduction
● Basic realization constraints
● User-defined realization operators
● Morphological realization constraints

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node315.html [11.12.2004 21:53:20]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Introduction

next

up

previous

contents

index

Next: Basic realization constraints Up: Realization Statements Previous: Realization Statements

Introduction

Grammatical systems are not directly concerned with specifying structural constituency but, rather,
with specifying the set of grammatical features that a structural product as a whole will instantiate.
Thus, the sets of grammatical features produced by making all the choices available in the grammar
respecting the interdependencies defined by the network are related to actual linearized syntactic
structures via realization statements. The process of making all the available choices that the grammar
presents is called traversing the grammar network. Sentences are therefore generated by a succession
of grammar network traversals, or passes through the grammar, one for each major constituent to be
produced (cf. Section 2.3.1).

Each traversal of the grammar produces then a collection of grammatical features and each
grammatical feature may have associated with it a set of realization statements. These realization
statements successively constrain the structure that the grammar is producing. The example system
APPARENT-REALITY above shows a number of realization statements that are performed upon selection
of the feature `apparent'.

Realization statements are defined in terms of functional operations upon grammatical functions. A
grammatical function describes the function which a particular constituent is performing in a pass
through the grammar. For instance, at the clause level a particular constituent might be functioning for
some language as the subject of the clause, so it will be partly defined in terms of a grammatical
function called `Subject'. Similarly, the realization statements associated with the feature `apparent'
shown above concern the grammatical functions: `Reality', `Realitydependent', and `ToReality'. Each
pass through the grammar is committed to the generation of a particular level of structure; in systemic
terms these levels of structure, corresponding to the major constituents of the product being generated,
are termed ranks (cf. Figure 2.2).

Thus, in systemic-functional grammar in general, grammatical structures are interpreted as
configurations of grammatical functions. That is, particular choices in the grammar will lead to
grammatical functions being present, will constrain them to occur together with certain other
functions in particular orders, and will further constrain their linguistic realization as constituents. For
example, one grammatical feature might constrain the function `Process' to be present, while another
might constrain the functions `Actor' and `Subject' to be `conflated', i.e., both of these functions will
become defining components of a single constituent analogous to unification in a grammar
implemented in such terms, while another constrains the `Subject' to be a Singular nominal group.
Traversing the grammar network therefore causes a list of functions to be accumulated, along with
information on how they are to be combined and ordered, and constraints on how they are in turn to
be realized by subsequent traversals of the grammar. The result is a grammatical unit such as a clause
or a phrase, completely specified at that rank, although awaiting subsequent grammar traversals to

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node316.html (1 von 2) [11.12.2004 21:53:26]

Introduction

provide the internal linguistic details of its constituents. Grammar traversals continue until
constituents have been constructed at a fine enough scale to be realized as words or morphemes rather
than as constituents requiring further grammatical organization. All of the structures shown in
Chapters 7 and 10 can be seen to be organized in these terms.

In summary, grammatical constituents are defined in terms of combinations of grammatical functions.
Configuration of these functions, or function bundles, are built up by the interpretation of the
grammar's realization statements. Realization statements are expressed in terms of realization
operators and are triggered by particular choices in the grammar; each choice of grammatical feature
from a system in the grammar network may have some particular set of realization statements
associated with it which, upon the selection of that choice, will cause the operations necessary for the
distinction that that system's choice represents to be reflected in the structural result. By this means,
the choices made during execution of the grammar successively construct the configuration of
functions that constitutes the structural grammatical output of the grammar.

next

up

previous

contents

index

Next: Basic realization constraints Up: Realization Statements Previous: Realization Statements

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node316.html (2 von 2) [11.12.2004 21:53:26]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Basic realization constraints

next

up

previous

contents

index

Next: User-defined realization operators Up: Realization Statements Previous: Introduction

Basic realization constraints

The realization operators supported in KPML may be grouped into three functional categories:

● Functions defining particular grammatical constituents are created by the Insertion, Conflation
and Expansion of grammatical functions; these operators therefore specify structure.

● These constituents may additionally have linear ordering constraints imposed upon them by
means of the Partition, Order, OrderAtFront and OrderAtEnd realization operators.

● The operators Preselect, Agreement, Classify, Outclassify, Inflectify and Lexify all associate
features with functions; they are realizational operators in that they are concerned with how
constituents are to be realized rather than with their specification as constituents at a given
level of structure. Preselect provides control between ranks, e.g., it provides one means of
ensuring subject-verb agreement: if the number is determined at clause rank then making the
appropriate preselection of `singular' or `plural' for the Subject at the Nominal Group rank and
for the Finite verb at Verb Group rank would have the desired effect. This is how, for example,
the Nigel grammar of English specifies such agreement. An alternative is offered by the
operator Agreement, which sets up sister dependency relations in the grammatical features
selected. Classify, Outclassify, Inflectify and Lexify relate bundles (or individual functions) to
the Lexicon, either as a particular lexical class or as a specific word.

These realization operations may be defined in more detail as follows:

● Structure specifying realization operators:

1. Insert - (Insert Function) - states that the grammatical structural result of this
pass through the grammar will necessarily contain the grammatical function
FUNCTION as a defining component of one of its constituents.

2. Conflate - (Conflate Function1 Function2) - states that the named
grammatical functions will both be defining components of the same constituent.
Alternatively, from the perspective of the constituents being constructed, some single
constituent comes to include both the named functions as defining components. Within
the systemic-functional view, therefore, syntactic constituency is decomposed
according to grammatical function, which is taken as basic for structure. Typically the
grammar will follow several independent lines of development in each pass,
(corresponding to different kinds of functional reasoning), which are ultimately
reconciled within a single structural product by the application of the conflation
operator. For example, if an ideationally-based chain of reasoning has established that
some entity functions as an Agent in its clause, while `simultaneously' a topicality-
based chain of reasoning has established that that same entity functions as Subject in its
clause, then performing the conflation of the functions Agent and Subject effects a
combinination and reconciliation of these lines of reasoning by stating that the

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node317.html (1 von 4) [11.12.2004 21:53:33]

Basic realization constraints

grammatical functions Agent and Subject both co-constrain a single clause constituent;
that constituent is then functionally multiply labelled. Conflation shares some
similarities and historical roots with the notion of unification employed in Functional
Unification Grammar (Kay) and its descendents.

3. Expand - (Expand Function1 Function2) - specifies the second grammatical
function as a constituent of the first, but within the same rank. For example, (Expand
Mood Subject) means that the function Subject is necessarily contained as a sub-
constituent of the constituent labeled by the function Mood, which is a direct clause-
level constituent. In this case, there is also a corresponding (Expand Mood Finite)
realization statement elsewhere in the grammar. Thus, the complete clause structure is
analysed as possessing a single constituent labeled the Mood constituent, which in turn
has two sub-constituents, labeled by Subject and Finite. This Mood subconstituent does
not consituent a separate rank in the gramar however, which is the normal means by
which constituency is constructed. The combination of Subject and Finite functions as a
significant unit for the clause but it does not constitute a structurally distinct category as
would be required to grant it rank status along with clauses, nominal phrases,
prepositional phrases, etc.

● Linear ordering operators:

1. Partition - (Partition Function1 Function2) - orders the first function
anywhere to the left of the second. This is the least restrictive of four operators that
constrain the relative ordering of the grammatical functions inserted into structure.

2. Order - (Order Function1 Function2) - orders the first function immediately to
the left of the second. Here the ordering constraint requires that no other constituent can
occur between the functions selected, in contrast to the case with Partition.

3. OrderAtFront - (OrderAtFront Function) - orders the function as the leftmost
constituent of the level of structure to which the function most immediately belongs.

4. OrderAtEnd - (OrderAtEnd Function) - orders the function as the rightmost
constituent of the level of structure to which the function most immediately belongs.

In addition to these explicit statements of order that are triggered when appropriate
grammatical feature selections are made during grammar traversal, there are also a collection
of default ordering constraints that are appealed to when the explicit ordering information is
not sufficient for constraining the order of constituents sufficiently for a structural result to be
achieved. These default ordering constraints provide a convenient place to state largely
invariant or default orders that occur with high frequency; they do not alter the functionality of
the grammar. The definition form for default orderings is given in Section 12.2.12.

● Inter-rank realizational operators:
1. Preselect - (Preselect Function Grammatical-Feature) - associates the

grammatical feature with the function. This calls for the constituent that the named
function labels to be realised by an additional traversal of the grammar which must at
least include the selection of the grammatical feature specified. Preselection only
operates between ranks. e.g at clause rank a preselection can be made for the group
rank, but not for some other element at clause rank or below group rank. The Preselect
operator is what triggers recursion in the grammar. When a particular feature is
preselected it causes the grammar to be reentered at the Rank system once the current

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node317.html (2 von 4) [11.12.2004 21:53:33]

Basic realization constraints

pass through the grammar is completed.

Preselect functions by adding a list of features that pre-specifies features that must be
selected during the traversal of some constituent. This list is obtained by `path
augmentation' whereby the feature mentioned in the preselect statement itself is used as
a root for collecting entailed features backward, i.e., leftwards, through the systemic
network. Path augmentation does not proceed through disjunctive entry conditions,
however. Therefore an augmented path is not necessarily complete and further
constraints may need to be given (in the form of further preselections) in order to obtain
the full constraints desired. How complete an augmented path will be can be simply
obtained by the command INSPECTOR:<Show Path To feature> (Section 6.5.3.4).

2. Agreement -

defines an agreement/prosody domain to hold over the grammatical functions F1 and
F2, such that the selection of the grammatical features f1i during the realization of
function F1 constrain the automatic selection of corresponding features f2i during the
realization of function F2. Note: if a dependency chain is broken (i.e., X depends on Y
depends on Z, but Y does not appear, then the indirect dependency X depends on Z is

not enforced. gif

3. Classify - (Classify Function Lexical-Feature) - associates the lexical
feature with the function. This is similar to preselection; however, whereas preselect
operates between different ranks of the grammar, classify sets up an association
between a grammatical constituent and features drawn from the lexicon.

4. Outclassify - (OutClassify Function Lexical-Feature) - is similar to
Classify except that `not lexical feature' is associated with the function. Thus,
(Outclassify Finite negative) means that the function Finite may not come to possess the
lexical feature Negative.

5. Inflectify - (Inflectify Function Inflectional-Feature) - associates
the inflectional feature with the function. This is again similar to Classify, but is
operative at the level of morphological organisation rather than at that of lexical items.
Note that when systemicized morphology is being used, this realization statement is

largely equivalent to `preselect'. gif

6. Lexify - (Lexify Function Word) - realizes the grammatical function as the
particular lexical item WORD. This is the limiting case of a classify operation; rather
than specifying some set of lexical features that constrain the possible lexical items that
may realise the selected function, a single lexical item is specified. WORD is the name
of a lexical entry defined in the lexicon.

The realization statements used in Penman-style linguistic resources are also described in Matthiessen
& Bateman (, pp95-97). Proposals for their respecification in terms of unification and classification

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node317.html (3 von 4) [11.12.2004 21:53:33]

Basic realization constraints

formalisms can be found in, for example, (Kasper , Kasper & O'Donnell , Bateman et al.).

 KPML provides two modes of graphing systemic networks where the realization statements associated
with particular features are shown in the graph (Section 6.2.1). Realization statements can either be
shown in the definition form, as described here, or using the more compact, standard systemic
notation. This latter is the default. The realization statement notation is summarized in Table 12.1.

gif

Table: Realization statements and systemic notation

next

up

previous

contents

index

Next: User-defined realization operators Up: Realization Statements Previous: Introduction

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node317.html (4 von 4) [11.12.2004 21:53:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

User-defined realization operators

next

up

previous

contents

index

Next: Morphological realization constraints Up: Realization Statements Previous: Basic realization
constraints

User-defined realization operators

It is possible to define new realization operators. The user needs simply to define a function of the
same name taking the appropriate number of arguments. In addition, however, new realization
statements should always be defined along with a declaration of the form:

This is necessary so that internal interpretation routines can appropriately decompose system
definitions and to set up internal records.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node318.html [11.12.2004 21:53:40]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Morphological realization constraints

next

up

previous

contents

index

Next: Choosers Up: Realization Statements Previous: User-defined realization operators

Morphological realization constraints

 KPML provides additional realization operators for working within the word and morpheme ranks of
a grammar. These operators are more experimental than the standard operators described above and
may change as more experience is gained with their use with a wider range of languages.

The morphological realization operators divide into two classes:

● operators that associate a grammatical constituent (typically a word or its subparts) with some
linguistic material (lexeme or morpheme),

● operators that perform morphologically motivated perturbations of the selected linguistic
material.

The definitions of the latter class are for the present left deliberately simple and user-extensible.

The first class consists of the operators: preselect-substance, preselect-substance-
as-stem, and preselect-substance-as-property. These all act in an identical manner
and are used in realization constraints of the form:

(preselect-substance Function morpheme-name)

This serves to associate the identified morpheme (morpheme-name) with the identified grammatical
unit (Function). It is the morphological equivalent to lexify described above. The morpheme
name refers to a lexical entry. The term `preselect substance' is intended to be reminiscent of the fact
that this realization is in effect an inter-stratal preselection from lexicogrammar down into the

phonology or graphology--even though KPML does not yet support these lower strata explicitly. gif

Since it is often the case that a recognized unit within the lexicogrammar can have several distinct
renderings in terms of phonological/graphological forms (cf. the notion of `stems'), provision is made
in the preselect-substance-as-... forms of the realization operator for selecting differing
forms depending on specified features. Whereas preselect-substance takes its definition of
the linguistic material from the string held in the :spelling slot of the named morpheme,
preselect-substance-as-stem takes instead the string held under the :stem slot. The
preselect-substance-as-property generalizes upon this and takes its linguistic material
from an identified element from the value of the :properties slot. It is used in constraints of the
form:

(preselect-substance-as-property Function property)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node319.html (1 von 3) [11.12.2004 21:53:58]

Morphological realization constraints

This constraint indicates that the form of the linguistic material to become the realization of the
grammatical function `Function' is the value of the property `property' as found in the :properties
slot of the lexical item associated with `Function'. This latter association will typically have been
established upstream in the generation process on semantic grounds.

The second class of morphological realization operators form an open class of, currently, string
operations. They are used in grammar definitions by giving a single argument specifying a
grammatical function. The effect of the operation is then to alter the then current realization associated
with the grammatical function (which will be a string) in some regular fashion.

Examples are as follows; their operation is indicated by transforming the input string "abcde".

● chop: removes the last character (producing "abcd") - used for some English graphological
alternations (e.g., ``use''/``using''),

● strengthen: doubles the last character ("abcdee") - used for some English graphological
alternations (e.g., ``run''/``running''),

● weaken: changes the last character to an ``i'' ("abcdi") - used for some English
graphological alternations (e.g., ``ease''/``easily''),

● span: removes the penultimate character ("abce") - used for some Dutch graphological
alternations.

This list is clearly not complete, nor particularly theoretically driven. Hence it is to be expected that
user might need to extend this list, and that a more theoretically complete treatment will be developed.
In the meantime, new morphological transformations of the above sort can be readily defined using
the KPML function:

 [function]

Transformation is a user-defined Lisp function operating on a string to produce the desired
change. Grammatical-function is the name of a grammatical function used in a systemic
network specification. Realization operators are, in general, the names of Lisp functions that take
arguments exactly as they appear in the grammatical system definitions. The definition of the
realization operator strengthen above could then be given as illustrated in Figure 12.5.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node319.html (2 von 3) [11.12.2004 21:53:58]

Morphological realization constraints

Figure: Example definition of a morphological realization operator

next

up

previous

contents

index

Next: Choosers Up: Realization Statements Previous: User-defined realization operators

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node319.html (3 von 3) [11.12.2004 21:53:58]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Choosers

next

up

previous

contents

index

Next: Inquiries Up: Resource definition formats Previous: Morphological realization constraints

Choosers

 An example chooser definition is shown below; this is the definition form corresponding to the
graphical version given in Figure 6.9.

This is a Lisp form that may be evaluated; it is also the form that is printed by the inspector command
<Print Chooser> when the graphical chooser display is not activated. The chooser actions that are used
here, i.e. ask, identify, choose, and copyhub, may be described as follows.

● Ask - puts an Ask type of Inquiry (a Q-inquiry) to the environment. The set of possible responses
is predefined and closed.

● Identify - takes a grammatical function and an Identify Inquiry (an ID-inquiry) and puts that
Inquiry to the environment. The set of possible responses is open ended. The actual response
becomes associated with the grammatical function specified. This association is maintained in a
function association table; the form and use of this table is described further below.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node320.html (1 von 2) [11.12.2004 21:54:08]

Choosers

● Choose - specifies a grammatical feature to choose in the system to which a chooser is attached.
If the point in the chooser's decision tree at which the choose operation is situated is reached, then
the appropriate choice of grammatical feature to make is the one specified.

● Copyhub - copies the association that exists between one grammatical function and a hub onto
another grammatical function.

● * - introduces a comment.

Two additional chooser operations not used in the present example are:

● Pledge - declares that a specified hub is to be considered `expressed'; subsequent passes through
the grammar should not then attempt to re-express already expressed information since
responsibility for that expression has already been taken.

● TermPledge - declares that a specified hub is to be considered `expressed', but by a lexical item
rather than by another pass through the grammar.

Actually, all these operations do is place the term mentioned on a list of pledged items. This can be
checked in inquiry implementations with the predicate pledged-p. Most users need not bother with
this possibility.

next

up

previous

contents

index

Next: Inquiries Up: Resource definition formats Previous: Morphological realization constraints

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node320.html (2 von 2) [11.12.2004 21:54:08]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inquiries

next

up

previous

contents

index

Next: Lexicons Up: Resource definition formats Previous: Choosers

Inquiries

 There are two kinds of inquiries, branching inquiries (Q-inquiries) and identifying inquiries (ID-inquiries).
There are also two principal modes of operation for inquiries: implemented and de-implemented (see
Section 7.4.7). A typical Q-inquiry is shown below; as usual, this is a Lisp form that gets evaluated when it is
loaded.

(askoperator
 :name ATTRIBUTE-Q
 :domain KB
 :mode IMPLEMENTED
 :parameters (MODIFYINGRELATIONAL)
 :english
 ("Does " MODIFYINGRELATIONAL
 " represent an attribute, i.e. a modification without an operand?")
 :operatorcode ATTRIBUTE-Q-CODE
 :parameterassociationtypes (CONCEPT)
 :preselectionguidance
 ((ADJECTIVAL-GROUP . ATTRIBUTE)
 (PREPOSITIONAL-PHRASE . OPERANDRELATION))
 :answerset (ATTRIBUTE OPERANDRELATION))

The role of a Q-inquiry is to guide generation through a chooser in order that an appropriate grammatical
feature be selected. This is normally done, as described below, either by user intervention or an
`implementation' of the inquiry.

In deimplemented mode the English version of this inquiry, as specified in the English slot, is put to the user.

gif The possible responses to this inquiry are attribute and operandrelation as specified in the answerset
slot. The user must select the response which most nearly corresponds to the intended semantics of the
linguistic unit being generated.

In implemented mode, the operation of an inquiry is more complex. A gloss for above definition would be
something along the lines of: the inquiry called Attribute-Q interrogates the partition of the environment
called the KB (knowledge base, in implemented mode this usually refers to the upper model) by invoking
the Lisp function specified as the operator code (Attribute-Q-Code), which is a function of one
argument (called modifyingrelational as specified in the parameters slot) of type concept (as
specified in the `parameterassociationtypes' slot.)

When the grammatical feature being considered is subject to a preselection--i.e., the outcome of the
grammatical system choice has already been constrained by an explicit realization statement, then the
preselection guidance slot of an inquiry definition is used to check that any prevailing semantic conditions

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node321.html (1 von 3) [11.12.2004 21:54:17]

Inquiries

(as revealed by the answers to inquiries) are consistent with the preselection. The preselection guidance is a
list of pairs, the first element of which is a grammatical feature that may be preselected, the second the
response to the inquiry that is appropriate given the feature preselected. This is an old mechanism which
avoids the necessity of a potentially computationally expensive backward-chaining search for entailed paths
through the network and the choosers. The user is informed automatically if preselection guidance is
required and what that preselection guidance would be.

When the inquiry function representing the inquiry implementation is called, the value passed to that
function is the `concept-aspect' of the information associated with the grammatical function used as
parameter--i.e., in this case, MODIFYINGRELATIONAL. Information can only be passed to inquiries in this
way, i.e., via some specified aspect of a grammatical function. Aspects are stored in the function association
table (FAT) and are entered by means of identifying inquiries. The particular information aspects that are
supported currently are:

● concept: the `semantico-conceptual correlate' of the grammatical function at issue--for example, its
propositional content.

● modificationspecification: the textually specific view of the semantic correlate of the
grammatical function--for example, the particular propositional content that has been selected as
sufficient for some concrete referring expression to be used at a given point in a text.

● terms: the set of lexical items that could appropriately realize the grammatical function at issue.
● term: the particular lexical item selected for the grammatical function at issue.
● function: the label of the grammatical function at issue.

The use of these is illustrated in the example id-inquiry definition given below, in which the
createdassociationtype slot is used to specify in which field the return result of the inquiry
implementation (the Lisp function dimension-id-code) is to be placed.

When inquiries are interpreted with respect to SPL, the domain that the inquiry definition specifies
influences where information concerning a hub, or SPL term, may be found. KB-type knowledge is assumed
to hold constant for the duration of a sentence; it is therefore possible to use KB knowledge about an entity
no matter where in the SPL specification it is given. However, TP type knowledge refers to the textual
organization of the sentence and so this type of knowledge may change from instance to instance even within
a single SPL specification. For TP inquiries, therefore, the SPL interpreter is only licensed to look in the
immediately local term.

next

up

previous

contents

index

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node321.html (2 von 3) [11.12.2004 21:54:17]

Inquiries

Next: Lexicons Up: Resource definition formats Previous: Choosers

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node321.html (3 von 3) [11.12.2004 21:54:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Lexicons

next

up

previous

contents

index

Next: Examples Up: Resource definition formats Previous: Inquiries

Lexicons

A typical lexical item is shown below.

(lexical-item
 :name FEED
 :spelling "feed"
 :sample-sentence "The data is fed into the computer."
 :features (VERB INFLECTABLE UNITARYSPELLING S-IRR PASTFORM
 EDPARTICIPLEFORM LEXICAL NOT-CASEPREPOSITIONS
 NOT-TOCOMP NOT-QUESTIONCOMP NOT-MAKECOMP NOT-ADJECTIVECOMP
 DOVERB DISPOSAL EFFECTIVE NOT-SUBJECTCOMP NOT-PARTICIPLECOMP
 NOT-BAREINFINITIVECOMP OBJECTPERMITTED
 NOT-OBJECTNOTREQUIRED NOT-COPULA PASSIVE INDIRECTOBJECT
 NOT-THATCOMP)
 :properties ((PASTFORM "fed")(EDPARTICIPLEFORM "fed"))
 :date "Monday the twenty-third of February, 1987; 4:51:40 pm"
 :editor "Smith")

The features that appear under the features slot depend on the concrete linguistic resources defined to the
system. The information under the properties slot is used for holding idiosyncratic exceptions to general
morphological processes. The remaining slots are self-evident.

It is usual that a mapping be provided from sets of lexicogrammatical features to single morphological features
such as those that appear in the :properties slot. This is necessitated by the fact that property names must
still be single atoms and no logical combinations of lexicogrammatical features are permitted. The mapping
functions then take specified combinations of lexicogrammatical features (e.g., present-form and first-
person-form) and produce single property names (e.g., firstpresentform) such as appear in lexical
items. The name of the mapping function can be specified for each language variety as indicated in
Section 12.2.2.1. A mapping function must be a function of two parameters: (i) the set of lexical features that
have been applied to the currently considered constituent by realization constraints in the grammar; (ii) a flag

that is used to indicate to the mapping whether the currently considered constituent is a noun or not. gif The
function should return the name (a single symbol) that represents the lexical property that corresponds to the
conjunction of the separate lexical features. As an example, the mapping function for English establishes
connections such as:

(Firstperson Singular Presentform) Firstsingularpresentform
(Pastform Plural) Pluralpastform

Lexicon files from a particular language resource directory (see Section 12.1) can also be loaded
independently of other resource objects by means of the command ROOT:<Load Lexicon Files> or by loading

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node322.html (1 von 2) [11.12.2004 21:54:25]

Lexicons

linguistic resources with appropriate object focusing (Section 5.6.1).

 The current set of lexicon entries loaded can be cleared by the command ROOT:<:Clear Lexicon> .

KPML provides an additional slot (:stem) for holding morphological information. How this is used is
described in Section 12.2.5.4.

next

up

previous

contents

index

Next: Examples Up: Resource definition formats Previous: Inquiries

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node322.html (2 von 2) [11.12.2004 21:54:25]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Examples

next

up

previous

contents

index

Next: Punctuation Up: Resource definition formats Previous: Lexicons

Examples

Linguistic resources may come with files containing example sentences. These examples can be used to test
out a grammar without providing semantic specifications or domain models. They also provide a convenient
form for test suites showing the coverage of a set of linguistic resources. Special operations are provided for
using a set of examples in this way (see Chapter 10).

Examples are typically of two forms:

● an example logical form, or SPL, that generates appropriately given the grammar, domains, and lexicons
that are loaded for a given resource set;

● an example set of inquiry responses, that generates appropriately given just the grammar and lexicons
loaded for a given resource set.

The two can be combined into a single example record. Typically examples of the former kind are kept in files
with extensions ` .spl', while examples of the latter kind are kept in files with extensions `.ex'. The latter
kind can be created from the former simply by generating the example with the `Update environment record'
option activated (see Section 7.5.2 and Figure 7.3).

A typical example of the former kind is the following:

When this example is loaded, Behrens4 appears in the menus for candidate example generation and, if
selected, the logical form under the slot :logicalform is used to constrain generation. Since such
expressions can rely freely on domain concepts (e.g., study, munich, behrens, etc.), they can only
successfully generate when the appropriate domain models have been loaded.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node323.html (1 von 3) [11.12.2004 21:54:31]

Examples

A typical example of the second kind follows; it is the sentence ``Yes''.

(Example
 :name EG88
 :targetform "yes"
 :rootnode EG88
 :includedhubs (EG88)
 :selectionexpressions
 ((EG88 RESPONSE-POSITIVE POLARITY
 ELLIPTICAL CLAUSE CLAUSES START))
 :editor "BATEMAN"
 :date "07/14/88 20:12:42"
 :KBenvironment
 ((EG88ACT-POLARITY (POLARITY-VALUE-Q POSITIVE) NIL)
 (EG88ACT (POLARITY-ID EG88ACT-POLARITY) NIL)
 NIL)
 :TPenvironment
 ((-TOP--
 (EG88ACT-POLARITY
 (MODIFICATION-SPECIFICATION-ID EG88ACT-POLARITY-PS)
 NIL)
 (EG88ACT
 (MODIFICATION-SPECIFICATION-ID EG88ACT-PS)
 NIL)
 (EG88
 (MODIFICATION-SPECIFICATION-ID EG88-PS)
 NIL)
 NIL)
 (WHERE-AM-I-ID -TOP--)
 (EG88ACT-POLARITY
 (MODIFICATION-SPECIFICATION-ID EG88ACT-POLARITY-PS)
 NIL)
 (EG88ACT
 (POLARITY-ANSWER-Q POLARITYANSWER)
 (ANSWER-Q ANSWER)
 (PROPOSITIONALNESS-Q PROPOSITIONAL)
 (MODIFICATION-SPECIFICATION-ID EG88ACT-PS)
 NIL)
 (EG88
 (SPEECH-ACT-ID EG88ACT)
 (EXIST-SPEECH-ACT-Q SPEECHACT)
 (HEARER-ID READER)
 (SPEAKER-ID PC)
 (SERIOUS-Q SERIOUS)
 (MODIFICATION-SPECIFICATION-ID EG88-PS)
 NIL)
 NIL)
 :discoursecontext
 (:speaker I
 :hearer YOU

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node323.html (2 von 3) [11.12.2004 21:54:31]

Examples

 :speaking-time TIMENOW
 :realm-of-speech HERE))

 The most important components of this structure are the KBENVIRONMENT and TPENVIRONMENT. These
partition the knowledge assumed in the environment into the knowledge base and the text plan respectively.
This distinction is also present in the inquiry definitions (section 12.2.7) under the :domain slot. This
determines which partition the inquiry is to interrogate for its response. Both KB- and TP-environment slots
hold information of the same form: an association list of hub names and the inquiry-inquiry response pairs that
are appropriate for those hubs. For example, the first entry of the TPENVIRONMENT slot states that when the
inquiry Modification-Specification-ID is asked of the hub eg88ACT-POLARITY then the response appropriate
for this example is eg88ACT-POLARITY-PS.

The :included-hubs field maintains a record of all the hubs that have been realized by rank-level
structures, i.e., clause, nominal-group, etc.; and :selectionexpressions holds the lists of all the
grammatical features selected for each of those rank-level structures, or grammar network traversals.

An additional slot, :structure, not shown here for reasons of space, holds the structurally rich version of
the generated string that is used to create the mouse-sensitive generated string presentations that appear in the
interface. This is also the structure that can be used to good effect by applications that want a more
sophisticated presentation of the generated results than the simple strings that result. The internal structure of
the `mouseable structures' is described in Section 14.5.

Note that for the linguistic resources to generate from such an input specification, they need to be run in de-
implemented mode for this to work (see Chapter 10). Exercise set examples will not run in implemented mode
(the normal mode for generating from semantic specifications) and, similarly, examples that are intended to
run in implemented mode will not succeed in deimplemented mode. The example runner will automatically
switch into de-implemented mode if it is asked to generate an example that does not contain a logical form.

 Such example records can either be edited directly or, more usefully, indirectly via the grammar interface by
setting the Update Example Record flag (see Section 7.5.2). Setting this flag ensures that all relevant
information created during generation is preserved in the appropriate slots of the example record. This can be
used, for example, for converting an example of the first kind introduced above, containing only logical form,
to one of the second kind, where a complete record of the grammatical traversal and semantic inquiry

responses is also available. gif Only such complete examples can be used to support the operations for
selecting examples on the basis of which grammatical features or functions they use.

Examples are also multilingual objects, and can be loaded, written, and merged in all the usual modes for

multilingual objects generally (i.e., monolingual, contrastive, and multilingual). gif

next

up

previous

contents

index

Next: Punctuation Up: Resource definition formats Previous: Lexicons

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node323.html (3 von 3) [11.12.2004 21:54:31]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Punctuation

next

up

previous

contents

index

Next: Non-systemic system dependencies Up: Resource definition formats Previous: Examples

Punctuation

KPML provides the same method of controlling punctuation as does the Penman system; the only
difference being in the definition syntax and the ability of KPML to maintain different punctuation rule
sets for different languages. This method allows functionally and structurally motivated punctuation
to be defined drawing on the descriptions generated by a grammar.

The punctuation rules for a language variety are kept in the file punctuation.gram. There are
three kinds of rules:

● `pre' punctuation rules,
● `post' punctuation rules,
● `post-self' punctuation rules.

All punctuation rules consist of a set of entries of the form: (<grammatical feature>
<grammatical function> <punctuation mark>)

The grammatical function identifies the constituent where the
punctuation mark (a string) is to be placed.

For `pre' and `post' punctuation rules, the grammatical feature
applies to a grammatical unit that includes the designated
grammatical function as a subconstituent. That is, the rule: (NON-
THEMATIC-DEPENDENT-BETA DEPENDENT ",")

states that when a grammatical unit is generated using the feature
non-thematic-dependent-beta, then the subconstituent Dependent of
that unit should be punctuated by a comma. If the rule is a `pre'
rule, then the comma comes before the designated constituent; if it
is a `post' rule, then the comma follows the designated constituent.
The above rule is responsible for the fact that hypotactically
related dependent clauses following their matrix clauses (this is
what the feature non-thematic-dependent-beta in the grammar of
English means) are separated from that matrix clause by a comma. It
is, accordingly, in the English punctuation rules defined as a `pre'
rule, since the structure desired is of the form: [INDEPENDENT ","
DEPENDENT]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node324.html (1 von 2) [11.12.2004 21:54:35]

Punctuation

For `post-self' punctuation rules, the grammatical feature refers to
the same grammatical unit as is indicated by the grammatical
function. For example, the `post-self' rule: (INTERROGATIVE SENTENCE
"?")

states that if a grammatical unit labelled Sentence (the top node in
a constituent structure) is generated using the grammatical feature
interrogative, then it should be followed by the indicated
punctuation. Similarly, the rule: (IMPERATIVE PROJECTED "!")

states that the grammatical unit labelled Projected should be
followed by an explanation mark just in the case that it is realized
by a grammatical unit possessing the feature imperative. `Post-self'
rules therefore differ from `post' rules in the positioning of the
grammatical feature specified.

Finally, it is possible in `post-self' rules to use a `*' as a
wildcard for the grammatical function. This means that it is
possible to indicate that a grammatical unit containing a specified
grammatical feature is to be punctuated regardless of what
grammatical function it is realizing.

The syntactic form of the punctuation definitions is simply:

where the rules have the form indicated above and X can be either
pre, post, or post-self.

next

up

previous

contents

index

Next: Non-systemic system dependencies Up: Resource definition formats Previous: Examples

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node324.html (2 von 2) [11.12.2004 21:54:35]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Non-systemic system dependencies

next

up

previous

contents

index

Next: Default orderings Up: Resource definition formats Previous: Punctuation

Non-systemic system dependencies

In the case that multiple systems can be entered during traversal of the network, it is possible to control the
order in which these candidates are in fact entered. This information in maintained in the file: ordering-
constraints.gram. The syntax differs again from that used in the Penman system, although
automatic conversion (Penman to KPML, not vice versa) is provided.

Note: making deliberate use of this information is not recommended, as it compromises the
declarative integrity of the resource definitions.

The form of these specifications is as follows (adapted from those for the English grammar):

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node325.html (1 von 2) [11.12.2004 21:54:45]

Non-systemic system dependencies

Systems that are potentially candidates for parallel entry are defined by the form
define-dependency-set. Each set of candidates is named. Thus, for example, one candidate set of
systems is the DETERMINATION-AREA. In this set, the grammatical systems SPECIFIC-TYPE, PARTIAL-TYPE
and TOTAL-TYPE will become available for entry simultaneously. The specification here requires, however,
that they will actually be entered in the order given in the list.

The candiate sets are collected together and are used in the definition system dependencies overall. This
takes place in the form define-system-dependencies, which specifies the relative ordering of the
sets of candidates. Thus, in the example above, first systems belonging to the group THING-TYPE-
AREA, then those belong to the group MODIFICATION-AREA-I, and then those of the
DETERMINATION-AREA are entered. Unnamed sets of alternatives can also be used here by enclosing
them in parentheses. The system QUANTIFICATION, for example, is given above as following all system
sof the DETERMINATION-AREA and preceding all systems of MODIFICATION-AREA-II.

Definitions of this form can be merged freely during contrastive loading. Multilingual resources use a
slightly different form that simply echoes the internal structure of the values of the variables where the
system dependency information is maintained. Since the frequent use of this kind of information is not
recommended, multilingual support is kept to a minimum.

next

up

previous

contents

index

Next: Default orderings Up: Resource definition formats Previous: Punctuation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node325.html (2 von 2) [11.12.2004 21:54:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Default orderings

next

up

previous

contents

index

Next: Domain concepts and links Up: Resource definition formats Previous: Non-systemic system
dependencies

Default orderings

 Default orderings are also specified in the file: ordering-constraints.gram. These orderings take
the form of lists of prefered sequences of grammatical functions. They are defined for a particular language
by specifications of the form:

When the grammatical functions of any sublist occur together at the same rank in a generated structure, then
their order--if not specified otherwise by the explicit ordering constraints present in the grammar--will be as
given in the sublists of the defined default order for the language in question.

Definitions of this form can be merged freely during contrastive loading. Multilingual resources use a
slightly different form that simply echoes the internal structure of the values of the variables where the
default ordering information is maintained. Since the frequent use of this kind of information is not
recommended, multilingual support is kept to a minimum.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node326.html [11.12.2004 21:54:54]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Domain concepts and links with the lexicon

next

up

previous

contents

index

Next: SPL macros and defaults Up: Resource definition formats Previous: Default orderings

Domain concepts and links with the lexicon

The default assumption made by KPML is that the LOOM knowledge representation language is being
used. Domain concepts are then typically defined in LOOM and, under the Penman model for

interfacing with a domain, are subordinated to concepts defined in the `upper model'. gif Macros are
also provided for linking such domain concepts with lexical items.

A typical domain concept definition is the following:

This defines the domain concept illness to be a subtype of the upper model concept object.
Upper model concepts are maintained in the Lisp package penman-kb; domain model concepts can
be placed in any package (including penman-kb) as long as the user knows how to manage the
various interactions between Lisp packages and Loom knowledge bases, etc. The simplest
incantantations for setting up conditions for a domain definition file are the following.

This makes both the Lisp package and the knowledge base be the same as those of the concepts of the
upper model.

Links with the lexicon are then created by the following:

The elements in the :lex-items list are names of lexical items as defined by appropriate lexical
item definitions (Section 12.2.8). These names can be conditionalized for individual languages to give
more specific definitions in the normal way (Section 12.3). A more appropriate version of the above
(which states that the three lexical items ziekte, krankheit, and illness are available for the
concept regardless of language and regardless of the individual language conditionalizations of these
lexical items) would therefore be:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node327.html (1 von 2) [11.12.2004 21:54:59]

Domain concepts and links with the lexicon

Lexical annotations are stored internally in the hash-table *concept-annotations*. The keys to
the values are the print names of the concepts, as returned by the knowledge base access function kb-
getconceptname.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node327.html (2 von 2) [11.12.2004 21:54:59]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

SPL macros and defaults

next

up

previous

contents

index

Next: Language variety conditionalization Up: Resource definition formats Previous: Domain
concepts and links

SPL macros and defaults

SPL macros can be used to simplify the input specifications given to the generator. gif An SPL
macro definition consists of a macro name followed by possible slot values. The definition provides
for each slot value a set of inquiry and inquiry responses that are to be placed in the SPL where the
SPL macro is used. Coreference of inquiry reponses and parameters is indicated in the inquiry/inquiry
response sets by variables.

An example definition is the following:

Following evaluation of this definition, it becomes possible in an SPL specification to specify simply,
for example: :determiner all

This will be expanded into the set of inquiry and inquiry responses
indicated in the definition, producing in this case (with the Nigel
grammar of English) a nominal group with determiner `all'.

The use of SPL macros is provided for compatibility with inputs
designed for the Penman system; since in a full generation scenario
SPL specifications would themselves be generated automatically, the
utility of SPL macros is somewhat weakened. They can also too easily
disguise the purely semantic nature of the SPL input--as in the
above example where it makes it appear that the SPL input contains

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node328.html (1 von 3) [11.12.2004 21:55:15]

SPL macros and defaults

rather syntactic information concerning choice of grammatical
determiners, although this is not the case since this is of
necessity expanded into inquiries which are semantic. A further
problem is that it is possible with more complex SPLs to choose
macro combinations where the inquiries entailed are in partial
conflict: this problem is hidden from the SPL-writer by the macros
themselves, and so can cause consternation when a macro suddenly
stops having its usual effect. For these reasons, SPL macros are not
particularly strongly supported or recommended in KPML; they cannot
be conditionalized for particular languages. Should problems with
macros occur, the user is recommended to replace the macros with the
expanded inquiries and to check for possible bad interactions.

A basic set of SPL macros is usually to be found in a set of
resources in the file:
basic-spl-macros.lisp.

 SPL defaults, or default environments, provide a way of
simplifying SPL input specifications still further. An SPL default
environment defines a set of inquiries and their responses which are
to be added to all SPL specifications processed while the
environment is `active'. For example, if we wish to specify that,
until further notice, all SPLs given should act as if the
specifications for present tense were also present, then we can use
the definition:

This defines a possible SPL default environment named present-tense.
The inquiries and responses given are those necessary for specifying
the semantic temporal relations involved when present tense is used
in English.

Since it has often been the case that sets of SPL specifications
have been prepared in the context of the Penman system assuming that
some set of standard defaults holds, KPML provides a way of declaring
that a particular language variety will use a particular set of SPL
default environments. This is described in Section 12.2.2.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node328.html (2 von 3) [11.12.2004 21:55:15]

SPL macros and defaults

Note that the KPML provision of default environments is more
restricted than that of the Penman system since the interactions of
multilinguality and stacked default environments have not been
implemented. The remarks given above for SPL macros apply similarly
to SPL default environments however, and so their use is not
strongly supported in KPML.

next

up

previous

contents

index

Next: Language variety conditionalization Up: Resource definition formats Previous: Domain
concepts and links

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node328.html (3 von 3) [11.12.2004 21:55:15]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Language variety conditionalization

next

up

previous

contents

index

Next: Requirements for resource definitions Up: Resource Organization and Definition Previous: SPL macros and defaults

Language variety conditionalization

 KPML provides full conditionalization of the linguistic units defined according to language as described in Bateman et al. (). Any component (represented by either a
single symbol or a single list of symbols or further components) present in the definitions of systems, choosers, inquiries, SPL specifications, lexical items, and lexical
annotations to concepts can be conditionalized to belong to some specified set of named language varieties. Language varieties are named by a Lisp keyword such as
:english. A sequence of language varieties states that the following component of the specification is applicable to all the language varieties mentioned in the
sequence. The conditionalization applies to the immediately following component only. Thus, the following variation on the definition of the first output feature for the
system APPARENT-REALITY illustrated in Section 12.2.4 above:

specifies that the feature [real] is only relevant for language varieties :english and :dutch. If a set of language variety conditionalizations is to apply to more than a
single component, then the required components are joined by the `' symbol. Thus, a slightly more cumbersome way of stating the same conditionalization on the feature
[real] would be:

The conditionalization of an entire unit (i.e., system, chooser, inquiry, example, or lexical item) is achieved by adding the required language varieties into the :name
slot of the unit. Thus the following would define APPARENT-REALITY to be a system only of the grammar of English.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (1 von 6) [11.12.2004 21:55:29]

Language variety conditionalization

A more complex example is shown in Figure 12.6. This represents the possible features concerning grammatical `gender' as recommended in the working draft of the
Eagles (a European Union, LRE project) report on morphology for European languages (Monachini &\ Calzolari). Whereas the single definition for 9 languages (it is
stated in the report that no gender features apply to English) may appear complicated, once loaded into KPML such definitions can be readily decomposed and viewed for
subsets of the languages covered. Further, since such definitions can be constructed internally when merging descriptions of different languages, it is possible that no
user ever seeks to view the entire multilingual definition. Individual users could focus on particular languages in the overall set without needing to consider the full set.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (2 von 6) [11.12.2004 21:55:29]

Language variety conditionalization

Figure: Example highly multilingual system

Figure 12.7 shows the graphical views of the systems from the noun morphology for Spanish, Danish and French, while Figure 12.8 shows a explicitly contrastive view
of German and Greek; the distinct views afforded of the GENDER system shown in Figure 12.6 can be directly compared. This is a very direct computational instantiation
of the notion of multilingual `views' inherent in multilingual systemic resources.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (3 von 6) [11.12.2004 21:55:29]

Language variety conditionalization

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (4 von 6) [11.12.2004 21:55:29]

Language variety conditionalization

Figure: Distinct views on a multilingual resource (contrastive)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (5 von 6) [11.12.2004 21:55:29]

Language variety conditionalization

Figure: Distinct views on a multilingual resource (multilingual)

next

up

previous

contents

index

Next: Requirements for resource definitions Up: Resource Organization and Definition Previous: SPL macros and defaults

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node329.html (6 von 6) [11.12.2004 21:55:29]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Requirements for resource definitions

next

up

previous

contents

index

Next: Special inquiries Up: Resource Organization and Definition Previous: Language variety
conditionalization

Requirements for resource definitions
There are a few constraints that hold for all resource definitions. These should either be met or some
action should be taken to defuse the consequences of their not holding.

● Special inquiries
● Special semantic concepts and relations

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node330.html [11.12.2004 21:55:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Special inquiries

next

up

previous

contents

index

Next: Special semantic concepts and Up: Requirements for resource definitions Previous:
Requirements for resource definitions

Special inquiries

The following inquiries should probably always be defined.

where-am-i-id
This inquiry allows the current place in the constituent structure to be ascertained.

term-resolve-id
This inquiry selects a lexical item matching the lexicogrammatical and semantic constraints
holding for its parameter.

modification-specification-id
This inquiry provides the connection between the experiential (propositional content)
information maintained in the concept slot of an entry in the function association table and
the textual view of that content maintained in the modificationspecification slot.

Definitions of these are to be found in the released resources; standardized implementations of the
latter two are also to be found there in the inquiry implementation files; the implementation of the
former is a KPML-internally defined function.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node331.html [11.12.2004 21:55:38]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Special semantic concepts and relations

next

up

previous

contents

index

Next: Accessing external information sources Up: Requirements for resource definitions Previous:
Special inquiries

Special semantic concepts and relations

A few of the upper model concepts are relied upon in internal code; for example, the interpretation of
SPL relies upon the distinction between semantic relations (which can stand as roles in SPL expressions)
and objects (which can not). In addition, the SPL interpreter uses some upper model concepts for
constructing lists of semantic entities. The upper model concepts/relations which should, therefore,

always be defined are: gif

um-set
refers to a set of objects,

disjunctive-set
refers to a disjunctive set of objects,

two-place-relation
refers to two place relations.

These are described in the upper model documentation. The SPL interpreter code does not refer to these
concepts name directly; instead it uses the values of the variables: *spl-set-type*, *spl-
disjunctive-set-type* and *spl-relational-types* respectively. The latter is a list
of concepts/relations which are all taken to root semantic relations.

The set concepts are used in the interpretation of SPL forms of the kind:

● (spec1 spec2 ...)
● (:and spec1 spec2 ...)
● (:or spec1 spec2 ...)

The first two are equivalent to one another and rely on *spl-set-type*; the third relies on *spl-
disjunctive-set-type*. In each case an SPL term graph (see Appendix B) of the set semantic
type is constructed with the arguments stored as a list under the :symbol slot. Inquiry
implementations that wish to use such SPL expressions should therefore be written appropriately if they
are to succeed.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node332.html (1 von 2) [11.12.2004 21:55:42]

Special semantic concepts and relations

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node332.html (2 von 2) [11.12.2004 21:55:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Accessing external information sources

next

up

previous

contents

index

Next: Semantic information from inquiry Up: No Title Previous: Special semantic concepts and

Accessing external information sources

● Semantic information from inquiry implementations
● External information from the lexicon
● Morphological information from external components

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node333.html [11.12.2004 21:55:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Semantic information from inquiry implementations

next

up

previous

contents

index

Next: External information from the Up: Accessing external information sources Previous:
Accessing external information sources

Semantic information from inquiry
implementations
The principal way of interfacing from a body of linguistic resources to external information is by
means of the inquiries and their implementations. There are very many inquiries, which means that
this kind of interface is of necessity of a very broad bandwidth. For (meta-)functionally diverse
resources such as systemic-functional resources, this seems to be essential. There are, however,
several ways in which this kind of interfacing is simplified. The most significant of these is the
provision of an Upper Model for organizing the experiential semantics that linguistic resources,
particularly grammars, presuppose. The upper model currently used within KPML is the merged upper
model motivated in Henschel (). A further, generalized upper model is under development.

The most immediate interface to the grammatical component is provided by the Sentence Plan
Language (SPL: Kasper). This notation relies on the existence of an upper model for its interpretation,
but not on any particular upper model. Inquiry implementations as usually defined obtain their
information from an SPL expression provided as input. However, inquiry implementors are, of course,
free to write those inquiries so as to obtain information from any source, not just from the SPL.

Interfacing with any particular knowledge representation language is simplified by means of a very
restricted set of access functions. These are the functions by which inquiry implementations access SPL
input expressions or underlying upper or domain concepts and relations (currently represented in
Loom). Appendix B contains extracts from Bob Kasper's description in the Penman Reference
Manual concerning these access functions and other internal aspects of the SPL implementation.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node334.html [11.12.2004 21:55:49]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

External information from the lexicon

next

up

previous

contents

index

Next: Morphological information from external Up: Accessing external information sources
Previous: Semantic information from inquiry

External information from the lexicon

At present this is often done (when necessary for, for example, languages with lexically specified
information such as lexical gender) by using inquiry implementations that lift the information from
the lexicon directly. This is certainly not particularly elegant, and it also loses the real theoretical
difference between accessing semantic information and moving information around within the
lexicogrammar. Improved mechanisms for this will probably be made available at some stage.

The KPML function access-lexical-information takes a grammatical micro-function (such

as `Subject', `Actor', etc.) as argument gif and returns three values: the lexical features defined by the
lexical entry, the associated lexical item's identifier, and the lexical entry itself.

This permits the ready definition of inquiry implementations such as the following, which checks
whether a particular grammatical function is being realized by a lexical item with the lexical feature
[neuter].

Or, of course, following the Common Lisp treatment of multiple values, simply:

The package of the lexical feature neuter is given explicitly because of the possibility provided by
KPML of moving inquiry implementations across different Lisp packages. The lexical features are
always in the Penman package and so this information should be preserved. This is obviated by the
functions defined below.

Two additional support functions for handling lexical information are the following:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node335.html (1 von 3) [11.12.2004 21:56:06]

External information from the lexicon

● (lexical-feature-present-p Name Feature)

This checks whether the lexical item of name Name possesses the feature Feature.
● (lexical-class-ascertainer Name Feature-list)

This returns the feature of Feature-list that the lexical item with name Name possesses
(if any).

Since the most common kind of lexical access inquiry by far needs only to access the lexical item
associated with some grammatical function in order to ascertain lexical features that are present, the
following two functions provide a convenient combination of the above two functions and access-
lexical-information.

● (lexical-feature-present-in-association-p Item Feature :yes Yes
:no No)

This combines the work of access-lexical-information and lexical-feature-
present-p enabling information to be obtained directly from the grammatical function that
is typically provided to a lexically concerned inquiry operator as argument.

● (lexical-class-of-association-ascertainer Item Feature-list)

This similarly combines the work of access-lexical-information and
lexical-class-ascertainer.

The above example inquiry for neuter-gender-q-code can now, therefore, be simplified still
further to the following definition:

This standard form also supports automatic conversion to other possible forms (e.g., a typed feature
representation) more readily and so is recommended over the use of straight Lisp code.

All four of these support functions use those of their arguments that refer to lexical features as if they
were symbols in the kpml package. They can therefore be used in any package and nevertheless

provide the appropriate lexical access. gif

next

up

previous

contents

index

Next: Morphological information from external Up: Accessing external information sources
Previous: Semantic information from inquiry

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node335.html (2 von 3) [11.12.2004 21:56:06]

External information from the lexicon

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node335.html (3 von 3) [11.12.2004 21:56:06]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Morphological information from external components

next

up

previous

contents

index

Next: Using KPML without the Up: Accessing external information sources Previous: External
information from the

Morphological information from
external components
It is in principle straightforward to interface a set of grammatical resources with external
morphological components. This does, however, require that the kinds of constraints given in the
grammar (normally in terms of classify or inflectify realization statements are directly relatable to the
specifications required by the external component. As with all access to external components, it is
necessary to provide suitable Lisp definitions of the relevant KPML interface functions.

Users interested in this possibility are invited to contact the author. gif

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node336.html [11.12.2004 21:56:21]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Using KPML without the window interface

next

up

previous

contents

index

Next: Blackbox operation as a Up: No Title Previous: Morphological information from external

Using KPML without the window
interface

In this section, we describe the Lisp functions that enable KPML to be driven directly without going via
the commands provided by the window interface. Many of these functions are those that underly the
window interface commands; some are provided additionally to make operation without the window
interface more comfortable. Unless otherwise noted, all symbols are in the Kpml Lisp package.

● Blackbox operation as a tactical generator
● Bookkeeping functions

❍ Switching languages
❍ Establishing network connectivity
❍ Inquiry default initialization
❍ General initialization

● Multilingual behaviour flags
● Development tools

❍ Linguistic Resource Loading Operations
❍ Generating the example set
❍ Modifying the resources
❍ Saving the resources

● Using the mouseable structures for mousing and mark-up
❍ The structure produced
❍ Conditionalization of mouse sensitivity
❍ Specifying additional links in the SPL: annotations

● Window startup functions

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node337.html (1 von 2) [11.12.2004 21:56:25]

Using KPML without the window interface

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node337.html (2 von 2) [11.12.2004 21:56:25]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Blackbox operation as a tactical generator

next

up

previous

contents

index

Next: Bookkeeping functions Up: Using KPML without the Previous: Using KPML without the

Blackbox operation as a tactical
generator

 The standard KPML function for initiating generation is say. gif

 [function]

Logical-form-or-name must have as a value either the name (a symbol) of a loaded example
(Section 12.2.9) or an SPL semantic specification. Generation proceeds for the language specified by
:language, which defaults to the current language (which is always maintained in the global
variable curlan).

If :details is true, additional information about the generated structure and string are printed (at
the window interface if it is present, on *standard-output* if not).

The result of the function depends on the flag :full-structure. If this flag is false, then only the
generated string is returned as result. If the flag is true, then two results are returned. The first is the
string as before; the second is a list of string and `mouseable structure' pairs. The `mouseable
structure' is a structured representation of the generated string that follows the generated linguistic
structure. Precisely how closely it follows the generated structure can be fine-tuned by setting the
mouse-sensitive-constituents and *mouse-sensitive-terminals* variables
as described in Section 14.5. For applications with more complex requirements than simply echoing
the generated string, it will generally be the second value that is of more use.

If the systemic network connectivity for the requested language has not been established prior to the
call to say, it will automatically be established for that language before commencing generation (by
calling the function reset-system-network: Section 14.2.2).

If inquiry definitions have been loaded, but no defaults initialized prior to the call of say, default
initialization will be automatically triggered before generation proceeds (by calling the function ml-
activate-defaults: Section 14.2.3).

If the language selected by :language represents a switch of language from that previously used
for generation, then the standard language switching actions will be triggered (see Section 7.11).

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node338.html (1 von 2) [11.12.2004 21:56:30]

Blackbox operation as a tactical generator

next

up

previous

contents

index

Next: Bookkeeping functions Up: Using KPML without the Previous: Using KPML without the

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node338.html (2 von 2) [11.12.2004 21:56:30]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Bookkeeping functions

next

up

previous

contents

index

Next: Switching languages Up: Using KPML without the Previous: Blackbox operation as a

Bookkeeping functions

● Switching languages
● Establishing network connectivity
● Inquiry default initialization
● General initialization

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node339.html [11.12.2004 21:56:33]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Switching languages

next

up

previous

contents

index

Next: Establishing network connectivity Up: Bookkeeping functions Previous: Bookkeeping
functions

Switching languages

The command DEVELOPMENT: <Set Language> is realized by the Lisp function:

 [function]

This changes the current language to be :language and, if :load-patches is true, loads in any
language specific patches for the new current language. This includes inquiry implementations,
default orderings and punctuation. All are triggered by a function of the appropriate name being found
in the resource directory of the specified language.

Note, however, that if an example is defined for a unique language variety, then this language takes
precedence when generation of the example is attempted.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node340.html [11.12.2004 21:56:36]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Establishing network connectivity

next

up

previous

contents

index

Next: Inquiry default initialization Up: Bookkeeping functions Previous: Switching languages

Establishing network connectivity

Prior to using linguistic resources for generation, the connectivity of the defined systemic needs to be
checked and internal data structures representing that connectivity built up. KPML usually re-
establishes connectivity prior to generation whenever new system definitions have been loaded. The
function to set up connectivity is:

 [function]

The current-language parameter, when set, restricts the resetting connectivity operation to the
current language. Otherwise connectivity is established for all languages known to KPML.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node341.html [11.12.2004 21:56:39]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Inquiry default initialization

next

up

previous

contents

index

Next: General initialization Up: Bookkeeping functions Previous: Establishing network connectivity

Inquiry default initialization

The sequence of operations to be performed to activate the necessary defaults for a language is as
follows. This can also be used if there is some suspicion that defaults are not being adequately set up
automatically.

1. Load the standard default configuration for the resource set with (load-properties :set-
name).

2. Load the macro and default definitions for the resource set with
(load-spl-defaults-and-macros :set-name).

3. Activate those defaults and macros with (ml-activate-defaults :language) for each
language present in the resource set for which generation is desired.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node342.html [11.12.2004 21:56:45]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

General initialization

next

up

previous

contents

index

Next: Multilingual behaviour flags Up: Bookkeeping functions Previous: Inquiry default
initialization

General initialization

The KPML function

 [function]

provides a convenient way of performing all initializations that are required without doing any
generation. This could be used, for example, after loading and before generating when giving a
demonstration.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node343.html [11.12.2004 21:56:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Multilingual behaviour flags

next

up

previous

contents

index

Next: Development tools Up: Using KPML without the Previous: General initialization

Multilingual behaviour flags
The internal flags for controlling the behaviour of loading and saving operations are:

● *loading-saving-profile*: contains the objects that are effected during loading or
saving operations (cf. Section 5.6.2).

● *ml-saving-mode* : should be either :monolingual, :contrastive, or
:multilingual in order to parameterize the action of the saving functions in the way
described in Section 5.9.1.

● *ml-loading-mode* : should be either :monolingual, :contrastive, or
:multilingual in order to parameterize the action of the loading functions in the way
described in Section 5.7.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node344.html [11.12.2004 21:56:53]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Development tools

next

up

previous

contents

index

Next: Linguistic Resource Loading Operations Up: Using KPML without the Previous: Multilingual
behaviour flags

Development tools

In this section some of the internal Lisp function calls for the multilingual operations supported by the
KPML window interface are given. This permits their embedding in further code and their use when the
window interface cannot, for some reason, be used. Unless otherwise noted, all functions and symbols
are in the Kpml Lisp package.

The sequence of operations that will be described are as follows:

1. loading a resource set,
2. generating the example set,
3. modifying the resources,
4. saving the modified resource set.

In the immediately following example, we set out how one can load a set of resources, generate
examples, use the example runner, and save out modified resources. This gives the minimal
information for using the system. In the sections following, more details of each of the available
functions is given, providing for more sophisticated use approaching that reachable from the window
interface.

In this example, we presume that KPML has been installed, an appropriate set of resources are
accessible (via the variable user::*root-of-resources*), and we want to generate examples
in German. In this case, it is sufficient to type:

in order to load all the resources associated with the language variety German (including lexicons,
domains, grammar, examples, etc.). If these resources include an example called `Behrens3', then
the function call:

is sufficient to generate this example. All bookkeeping such as establishing defaults and network
connectivity will be triggered automatically.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node345.html (1 von 2) [11.12.2004 21:56:57]

Development tools

● Linguistic Resource Loading Operations
● Generating the example set
● Modifying the resources
● Saving the resources

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node345.html (2 von 2) [11.12.2004 21:56:57]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Linguistic Resource Loading Operations

next

up

previous

contents

index

Next: Generating the example set Up: Development tools Previous: Development tools

Linguistic Resource Loading Operations

A set of functions is provided for loading linguistic resources. With these functions one can either
load an entire resource set or particular types of linguistic objects. The smallest granularity of concern
is the grammatical region. The structuring of the loading functions can be envisioned thus:

All functions take as first parameter the name of the linguistic resource set from which they want to
load resources; e.g.:

 [function]

The functions operating on regions (i.e., load-region, load-systems, load-choosers, and
load-inquiries) take an obligatory second parameter that identifies the region of concern.

When the loading mode is contrastive, the single variety name must be replaced by a list of variety
names.

Finally, all functions allow three further optional keyword parameters as follows:

 [function]

or

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node346.html (1 von 2) [11.12.2004 21:57:06]

Linguistic Resource Loading Operations

The functions thus load the designated objects of the set of resources for language(s)
variety-designation (keyword or symbol) from the directory of the same name that is located
under the specifed resource root directory. The remaining keywords have the following
effects:

● :clear - when nil no resources are cleared;
● :merge - when t resources are loaded in merging mode (Section 5.7.2.2); clearing is disabled

when this mode is selected.

The defaults are that resources are cleared and merging is not activated.

Following application of the load-linguistic-resources function, the current language is
left set to the language of the last set of resources loaded.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node346.html (2 von 2) [11.12.2004 21:57:06]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Generating the example set

next

up

previous

contents

index

Next: Modifying the resources Up: Development tools Previous: Linguistic Resource Loading
Operations

Generating the example set

The following function call activates the example runner.

This runs through the examples whose names are found in the Examples-list writing the results
of generation in the file File.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node347.html [11.12.2004 21:57:09]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Modifying the resources

next

up

previous

contents

index

Next: Saving the resources Up: Development tools Previous: Generating the example set

Modifying the resources

Since all the resource definition forms as described in Chapter 12 are also Lisp expressions,
evaluating them in, for example, an Emacs buffer, or loading files containing them is sufficient to
modify the loaded resources accordingly. Note that if the resource patching capability is activated
(Section 11), then all evaluations/loading of systems, choosers, and inquiries successive to a call of
load-linguistic-resources will be marked as patches.

Patching can be activated from Lisp by pushing the symbol :resource-patches onto the list
loading-saving-profile and by setting the flag *in-ml-region* to T.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node348.html [11.12.2004 21:57:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Saving the resources

next

up

previous

contents

index

Next: Using the mouseable structures Up: Development tools Previous: Modifying the resources

Saving the resources

A set of functions is provided for saving linguistic resources. With these functions one can either save
an entire resource set or particular types of linguistic objects. The smallest granularity of concern is
the grammatical region. The structuring of the saving functions can be envisioned thus:

This is largely the mirror image of the functions provided for loading, with the exception that
information that is not represented in some KPML-specific, or systemic, form cannot be automatically
saved. Thus there is no provision for saving inquiry implementations--since these are straight Lisp--
and nor for the domain model definitions--since these are represented in LOOM. Finally, note that none
of these functions performs any other actions on the directory to which they are saving resources. It is
the user's responsibility when using these functions to ensure that new and old resources do not
become mixed.

As with loading functions, all saving functions take as first parameter the name of the linguistic
resource set from which they want to save resources; e.g.:

The functions operating on regions (i.e., save-region, save-systems, save-choosers, and
save-inquiries) take an obligatory second parameter that identifies the region of concern.

When the saving mode is contrastive, the single variety name must be replaced by a list of variety
names.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node349.html (1 von 2) [11.12.2004 21:57:16]

Saving the resources

In addition, all saving functions may take an optional keyword parameter :inheriting-from.
This permits the construction of new resource sets that are simply copies of the existing language
definition specified as the inheriting-from, reconditionalized for the language given as first
parameter. For example,

creates a new resource set definition, identical to that for language variety English, but conditionalized
for French. (See Section 5.9.3).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node349.html (2 von 2) [11.12.2004 21:57:16]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Using the mouseable structures for mousing and mark-up

next

up

previous

contents

index

Next: The structure produced Up: Using KPML without the Previous: Saving the resources

Using the mouseable structures for
mousing and mark-up

When the :full-structure parameter to say (Section 14.1) is set, a list of pairs of generated
strings and `mouseable structures' is produced as second result. These mouseable structures can be
used as the basis for mouse sensitive presentations of the string (as they are in the window interface)
or for establishing hyper-text links, etc. Such structures are also stored into the :structure slot of
example records (cf. Section 12.2.9). The value of this slot is actually a list of such structures,
corresponding to the fact that multiple results could be generated from a single input specification (if,
for example, the final ordering is not sufficiently well constrained to produce a single result).

● The structure produced
● Conditionalization of mouse sensitivity
● Specifying additional links in the SPL: annotations

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node350.html [11.12.2004 21:57:19]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

The structure produced

next

up

previous

contents

index

Next: Conditionalization of mouse sensitivity Up: Using the mouseable structures Previous: Using the
mouseable structures

The structure produced

The general form of a mouseable structure is as follows:

 (PRIN¯TABLE-CONSTI¯TUENT

 ID a unique label

 CONCEPT corresponding concept

 NODE-TYPE either NIL or :terminal

 ANNOTATION user defined

 FUNCTIONS list of grammatical functions

 SPELLING list of subconstituents

The spelling slot's list of subconstituents is made up either of
strings, indicating no further represented substructure, or further
printable-constituent structures.

Each printable constituent node corresponds to some node in the
grammatical structure generated (but not vice versa: see below). The
functions slot contains the grammatical functions describing that
node, and the concept slot contains the semantics (if any) associated
with those functions. The annotation slot is intended for associating
arbitrary user provided information with part of the generated
linguistic result (Section 14.5.3).

An example of a complete mouseable structure is shown in Figure 14.1.

gif

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node351.html (1 von 3) [11.12.2004 21:57:35]

The structure produced

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node351.html (2 von 3) [11.12.2004 21:57:35]

The structure produced

Figure: Example of mouseable structure for the sentence: `The
difference has lead to some schizophrenic behavior'

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node351.html (3 von 3) [11.12.2004 21:57:35]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Conditionalization of mouse sensitivity

next

up

previous

contents

index

Next: Specifying additional links in Up: Using the mouseable structures Previous: The structure
produced

Conditionalization of mouse sensitivity

The mouseability of the resulting generated strings can be further tuned by the user as follows. Two
variables are provided that provide for conditionalization of mouse sensitivity.

● *mouse-sensitive-constituents* can contain a list of systemic features, i.e.,
features that occur in systemic networks. Whenever a constituent is generated possessing a
feature on this list in its selection expression, then it will be made mouse sensitive.

● *mouse-sensitive-terminals* can contain a list of grammatical functions, i.e., the
functional labels of elements of structure. This is used for conditionalizing the mouse
sensitivity of terminal elements in the generated structure since these do not have any selection
expression--normally because they are lexical elements directly inserted into structure rather
than by being generated by a traversal through some systemic network.

In addition, both variables may take the values :all or :none. Setting the former variable to :all
means that all non-terminal constituents, regardless of their selection expressions, will be made mouse
sensitive; setting the latter variable to :all means that all terminals, regardless of which grammatical
function that are realizing, will be made mouse sensitive. The :none options are in both cases
equivalent to setting the variables to the null list.

Since the structures supporting mouse sensitivity are passed on to the user or application program,
they can form the basis for further mouse-driven options that an application can offer. For this
purpose, it may then be preferred to conditionalize the mouse sensitivity beforehand so that only
pruned structures need be processed by the application. The default setting for linguistic resource
development is that all constituents and terminals are made mouse sensitive.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node352.html [11.12.2004 21:57:38]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Specifying additional links in the SPL: annotations

next

up

previous

contents

index

Next: Window startup functions Up: Using the mouseable structures Previous: Conditionalization of
mouse sensitivity

Specifying additional links in the SPL:
annotations

KPML provides the SPL keyword :annotation for specifying additional links between the generated
strings and user-given information. The value of the :annotation keyword for a given SPL term is
placed in the annotation slots of the constituents of the mouseable structure corresponding to the
realization of that SPL term. This makes it straightforward, for example, to interpret the generated
strings as components of a hypertext, where the annotations specify hyperlink addresses or URLs: the
application need only to traverse the generated mouseable structure (Figure 14.1) and insert
appropriate markup when a hyperlink annotation is found on some node.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node353.html [11.12.2004 21:57:42]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Window startup functions

next

up

previous

contents

index

Next: Faster Generation Up: Using KPML without the Previous: Specifying additional links in

Window startup functions

The individual Lisp functions for starting up the main new-style KPML interface windows are as follows.
Each takes an optional parameter which, when set (T), causes any existing instances of the relevant
window to be replaced. If unset, a new window is created only when there is no such window already
existing. The default is always that no replacement occurs. Only the first two functions would normally
be of relevance for a user: particularly for restarting interface windows if they become broken.

 [function]

Starts up the resource development window as described in Chapter 7.

 [function]

Starts up the resource inspector window as described in Chapter 6.

The remaining functions would only be of use for further interface extensions or tighter integration into
applications.

 [function]

Starts up a cumulative generation history frame as described in Section 7.5.5.

 [function]

Starts up a function association table display window as described in Section 7.5.2.13.

 [function]

Starts up a generation history window as described in Section 7.5.2.2.

 [function]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node354.html (1 von 2) [11.12.2004 21:57:48]

Window startup functions

Brings up a dynamic network traversal display window as described in Section 7.7.2. Successive calls to
the function bring up new windows.

 [function]

Starts up a results display window; this contains will show the last generated string if any. Display
respects the normal results of generation flags as described in Section 7.10. Successive calls to the
function bring up new windows.

Finally, the following function starts up the main root KPML window only if one does not already exist.

 [function]

Forcing the creation of a new window can be done using the standard user startup function (kpml-
i::startup: Section 5.2).

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node354.html (2 von 2) [11.12.2004 21:57:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Faster Generation

next

up

previous

contents

index

Next: Strictly Monolingual Generation Up: No Title Previous: Window startup functions

Faster Generation

KPML maintains very extensive information during generation which is used for the many options provided for inspecting the
process and results of generation. It also provides for the interpretation of multilingual resources throughout. These features
result in a certain run-time overhead which reduces the speed of generation. This is usually not a problem when debugging
and maintaining resources. However, if the resources are to be used simply for generation and are considered, for some
purpose, sufficiently debugged, then it can be desirable to have as fast a generation process as possible. The ideal solution
here would be to have a dedicated kernel generator for systemic resources that takes the basic generation algorithm (as
described, for example, in Matthiessen & Bateman , pp100-109), implementing this in a run-time efficient manner and
programming language. All of the debugging and maintenance overheads could then be spared. Unfortunately, such a kernel
generator is not yet available.

As an interim solution, however, the methods described in this chapter can be adopted. These significantly increase the speed
of generation with KPML at the cost of partially disabling the debugging facilities and, for one method, fully disabling
multilinguality. On faster machines short texts of 10-15 sentences can be generated in a few seconds: generally fast enough
for demonstration purposes.

Several different methods can be combined to reduce generation time. These are detailed here since they have differing side-

effects, some of which may be important for particular applications. The main methods are: gif

● deactivation of multilinguality,
● knowledge-base package reduction,
● compilation of the inquiry implementations.

Having the window interface active also brings a small run-time overhead that can be avoided by not bringing the interface
up.

The approximate improvements in generation time that these methods achieve are indicated by example in Table 15.1. This

table shows the average generation time gif on various machines for the following sentence, which is example Reuters1
from the ISI Reuters example set for the Nigel grammar:

``The European electronics industry has made a lot of noise in public about keeping Europe safe from Japanese
competitors, but in private they are saying that if you can't beat them, you should join them.''

The particular quirks and side-effects of these speed-up methods are described in the following sections.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node355.html (1 von 3) [11.12.2004 21:57:55]

Faster Generation

Table: Timings for differently configured KPML generation

A general speed-up can also be achieved by compiling KPML with non-default values for the compiler flags of the Lisp system
used: for example, by setting the speed flag to 3. When creating a generation server or demo system, for example, where the

resources used are fully debugged, compilation can be redone with the compiler flags set according to: gif

(proclaim '(optimize (speed 3) (safety 1) (space 0) (debug 0)))

All timings shown in Table 15.1 were made with the default options (safety: 1;

space 1; speed 1; debug 2). An example of the speed-up possible for the REUTERS1
example sentence is from 13.5s (full monolingual KPML running on a Tadpole Sparcbook
3, 32MB RAM with ACL4.3) to 12.2s under the same configuration but with the non-
default compiler flag settings. Compiling the inquiry implementation with speed at
3 then brings the generation time down further to around 9s without any loss of
multilingual functionality. Invoking the other speedup methods results in a
generation time of around 7.5s.

Similarly, the German example BEHRENS4, which produces the two strings:

1890 studierte er bei Kotschenreiter in Muenchen und war 1893 ein
Mitbegruender der Muenchner Sezession.
1890 studierte er in Muenchen bei Kotschenreiter und war 1893 ein
Mitbegruender der Muenchner Sezession.
(In 1890 he studied with Kotschenreiter in Munich and in 1893 was a co-
founder of the Munich Secession)

is speeded up under the same change in configuration details from 6.25s to 5.25s,
simply by changing the speed compiler flag.

● Strictly Monolingual Generation
● Knowledge base package reduction

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node355.html (2 von 3) [11.12.2004 21:57:55]

Faster Generation

● Compilation of inquiry implementations

next

up

previous

contents

index

Next: Strictly Monolingual Generation Up: No Title Previous: Window startup functions

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node355.html (3 von 3) [11.12.2004 21:57:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Strictly Monolingual Generation

next

up

previous

contents

index

Next: Knowledge base package reduction Up: Faster Generation Previous: Faster Generation

Strictly Monolingual Generation

In order for this method to be applied, KPML must be configured for a single language and the
resources for that language must be loaded. This can also be achieved by setting the variable
all_languages to a list containing just the desired language, e.g., (:dutch). This establishes an
internal representation where most of the possible language conditionalizations do not occur. Then,
setting the flag *rigidly-monolingual* to a non-nil value (e.g., T) will disable multilingual
conditionalization interpretation. This will, of course, fail gracelessly if attempted with resources
containing multilingual conditionalizations, so it is essential that the above configuration step be
carried out.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node356.html [11.12.2004 21:57:58]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Knowledge base package reduction

next

up

previous

contents

index

Next: Compilation of inquiry implementations Up: Faster Generation Previous: Strictly Monolingual
Generation

Knowledge base package reduction

The KPML access function for checking knowledge base subsumption relationships (kb-superp) that
is provided for Loom allows knowledge base concepts to reside in any Lisp package (as long as the
function knows which). It's definition includes a considerable number of calls to the Lisp function
intern which is fairly slow. This can be avoided by placing all knowledge base concepts in a single
package. Further speed-ups can be achieved by simplifying the kind of concepts that are in fact sought;
John Wilkinson provides the following comment in his speed-up code:

``using evaluate-identifier instead of find-concept or find-relation saves considerable
time by not checking for Loom extended identifiers (identifiers which contain the
context name and concept name, separated by a `^ '). Some users may desire to use this
feature, so perhaps a parameter should be included which is checked initially to
determine if find-concept should be used instead.''

At present no such parameter is provided and so users placing their domain concepts in various
packages should probably inspect their re-definitions of kb-superp to see how much of this speed-
up method can be applied in their bown cases.

This kind of speedup can be installed by calling the function kb-package-reduction-
speedup. Note that this is a destructive operation and it is not then possible to return to a non-
speeded-up configuration without restarting KPML.

The basic knowledge base package reduction method, which places all known Loom concept and
relation symbols in the Kpml package, can be activated by calling the function kpml::update-kb-
package-reduction. This function should be called whenever new concepts/relations in differing
packages have been loaded. Note that this function does not exist unless in package reduction mode.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node357.html [11.12.2004 21:58:01]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Compilation of inquiry implementations

next

up

previous

contents

index

Next: Establishing and using a Up: Faster Generation Previous: Knowledge base package reduction

Compilation of inquiry implementations

This is the simplest method: all inquiry implementations used should simply be compiled in the usual
manner and then loaded into the Lisp environment directly from a Lisp listener. Note that KPML never
loads compiled inquiry implementations itself, since this makes the source definitions of the inquiries
difficult to inspect.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node358.html [11.12.2004 21:58:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Establishing and using a generation server

next

up

previous

contents

index

Next: Creating a KPML generation Up: No Title Previous: Compilation of inquiry implementations

Establishing and using a generation
server

When used with Allegro Common Lisp (version 4.2 and newer under Unix), KPML includes basic
methods for creating a generation server that can accept input specifications from other processes and
return the generated string to those processes. The basic functions are described here, although it is

still likely that particular applications of these methods will need to be tailored individually. gif

This chapter describes the basic method for creating a KPML generation server, basic methods of for
creating a Lisp KPML client, and an example usage of such a client: providing semantic generation as a
World Wide Web server.

● Creating a KPML generation server
● Creating a KPML client from Lisp
● An example of a KPML Lisp client: a WWW-KPML server

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node359.html [11.12.2004 21:58:13]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Creating a KPML generation server

next

up

previous

contents

index

Next: Creating a KPML client Up: Establishing and using a Previous: Establishing and using a

Creating a KPML generation server
Starting a KPML server is done by configuring and starting KPML as required, and then issuing the
function call:

(kpml::start-kpml-server)

This establishes a connection to a Unix port: the host and the port
number are left in a file identified in the variable kpml::*com-
file*. This takes by default the value of the variable
kpml::*default-com-file*, initially set up as the file:

<user-home-directory>/KpmlCom.tmp

This communication file is deleted when the KPML server is closed;
the existence of the file can therefore be used as a test as to
whether a KPML server is running or not.

Note that for a server it will normally be the case that the window
interface is not loaded or started (see the relevant installation
steps in Chapter 3) , and that some set of the speedups described in

Chapter 15 will have been activated. Otherwise the server will have

slower than necessary response time.

The server start-up function takes an addition optional parameter
which, if set (T), initiates logging of the server's operations. The
file name is created by appending the date and time to the string
held in the variable kpml::*kpml-log-file*. This is initially by
default the string "/tmp/kpml-log". An example is therefore the
following: "/tmp/kpml-log-19960811-140247".

It is also possible to create KPML Lisp images which are specifically
for acting as servers. This is done by a call to the Lisp function:

 [function]

The function call creates a Lisp image containing the current
generation functionality. When started fresh from Unix, the
resulting image will automatically start up a KPML server that is

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node360.html (1 von 2) [11.12.2004 21:58:17]

Creating a KPML generation server

ready to process client requests. The server image as called from
Unix takes two optional command line parameters:

-f introduces a file name that is to be used as the
communication file identifying the server host and port number
(see above); this simply sets the value of the variable
kpml::*com-file*;

-l specifies that logging should proceed; possible values of
the parameter are T (indicating logging should proceed to the
default place: see above) or a file name prefix to be used as
the value of kpml::*kpml-log-file* (see above).

Thus, as an example, after issuing from Lisp the function call:

(kpml::make-kpml-server-image "/tmp/kpml-server")

It is then possible to give as a Unix command commands such as:

1. kpml-server
2. kpml-server -f /tmp/ComFile
3. kpml-server -f /tmp/ComFile -l T
4. kpml-server -l /home/fred/my-kpml-log

Note that the server image will not load any additional patches or
site/user-specific information: it is an exact copy of the
functionality of KPML at the point when the image is created and is
not subsequently altered in any way.

next

up

previous

contents

index

Next: Creating a KPML client Up: Establishing and using a Previous: Establishing and using a

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node360.html (2 von 2) [11.12.2004 21:58:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Creating a KPML client from Lisp

next

up

previous

contents

index

Next: An example of a Up: Establishing and using a Previous: Creating a KPML generation

Creating a KPML client from Lisp
This section describes how to establish a KPML client from Allegro Lisp. Clients from other types of
process can be defined in the individual ways each programming environment allows for accessing Unix
ports. The Lisp KPML client is created by loading into a running Lisp image the file: <KPML root directory>
/PROCESSES/server/client.lisp

No other KPML-specific files are necessary.

The most basic way of then connecting the client to a KPML server is by issuing the call:

(kpml::start-kpml-client)

This returns a stream to the port identified in the global variable
kpml::*com-file*.

Information can then be sent to this stream using ipc::send-to-socket--
a function of two arguments, the item to be sent and the stream. The
function returns the value returned from the server.

SPL specifications can be sent to the KPML server with the function call:
(kpml::server-say-string <SPL> stream). This returns the string
generated by the server in response to the SPL or, if generation failed
for some reason, the string ``...''.

For more sophisticated use of the KPML server, the following form is
provided.

 [macro]

This provides a program body within which various KPML server-specific
variables are bound, including variables determining the language in
which the server is to generate, and the degree of structure preserved
in the resulting strings generated (cf. Section 14.5). The form

normally starts a connection to the KPML server identified by the com-
file (which defaults to the default communication file described above)
and closes that connection when the form is finished. The keyword
parameters :terminals and :constituents allow values to be set for the
global KPML server variables *mouse-sensitive-terminals* and *mouse-
sensitive-constituents* (Section 14.5.2) respectively.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node361.html (1 von 3) [11.12.2004 21:58:23]

Creating a KPML client from Lisp

The :stream keyword parameter can be used to maintain a single server
session. A new server session is only started when the :stream
parameter is nil; otherwise, this parameter should contain a stream for
a KPML server. Such a stream can be obtained either by the function
kpml::start-kpml-client or by setting the :close-stream parameter for
the with-server-access form to nil. Whenever this latter parameter is
not set, the form as a whole returns the server stream used within its
body--regardless of this was for a newly created server connection or
was passed in at the outset as the value of :stream.

Within the scope of the with-server-access form, server-based
generation can be triggered by the function kpml:say. This takes one
obligatory argument, an SPL form from which to generate or an example
name. The result of the function call is the full presentation
structure described in Section 14.5. The declaration of the function is

as follows:

 [function]

The default values of the keyword parameters are taken from the values
established by the with-server-access form. Thus, another way of
sending an SPL to a KPML server and doing something with the result is
the following:

Normally there is more to be done within the scope of the access to the
server than simply printing out the structure of course; an example is
given in the following section.

The current language of the server and the presentation structures can
be further altered within the body of the with-server-access form by
the following functions:

 [function]

 [function]

 [function]

It is also possible to interrogate the server concerning the examples
it currently has loaded and the languages for which the server is
configured. The first is retrieved by means of the function call:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node361.html (2 von 3) [11.12.2004 21:58:23]

Creating a KPML client from Lisp

(kpml:get-kpml-example-list); this returns the full example list. The
second is retrieved similarly by the function call: kpml:get-language-
range.

Finally, the following function provides client access to the full
example records produced during generation (cf. Section 12.2.9). This

is probably only useful for clients that also attempt to perform some
resource development and/or maintenance; for normal applications the
results of the kpml:say function should be sufficient.

 [function]

The result returned is the structure record structure.

next

up

previous

contents

index

Next: An example of a Up: Establishing and using a Previous: Creating a KPML generation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node361.html (3 von 3) [11.12.2004 21:58:23]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

An example of a KPML Lisp client: a WWW-KPML server

next

up

previous

contents

index

Next: References Up: Establishing and using a Previous: Creating a KPML client

An example of a KPML Lisp client: a
WWW-KPML server
 This section gives a simple example of using the facilities for creating Lisp clients for a KPML server.
The example is artificially simple, but nevertheless serves as an illustration of certain techniques that could
be applied more generally. The code shown here makes available a World Wide Web-based server for
converting semantic specifications into corresponding strings. The strings are displayed when the user
submits an form containing an SPL expression to the server. The WWW-facilities are provided by the MIT
Common Lisp hypermedia server (CL-HTTP Mallery).

We assume that a multilingual KPML server has been established and is running. We call the server kpml-
server.

We assume further that a Lisp image including the CL-HTTP server is available. Rather than install the entire
CL-HTTP system on top of KPML, or the entire KPML system on top of CL-HTTP, we make use of the KPML
server-client functionality in order to create a small KPML client that can be loaded into the CL-HTTP server.
The resulting program (which we will call www-kpml) provides the service of generating strings from
semantic specifications to the web, but does so by sending requests to the separate KPML server. This
configuration is shown graphically in Figure `client example'; the file <KPML root directory>
/PROCESSES/server/www-kpml.lisp contains the code described below.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (1 von 5) [11.12.2004 21:58:41]

An example of a KPML Lisp client: a WWW-KPML server

Figure: Program configuration of the example WWW server

The precise functionality of the provided web server is somewhat trivially to accept selections from the
available SPL examples for a language (in this case German) and to present the generated string back to
the user. The main code is accordingly straightforward and consists of three components: (i) a method that
creates the HTML form which accepts user requests for generation, (ii) a response method that is activated
whenever the user submits the generation form, and (iii) a declaration to the web server of where the
generation form is to be located---i.e., which URL the generation form is to have. (N.B., this code is
adapted directly from John Mallery's CL-HTTP dynamic forms examples. The example shown was run
with CL-HTTP version 58.12, ACL4.2 and Netscape 3.0.).

The first component is the most complicated of the three and is as follows. Most of the content of the
method is concerned with setting up the HTML appropriately for the displayed webpage. The

(defmethod COMPUTE-GENERATION-REQUEST ((url url:http-form) stream)
 (with-successful-response
 (stream :html :expires (url:expiration-universal-time url))
 (html:with-html-document (:stream stream)
 (html:with-document-preamble (:stream stream)
 (html:declare-base-reference url :stream stream)
 (html:declare-title "KPML generation server" :stream stream))
 (kpml:with-server-access (:language :german)
 (html:with-document-body (:stream stream)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (2 von 5) [11.12.2004 21:58:41]

An example of a KPML Lisp client: a WWW-KPML server

 (html:with-section-heading ("KPML generation server" :stream stream)
 (image-line :stream stream)
 ;;
 ;; Make a form containing the available examples as a menu...
 ;;
 (html:with-fillout-form (:post url :stream stream)
 (html:with-paragraph (:stream stream)
 (with-rendition (:bold :stream stream)
 (fresh-line stream)
 (write-string "SPL examples: " stream))
 (html:accept-input
 'html:select-choices
 "CHOICES"
 :choices (mapcar #'first (kpml:get-kpml-example-list))
 :default
 generation-requests :sequence-p t :stream stream))
 ;;
 ;; When there are examples to generate, do so...
 ;;
 (html:with-paragraph (:stream stream)
 (loop for example in *generation-requests*
 do
 (html:with-paragraph (:stream stream)
 (format stream "~A: " example)
 (with-rendition (:bold :stream stream)
 (write-string (caar
 (kpml:say
 (intern
 (string-upcase example)
 "PENMAN")))
 stream)))))
 (submit-and-reset-buttons stream))
 (image-line :stream stream)
 (cl-http-signature stream)))))))

The second component simply picks up the example selections that have been made by the user and
regenerates the web page of the original form:

(defmethod RESPOND-TO-GENERATION-REQUEST
 ((url url:http-form) stream query-alist)
 (bind-query-values
 (choices)
 (url query-alist)
 (let ((*generation-requests* choices))
 ;; generate another version of the form with the new values.
 (compute-generation-request url stream))))

Finally, the generation form and the response method are declared to the web server and allocated a URL.

(export-url #u"/kpml/generation-form.html"
 :html-computed-form
 :form-function #'compute-generation-request
 :expiration '(:no-expiration-header)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (3 von 5) [11.12.2004 21:58:41]

An example of a KPML Lisp client: a WWW-KPML server

 :response-function #'respond-to-generation-request
 :keywords '(:kpml :generation :demo)
 :documentation "KPML example WWW server demo.")

An example of the generation server in use is given in Figure `WWW example'. This shows the state of the KPML server
web page after the user has selected some examples and clicked on submit.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (4 von 5) [11.12.2004 21:58:41]

An example of a KPML Lisp client: a WWW-KPML server

Figure: Example generation server in use

Clearly, very much more complicated (and useful!) servers could be readily constructed with the client
functions defined above.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node362.html (5 von 5) [11.12.2004 21:58:41]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Information display modes and corresponding internal flags

next

up

previous

contents

index

Next: Modes and internal flags Up: No Title Previous: References

Information display modes and
corresponding internal flags

 When running in teletype mode, without the benefit of the window interface, it is necessary to
control the amount of detail given during tracing by means of the actual flags maintained within the
system. These are the flags the mode option menus set internally. The flag names are listed below in
Section A so they can be used directly from a Lisp listener. The value nil is unset, the value t set.
All the flag variables are in the Lisp package kpml.

A further list of flags and internal variables useful for some debugging situations is given in
Section A.1. This latter list includes some internal flags that are not available from a user menu.
These are flags that are more for internal system debugging than resource debugging, although
they might prove useful in exceptional circumstances. In addition, some other resource
debugging possibilities that have not yet been incorporated in the user interface are also given
below.

A third list given in Section A.2 contains those internal variables that control the various modes for
loading and storing linguistic resources as described in Section 5.7.2.2.

Finally, Section A.3 lists some of the global variables that might impact on the KPML user.

● More detailed tracing and display modes
● Loading and storing modes
● Miscellaneous global variables

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node364.html [11.12.2004 21:58:47]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Modes and internal flags

next

up

previous

contents

index

Next: More detailed tracing and Up: Information display modes and Previous: Information display
modes and

Modes and internal flags

The format of these descriptions is: first the name of the mode as it appears in the mode menu, then a

brief description of the function of the flag, and finally the name of the flag itself. gif

Create Boundary At All Choosers:
Allows manual choice of several convenient debugging tools whenever a chooser is reached.
create-boundary-at-all-choosers-flag

Store Implemented Values Into Example Record:
Stores implemented value into an example record, queries if example record value already
exists. domain-implemented-value-compare-flag

Make New Choosers:
If an entered system has no chooser allows you to specify one. make-new-choosers-flag

Manual Guidance For Entailed Inquiry Responses:
Allows choice between the entailed response, the environment's response or a new value.
manual-guidance-flag

Realize Selectively:
Allows option of realizing or skipping each grammar constituent. realize-selectively-flag

Show Associations:
Prints the association table at the end of each pass throught the grammar. display-association-
flag

Show Cautions:
Prints Cautions in lisp listener window. show-cautions-flag

Show Constituent Starts:
Prints what function bundle is being realized at the start each pass through grammar. show-
constituent-starts

Show Dependency Choices:
Prints the systems ready for entry and the system entered. show-dependency-choices

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node365.html (1 von 3) [11.12.2004 21:58:54]

Modes and internal flags

Show Disabled Systems:
Prints names of any disabled systems that would have been entered had they not been disabled.
show-disabled-systems-flag

Show Hubname Selection-Expression Discrepancy:
Choice of rejecting a run if its values differ from environment, otherwise retains run. show-
hubname-discrepancy-flag

Show Immediate Realizations:
Prints each realization operator as it is invoked. show-immediate-realizations-flag

Show Lexical Selections:
Prints information on how each lexical item is chosen. show-lexical-selection

Show Ordering Constraints:
Prints ordering constraint information when computing orderings. ordering-dump-flag

Show Ordering Events:
Prints each ordering relation as it is inserted in ordering relations table. show-ordering-events-
flag

Show Ordering Results:
Prints each function structure and its resultant ordering. show-orderings

Show Pledges:
Prints each pledge realization operator as it is invoked. show-pledges-flag

Show Entailed Inquiry Response:
Prints message whenever a response to a query operator entailed by preselection is used. show-
preselected-response-flag

Show Preselections:
Prints the preselected grammatical features at the start of each pass through the grammar. show-
preselections-flag

Show Selection Expression:
Prints the grammatical feature selections at the end of each pass through the grammar. show-
selection-expression-flag

Show System And Inquiry Activity:
Displays System, System Choice, Inquiry Question, and Inquiry Response Activity. Also the
changing entries in the Function Association Table when running english-trace-flag

Show Why System Is Entered:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node365.html (2 von 3) [11.12.2004 21:58:54]

Modes and internal flags

Prints the feature that caused a particular system to be entered. show-why-system-is-firing-flag

Single Step:
Pauses after each query, prompting the user to hit the end key to continue. stop-action-flag

Realize until constituent number:
Expects a positive integer as value; the system will then pause during generation when a
constituent of the specified number is reached and offer the user the opportunity of setting
generation display flags (either in a break if the window interface is not present or with the
usual menu as described in Section 7.5.2). The number of a constituent can be read directly
from the output form of the grammatical functions: e.g., the grammatical function FINITE45
was generated during the 45th. cycle through the grammar. *trace-this-constituent*

Update Example Record:
Stores user responses to the example record if not in Verify Every Response mode. store-to-
environment-flag

Note that in order to collect the inquiry responses one needs also to set the variable
Domain-Implemented-Value-Compare-Flag to T. This occurs automatically when
this option is selected in the window interface.

Stop On Warnings:
Invokes the debugger whenever a warning occurs. warning-stop-flag

Verify Every Response:
Asks if an environmental response is ok or if a user response should be stored to the
environment. manual-response-mode-flag

next

up

previous

contents

index

Next: More detailed tracing and Up: Information display modes and Previous: Information display
modes and

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node365.html (3 von 3) [11.12.2004 21:58:54]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

More detailed tracing and display modes

next

up

previous

contents

index

Next: Loading and storing modes Up: Information display modes and Previous: Modes and internal
flags

More detailed tracing and display
modes

The following variables also provide enhanced debugging facilities; they may be incorporated at some
stage in general menu options available from the user interface directly.

traced-systems
- contains a list of systems and provides details during generation for the specified grammatical
system analogous to that produced for all systems when Show System and Inquiry Activity is
set.

inquiries-to-pause-upon
- contains a list of inquiries; when execution of any inquiry on the list is required, the system
enters the debugger and gives control back to the user.

show-lexical-selection-flag
- either t or nil; when t more information is given during lexical selection, including the
domain concepts investigated for possible sources of lexical information, etc.

show-morphology-selection-flag
- either t or nil; when t more information is given during morphological selection, including
the complete constraints given from the grammar and those which are considered relevant for
morphology.

show-loading-actions
- either t or nil; when t the system reports on each linguistic unit being loaded plus some
diagnostics concerning the status of that loading.

show-merging-actions
- either nil or a list; depending on the members of the list the system reports on its attempts to
merge newly loaded linguistic units with previously existing ones. If the list contains the
symbol :systems, then details of merging systems are given; if the list contains the symbol
:choosers, then details of merging choosers are given; if the list contains the symbol
:inquiries, then details of merging inquiries are given; and if the list contains the symbol
:lexemes, then details of merging lexical items are given. These symbols can, of course, be
used in any combination. Information is given as to whether the newly defined unit completely

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node366.html (1 von 2) [11.12.2004 21:59:00]

More detailed tracing and display modes

replaces previously existing units, whether language gaps have been created, whether merging
was not possible, etc. This flag can also be used in conjunction with the following *step-by-
step-merging-behavior* for selectively giving very fine detail.

step-by-step-merging-behavior
- either t or nil; intended primarily for internal system debugging since it presents the finest
granularity possible of KPML merging behaviour. The values identified as
KPML>MERGING:ARG-LIST are the successive parameters that are collected for passing to
the internal function merge-lx. The values identified as KPML>MERGING:RESULT are the
results of merging for the given parameters. If problems are suspected with the merging, a bug
report should be sent containing the values printed with this flag set for the linguistic units
where the result of merging is in doubt.

example-display-desired-mode
- either t or nil; toggles the information displayed in the menu for selecting an SPL for
generation brought up by the Generate Sentence command. When t the desired sentence is
displayed, as given in the :englishform slot of the example. Otherwise, the actually
generated strings are shown.

example-differences-mode
- either t or nil; when t only SPLs whose actually generated strings differ from their desired
results (as indicated in the :englishform slot) are offered for generation under the Generate
Sentence menu. The comparison is simple string comparison. An example use of this would be
to load a set of examples, use the example runner to run through all SPLs, and then to inspect
those SPLs that did not generate as expected.

supplement-preselections-flag
- either t or nil; when t the user is asked prior to the generation of each grammatical unit
whether additional preselections are to be considered active for that unit.

next

up

previous

contents

index

Next: Loading and storing modes Up: Information display modes and Previous: Modes and internal
flags

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node366.html (2 von 2) [11.12.2004 21:59:00]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Loading and storing modes

next

up

previous

contents

index

Next: Miscellaneous global variables Up: Information display modes and Previous: More detailed
tracing and

Loading and storing modes

merging-active
- either t or nil; when t newly loaded resources are merged with existing resources rather
than overwriting them.

acquire-lexical-items-mode
- either t or nil; when t undefined lexical items mentioned in :lex or :name slots in SPL
expressions are created on the fly (cf. Section 5.9.4). Such newly created lexical items are
recorded on the list *new-lexical-items*.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node367.html [11.12.2004 21:59:04]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Miscellaneous global variables

next

up

previous

contents

index

Next: Data Access Functions used Up: Information display modes and Previous: Loading and storing
modes

Miscellaneous global variables

There are several global variables functioning as flags and switches for controlling the behaviour of
KPML that are in addition to the tracing and debugging flags shown above. Many of these are not
available directly from menus. This section gives a list of those that might occasionally impact on the
user of KPML, including those that enable the system's behaviour to be customized somewhat
according to individual preferences or needs.

The following variables are in the user Lisp package.

root-of-resources
Maintains the directory that currently serves as the root of all linguistic resource definitions for
the language varieties being developed or used.

kpml-pathname-default
Maintains the root directory of the KPML system.

loom-pathname-default
Maintains the root directory of the Loom knowledge representation system (which must have
been previously compiled if it is to be used). Loom 2.0 and 2.1 are supported as default by the
present release of KPML.

kpml-binaries-root
Maintains the root directory for the placement of binaries produced when KPML is compiled.
This is normally set by the installation process transparently to the user, but can be usefully
manipulated if required. A value given to this variable prior to installing KPML will take
precedence over the KPML default.

The following variables are in the kpml Lisp package.

complexity-maximum
This contains an integer that limits the number of constituents that will be generated for a
given call to the generator. Its purpose is to avoid erroneous infinite regressions. It's default
value for Penman releases was 40; for KPML releases this has been increased to 100 since when
morphology is included it is very easy to have more than 40 constituents present.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node368.html (1 von 3) [11.12.2004 21:59:10]

Miscellaneous global variables

all_languages
Maintains the list of language varieties that KPML knows about at any time. If language varieties
not on this list are encountered in resource definitions, those resource definitions will probably
cause an error.

curlan
Maintains the current language for which KPML is providing information or generating.

demo-mode
When set T suppresses all warnings during generation.

in-ml-region
When set T default language conditionalizations are merged into any resources evaluated;
when not set, no default language conditionalizations are considered.

new-lexical-items
Holds the list of newly created lexical items when the auto-create flag for lexical items is set
(cf. Section 5.9.4).

package-for-inquiry-implementations
Must be set to either a string denoting the package or a (dotted pair) association list of
languages (as specified in all_languages) and such strings; used for changing packages
for inquiry implementations in inquiry definitions when saving resources (Section 5.9.6).

The following variables are in the kpml-i Lisp package.

auto-print
When T, postscript files depicting resource graphs, etc. are immediately sent to a printer when
first created.

global-font-switching
When T, changes in language may change the font for the main KPML windows--particular the
Interaction results panes.

hardcopy-structure-orientation
Controls the orientation of graphs; may be either :vertical or :horizontal.

show-collecteds
When :always, always puts a pane showing the list of collected features in a resource graph;
when nil, never put a collected features pane in a resource graph; and when T, put a collected
features pane in only when there are collected features.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node368.html (2 von 3) [11.12.2004 21:59:10]

Miscellaneous global variables

next

up

previous

contents

index

Next: Data Access Functions used Up: Information display modes and Previous: Loading and storing
modes

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node368.html (3 von 3) [11.12.2004 21:59:10]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Data Access Functions used by Inquiry Operator Implementations

next

up

previous

contents

index

Next: Term-Graph structures Up: No Title Previous: Miscellaneous global variables

Data Access Functions used by Inquiry
Operator Implementations

(Extract from Bob Kasper's description in the Penman Reference Manual: references to Penman and
to English generalize in the KPML context to KPML and all supported language resources.)

The design of Penman allows the developers of applications to define their own implementations of
Penman's inquiry operators. Although many applications should be able to use the inquiry operator
implementations that are provided with Penman, some applications may achieve the best results by
customizing some of the inquiry operator implementations according to the kind of knowledge that is
available. Customization may be appropriate for several reasons:

● the application uses a knowledge representation framework that is significantly different from
that assumed by Penman;

● the application has very specific kinds of knowledge that can be used to answer Penman's
inquiries (i.e., kinds of knowledge that might not be used in other applications to answer the
same inquiries);

● the application developer would like to use some features of English in a way that is
inconsistent with Penman's standard implementation of an inquiry.

The inquiry implementations provided by Penman are written as Lisp functions. Although it is
possible to use any Lisp code, most implementations use a small collection of access functions to find
information contained in the SPL specification or the application's knowledge-base. These access
functions can (and should) be used in developing customized inquiry implementations, or equivalent
functions can be written if the application requires using a different programming language, instead of
Lisp.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node369.html [11.12.2004 21:59:13]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Term-Graph structures

next

up

previous

contents

index

Next: Other Access Functions Up: Data Access Functions used Previous: Data Access Functions
used

Term-Graph structures

When Penman is invoked using an SPL sentence plan, the plan is parsed and stored in internal data
structures. Each term of an SPL plan is stored in a structure called a term-graph. The following
functions can be used to access individual fields of a term-graph structure:

 (term-graph-id term-graph)
 (term-graph-symbol term-graph)
 (term-graph-type term-graph)
 (term-graph-features term-graph)
 (term-graph-parent term-graph)

Each term-graph has a unique identifier (stored as its term-graph-id), which is a Lisp symbol
that yields the term-graph when evaluated. Such term-id symbols are generally returned as the
responses to Penman's identifying inquiries. The term-graph-symbol field of the structure
contains the actual variable or constant that appears in the SPL plan; the values in this field may then
be EQ across several term-graph structures when the plan has co-referential terms. When a term is
a set, this field will contain a list of the elements of the set. The term-graph-type field is a
knowledge-base concept or a list of such concepts. The term-graph-features field is an
association-list in which the keys are feature names, and the values are (typically) term-graph
structures. The term-graph-parent field is a pointer back to the term in which this term was
embedded, or NIL for terms occurring at the top-level of an SPL plan.

Note: some aspects of SPL interpretation rely on particular concepts being available in the
version of the upper model that is loaded. This enables the SPL interpreter to state that it has
recognized, for example, `sets', and to distinguish upper model `relations' from inquiry
preselections. Changing the upper model so that it does not include the following concepts can,
therefore, lead to unexpected consequences. The required concepts are: um-set,
disjunctive-set, two-place-relation: see Section 12.4.2.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node370.html [11.12.2004 21:59:18]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Other Access Functions

next

up

previous

contents

index

Next: Knowledge representation interface functions Up: Data Access Functions used Previous: Term-
Graph structures

Other Access Functions
The following functions are also used to gain access to various kinds of information with respect to SPL
term-graph structures.

(fetch-atomic-feature feature-name term-id)
Returns the symbol that is the value of the feature-name feature of term-id. It is used with
features, such as :lex, which have atomic values. (fetch-feature feature-name term-
id)
Returns the term-graph-id of the term that is the value of the feature-name feature of term-
id.

(fetch-feature-symbol feature-name term-id)
Returns the term-graph-symbol of the term that is the value of the feature-name feature of
term-id.

(fetch-minimal-relation relation-name term-id)
Returns either the value of the relation-name feature of term-id, or a reified relation of type
relation-name from the value of the :relations feature of term-id. Only reified relations
which have a minimal set of features (nothing other than :domain and :range) are returned. The
caller will not know whether the returned value is the relation's range or a reified relation.

(fetch-non-minimal-reified-relation relation-name term-id)
Returns a reified relation of type relation-name from the :relations feature of term-id.
Only reified relations which have a non-minimal set of features (something in addition to :domain
and :range) are returned.

(fetch-reified-relation relation-name term-id)
Returns a reified relation (either minimal or non-minimal) of type relation-name from the
:relations feature of term-id.

(fetch-relation relation-name term-id)
Returns either the value of the relation-name feature of term-id, or a reified relation of type
relation-name from the value of the :relations feature of term-id. The caller will not
know whether the returned value is the relation's range or a reified relation.

(fetch-relation-spec term-id relation-name new-term-id)
Returns a reified relation of type relation-name, reifying a non-reified relation if necessary. The
relation may be found either

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node371.html (1 von 3) [11.12.2004 21:59:25]

Other Access Functions

● non-reified: as the relation-name feature of term-id, or
● reified: as a value of the :relations feature of term-id.

When a non-reified relation is found, then new-term-id provides an identifier to be used for a
newly constructed reified relation.

(fetch-relation-range relation-name term-id)
Returns either the value of the relation-name feature of term-id, or the value of the :range
feature of a reified relation of type relation-name from the :relations feature of term-id.

(fetch-subc-feature feature-name term-id)
Returns the term-graph-id of the term that is the value of the feature-name feature of term-
id, or any feature which specializes feature-name. If term-id is not bound, look for feature-
name in some co-referential term.

(get-global-terms term-id)
Returns the ids of all terms from *plan-graphs* (the current sentence plan) that are co-referential
with term-id.

(get-symbol-term term-id)
Returns the id for a term that is co-referential with term-id.

(global-fetch-feature feature-name term-id)
Returns the value of a feature of type feature-name from term-id, or from some term that is co-
referential with term-id, if no such feature is found in term-id.

(term-eq-p term1 term2)
Predicate is true if term1 and term2 are co-referential (i.e., either they are identical atoms, or they
are terms having the same term-graph-symbol).

(term-role-p term-id1 term-id2 role)
Predicate is true if term-id2 participates in a role relation with term-id1.

(term-type-p term-id given-type optional (non-local-test? t))
Predicate is true if given-type is the same as or a superc of the type of term-id. When non-
local-test? is true, then look also at the types of any terms that are co-referential with term-id.

next

up

previous

contents

index

Next: Knowledge representation interface functions Up: Data Access Functions used Previous: Term-
Graph structures

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node371.html (2 von 3) [11.12.2004 21:59:25]

Other Access Functions

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node371.html (3 von 3) [11.12.2004 21:59:25]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Knowledge representation interface functions

next

up

previous

contents

index

Next: About this document Up: No Title Previous: Other Access Functions

Knowledge representation interface
functions

All interaction between KPML and a supporting knowledge representation language is managed via the
following interface functions. Using a knowledge representation other than Loom therefore requires

these functions to be redefined. gif A version of the upper model should then also be prepared in the
target knowledge representation.

Loom makes a distinction between concepts and relations; if an alternative knowledge representation
language does not make this distinction, then the corresponding pair of functions kb-
getnamedconcept and kb-getnamedrelation can receive the same implementation. The
linking between domain concepts and lexical items described above (Section 12.2.13) is defined
solely in terms of these interface functions and so does not need additional adjustment.

● KB-CONCEPTDISJOINT?, Function (C1 C2)

Returns true if concepts C1 and C2 belong to disjoint classes.
● KB-ENTITY?, Function (INSTANCE)

Returns true if instance is a knowledge representation instance.
● KB-GETCONCEPTNAME, Function (CONCEPT)

Returns a print name for the knowledge representation concept concept.
● KB-GETNAMEDCONCEPT, Function (CONCEPT)

Returns the knowledge representation concept that has the print name concept.
● KB-GETNAMEDRELATION, Function (RELATION)

Returns the knowledge representation relation that has the print name relation.
● KB-IMMEDIATESUBCS, Function (CONCEPT)

Returns the immediate subconcepts of the concept concept (ignoring any internal system-
defined concepts that may appear).

● KB-IMMEDIATESUPERCS, Function (CONCEPT)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node372.html (1 von 2) [11.12.2004 21:59:29]

Knowledge representation interface functions

Returns the immediate superconcepts of the concept concept (ignoring any internal system-
defined concepts that may appear).

● KB-PACKAGE, Function

Returns for LOOM 2.0, the Lisp package of the current knowledge base and for LOOM 2.1, the
current knowledge base context name. This simply ensures that the concept access functions
try placing any symbols with which they are presented as arguments in appropriate packages.

● KB-SUPERP, Function (C1 C2)

Returns true if the concepts or relations C1 and C2 stand in a super-type relationship.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node372.html (2 von 2) [11.12.2004 21:59:29]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

About this document ...

next

up

previous

contents

index

Up: No Title Previous: Knowledge representation interface functions

About this document ...
This document was originally generated using the LaTeX2HTML translator Version 96.1 (Feb 5,
1996) Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit,
University of Leeds.

The command line arguments were:
latex2html kpml-doc.tex.

The translation was initiated by Fabio Rinaldi on Tue Aug 20 16:43:46 MET DST 1996.
The HTML was then massaged by hand by Fabio Rinaldi and John Bateman.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node373.html [11.12.2004 21:59:32]

http://www-dsed.llnl.gov/files/programs/unix/latex2html/manual/
http://cbl.leeds.ac.uk/nikos/personal.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

KPML documentation

next

up

previous

contents

index

Next: Contents

KPML Development Environment

Multilingual linguistic resource
development and sentence generation

Release 1.0 (September 1996)

Current KPML patch level: 1.0.43 (May 30, 1997).

John Bateman
e-mail: j.a.bateman@stir.ac.uk

KPML versions up to 1.0 were developed at the:
Institut für integrierte Publikations- und Informationssysteme (IPSI)
Project KOMET
German Centre for Information Technology (GMD)
Dolivostr. 15, Darmstadt, Germany.

Further development (1.1 and PC-versions) is continuing at the:
Department of English Studies
University of Stirling
Stirling, FK9 4LA, Scotland

The KPML (Komet-Penman Multilingual) development environment is a system for developing and
maintaining large-scale sets of multilingual systemic-functional linguistic descriptions (as originally
set out in Bateman et al. (), Bateman et al. () and Matthiessen et al. ()), and for using such resources
for text generation. More generally, the intended purposes of KPML are:

● to offer generation projects large-scale, general linguistic resources which:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (1 von 11) [11.12.2004 21:59:49]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-patches.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=j.a.bateman@stir.ac.uk&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML
http://www.darmstadt.gmd.de/IPSI/
http://www.darmstadt.gmd.de/publish/komet/

KPML documentation

❍ are well tested and verified in their coverage,
❍ possess standardized input and output specifications,
❍ and are appropriate for practical generation;

● to offer generation projects a basic engine for using such resources for generation;
● to encourage the development of similarly structured resources for languages where they do

not already exist,
● to provide optimal user-support for undertaking such development and refining general

resources to specific needs;
● to minimise the overhead (and cost) of providing texts in multiple languages;
● to encourage contrastive functional linguistic work;
● to raise awareness and acceptance of text generation as a useful endeavor.

This document provides complete instructions for using the system for developing and maintaining
linguistic resources for natural language generation.

The sources of the current public release of the system can be found in the KPML directory on the
IPSI anonymous ftp server. Use is free for academic and research purposes. Users are asked to make
available any developed resources for the benefit of others. A linguistic resource development group
is currently being formed.

NOTE: this documentation is also available as a hardcopy manual. Minor differences may
develop between the two versions; these differences will be added to a special section. In
addition, figures and screendumps are generally replaced in this version by their color versions.
This has not yet been carried out for all screendumps, but is happening.

● Acknowledgements
● Differences to the hardcopy version
● Contents
● List of Figures
● List of Tables
● Index
● Introduction

❍ The purpose of the system
❍ The functionality of the system
❍ Overview of the interface organization
❍ Overview of the documentation
❍ Availability of the system
❍ Known bugs/problems
❍ Troubleshooting

● Computational Systemic-Functional Linguistics

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (2 von 11) [11.12.2004 21:59:50]

ftp://www.darmstadt.gmd.de/pub/komet/KPML-1.0/

KPML documentation

❍ The linguistic system
■ Depth and Breadth

■ Stratal organization
■ Metafunctions
■ Functional Regions

■ Intra-stratal organization: choice and delicacy; structural realization
■ Inter-stratal organization: interfaces

❍ A generic computational systemic functional system
❍ A specific instantiation: the Penman-style architecture

■ The generation process: overview
■ Network traversal
■ Accessing semantic information
■ Stopping traversal: bottoming out

❍ Pointers to further information
● Installation and Startup

❍ Installing the KPML system
❍ Installing the Emacs/Mule-interface
❍ Installing the released linguistic resources
❍ KPML system version maintenance: PATCHES
❍ Making an executable image of the system
❍ KPML resource version maintenance: RESOURCE PATCHES

● Notational conventions in this document
● The KPML root interface windows

❍ Introduction
❍ The `new-style' root window: starting up
❍ The root commands: overview
❍ General System Behaviour

■ Environment Directories
■ Flags

❍ General Multilingual Operations and Modes
❍ Focusing Operations

■ Linguistic object focusing
■ Language focusing
■ Region focusing

❍ Loading existent linguistic resources
■ Simple resource set loading
■ General commands for loading linguistic resources

■ Loading particular kinds of linguistic objects
■ Loading modes: overwriting and merging
■ Loading and the multilingual modes

❍ Resource clearing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (3 von 11) [11.12.2004 21:59:50]

KPML documentation

❍ Saving and Creating linguistic resources
■ Simple resource set saving
■ General commands for saving linguistic resources

■ Monolingual saving
■ Contrastive saving
■ Multilingual saving

■ Inheriting language definitions
■ Automatic lexical item acquisition and saving
■ Creating unconditionalized linguistic resources
■ Changing the Lisp package of inquiry implementations

❍ Interface suspension, exiting, etc.
■ Quiting the interface
■ Suspending the interface
■ (Re-)Activating the interface
■ Clearing the interface windows

● The KPML Inspector Window
❍ Overview of Commands
❍ Graphing systemic networks

■ Basic graphing options and commands
■ Quit Resource Grapher
■ Printgraph
■ Show examples with collected features
■ Clear Collected Features
■ Display Modes
■ Mail Intention to Work

■ Producing graphs for inclusion as figures in documents
■ Mouse activated resource graph options

■ Showing a full system definition
■ Showing the realization statements of a feature
■ Showing the chooser associated with a system
■ Collecting/Discollecting features
■ Pruning the displayed graph
■ Redisplaying a graph
■ Spawning further graphs

■ Graphing regions
■ Contrastive and multilingual graphing

■ Monolingual graphing
■ Contrastive graphing
■ Multilingual graphing

❍ Inspecting individual object definitions
■ Introduction

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (4 von 11) [11.12.2004 21:59:50]

KPML documentation

■ Display commands
■ Print System
■ Print Chooser
■ Print Inquiry
■ Print Inquiry Implementation
■ Print Lexical Item
■ Print Concept
■ Print Relation

■ Definition displaying and the multilingual modes
■ Monolingual definition printing
■ Contrastive definition printing
■ Multilingual definition printing

❍ Object selection according to specified criteria
■ `Who has' selections

■ Who has as input
■ Who has as output

■ `Who can' selections
■ Who can lexify
■ Who can inflectify
■ Who can classify
■ Who can insert
■ Who can order
■ Who can partition
■ Who can preselect
■ Who can ask
■ Who can identify
■ Who can pose identifying inquiry

■ Examples Using Features
❍ Direct inspection and information chains

■ Introduction
■ Inspection operations on grammatical systems

■ Printing system definition
■ Print associated chooser
■ Graph Grammar starting from system

■ Inspection operations on grammatical features
■ Displaying usage of grammatical features
■ Who has as input
■ Who has as output
■ Show path to
■ Show chooser of feature
■ Graph from feature

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (5 von 11) [11.12.2004 21:59:50]

KPML documentation

■ Collect feature
■ Uncollect feature
■ Clear collected features

■ Inspection operations on choosers
■ Print chooser
■ Show inquiries of chooser
■ Systems of chooser

■ Inspection operations on inquiries
■ Print inquiry
■ Print implementation
■ Who can ask
■ Who can pose identifying inquiry

■ Inspection operations on lexical items
■ Inspection operations on SPL terms
■ Inspection operations on examples

❍ Overview of information inspection chains
● The KPML Development Window

❍ Introduction
❍ Window Layout
❍ Overview of commands
❍ Generation: basics

■ Introduction to generation with KPML
■ Starting generation
■ Generation and the multilingual modes

■ Monolingual generation
■ Contrastive generation

■ Semantic defaults and macros
■ Run-time cautions
■ Run-time warnings
■ Running modes
■ Boundary conditions

❍ Tracing and debugging during generation
■ Introduction to generation debugging under KPML
■ Generation tracing modes

■ Show Constituent Starts
■ Show System And Inquiry Activity
■ Show Why System Is Firing
■ Show Disabled Candidate Systems
■ Show System Entry Dependencies
■ Show Preselections
■ Show Immediate Realizations

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (6 von 11) [11.12.2004 21:59:50]

KPML documentation

■ Show Lexical Selection
■ Show Lexical Features
■ Show Ordering Constraints
■ Show Ordering Events
■ Show Ordering Results
■ Show Associations
■ Show Inquiry Answer Source
■ Show entailed inquiry response

■ Generation process control options
■ Realize Selectively
■ Realize until constituent number
■ Single Step
■ Enter Debugger on Warnings

■ Generation result focusing modes
■ Cumulate System and Inquiry Activity
■ Update Example Record Fields

■ Viewing focused results
■ The cumulative history window commands
■ Example of use

❍ Activating result focusing and tracing for particular linguistic objects
■ Activation of tracing

■ Individual system tracing
■ Individual chooser tracing
■ Individual inquiry tracing

■ Clearing tracing selections
❍ Graphical representation of systemic network traversal

■ Traversal and resource graphs
■ Dynamic traversal tracing

❍ Additional generation process control options
■ Disabling and enabling systems
■ Pausing on inquiries
■ Pausing and restarting generation

❍ Inspecting the results of generation: Graph Structure
■ Introduction to structure graphs
■ Structure Grapher Options
■ Operations available on structure constituents

■ Selection expression
■ Preselections
■ Orderings
■ Lexical constraints
■ Associations

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (7 von 11) [11.12.2004 21:59:50]

KPML documentation

■ All structural constraints
❍ Inspecting the results of generation: Operations on the produced strings or textual

structure displays
❍ Switching Languages
❍ Summary of generation process information chains
❍ How to debug resources: a sketch of a method

● The `old-style' KPML interface
❍ Description of the interface `sub-windows'
❍ Basic Old-Style Interface Operations

■ Clear
■ Flags
■ Pause
■ Quit
■ Resume
■ Reset
■ Show Linguistic Object
■ Generation Display Modes
■ Resource Maintenance
■ Multilingual Operations
■ Graph Grammar
■ Graph Sentence Structure
■ Ready SPL Defaults
■ Generate Again

❍ Further type-in commands
■ Abort
■ Environment Directories
■ Show Path To
■ Evaluate Lisp Expression

❍ Various mouse-click triggered commands
● Static Integrity Checks: Resource maintenance

❍ Background concepts
■ Static tests during resource loading
■ Static tests on whole resource set

● Resource Verification: Example Sets and Test Suites
❍ Example sets and test suites
❍ The example operations

■ Load Examples
■ Write Examples
■ Clear Examples
■ Generate from example SPL
■ Graph example structure

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (8 von 11) [11.12.2004 21:59:51]

KPML documentation

■ Display generated string
■ Show examples with features
■ Copy examples with new names
■ Delete some examples
■ Example runner

■ Starting the example runner
■ Levels of detail while example running
■ Low detail example running
■ Medium detail example running
■ High detail example running

■ Features used in examples survey
❍ Operations on example strings and textually displayed structures

■ Operations on displayed strings
■ Show corresponding fundle
■ Graph corresponding constituent and below
■ Inspect selection expression
■ Inspect corresponding semantic term
■ Partial re-generation

■ Operations on displayed structures
■ Graph this constituent and below
■ Show selection expression
■ Show corresponding semantic term
■ Generate again up to but not including this constituent

❍ Full summary of linguistic resource information chains
● Maintenance: Resource Patching

❍ Introduction
❍ Patching and loading linguistic resources
❍ Patching and saving linguistic resources
❍ Some further consequences of using the patching facility
❍ Modifying linguistic resources
❍ Example record versioning
❍ Acquiring lexical items

● Resource Organization and Definition Formats
❍ Directory structure and contents
❍ Resource definition formats

■ Resource definition files
■ General language property declarations

■ Morphology style declarations
■ Standard default environments
■ Language-font associations
■ Disabling systems

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (9 von 11) [11.12.2004 21:59:51]

KPML documentation

■ Language variety range declarations
■ Systems
■ Realization Statements

■ Introduction
■ Basic realization constraints
■ User-defined realization operators
■ Morphological realization constraints

■ Choosers
■ Inquiries
■ Lexicons
■ Examples
■ Punctuation
■ Non-systemic system dependencies
■ Default orderings
■ Domain concepts and links with the lexicon
■ SPL macros and defaults

❍ Language variety conditionalization
❍ Requirements for resource definitions

■ Special inquiries
■ Special semantic concepts and relations

● Accessing external information sources
❍ Semantic information from inquiry implementations
❍ External information from the lexicon
❍ Morphological information from external components

● Using KPML without the window interface
❍ Blackbox operation as a tactical generator
❍ Bookkeeping functions

■ Switching languages
■ Establishing network connectivity
■ Inquiry default initialization
■ General initialization

❍ Multilingual behaviour flags
❍ Development tools

■ Linguistic Resource Loading Operations
■ Generating the example set
■ Modifying the resources
■ Saving the resources

❍ Using the mouseable structures for mousing and mark-up
■ The structure produced
■ Conditionalization of mouse sensitivity
■ Specifying additional links in the SPL: annotations

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (10 von 11) [11.12.2004 21:59:51]

KPML documentation

❍ Window startup functions
● Faster Generation

❍ Strictly Monolingual Generation
❍ Knowledge base package reduction
❍ Compilation of inquiry implementations

● Establishing and using a generation server
❍ Creating a KPML generation server
❍ Creating a KPML client from Lisp
❍ An example of a KPML Lisp client: a WWW-KPML server

● References
● Information display modes and corresponding internal flags

❍ More detailed tracing and display modes
❍ Loading and storing modes
❍ Miscellaneous global variables

● Data Access Functions used by Inquiry Operator Implementations
● Knowledge representation interface functions
● About this document ...

next

up

previous

contents

index

Next: Contents

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/kpml-doc.html (11 von 11) [11.12.2004 21:59:51]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: B

...A ...B ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X

...Y ...Z

NO ENTRIES UNDER B.

John Bateman -- GMD/IPSI --
Darmstadt, Germany

mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-B.html [11.12.2004 22:00:49]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: D

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

D
define-language-font-requirements (macro)

Language-font associations
define-language-morphology-requirements (macro)

Morphology style declarations
define-language-standard-defaults (macro)

Standard default environments
Delicacy

Intra-stratal organization: choice and
disable-system (lisp function)

Disabling systems
:Disable system (KPML command)

Show Disabled Candidate Systems, Disabling and enabling systems
Disabling systems

Disabling and enabling systems
Display and contrastive mode

Contrastive definition printing
Display and multilingual mode

Multilingual definition printing
:Display generated string (KPML command)

Starting generation, Display generated string
:Display modes (KPML command)

Graphing systemic networks, Printgraph, Traversal and resource graphs, Display Modes
:Display options (KPML command)

Display options, Individual chooser tracing
Dutch

The functionality of the
Dynamic tracing

Dynamic traversal tracing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-D.html (1 von 2) [11.12.2004 22:00:55]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-D.html (2 von 2) [11.12.2004 22:00:55]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: E

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

E
Emacs

Installing the Emacs/Mule-interface, Modifying linguistic resources
Emacs (interaction)

Modifying linguistic resources
:Enable system (KPML command)

Show Disabled Candidate Systems
Enabling systems

Disabling and enabling systems
end-region (macro)

Resource definition files
ensure-language-range (macro)

Language variety range declarations
:Environment directories (KPML command)

Environment Directories, Simple resource set loading, Monolingual saving, Multilingual
saving, Printgraph, Starting the example runner, Directory structure and contents

Environment domains
Inquiries, Examples

:Example Operations (KPML command)
The example operations

❍ Clear examples: Resource clearing, Clear Examples
❍ Copy examples with new names: Copy examples with new
❍ delete some examples: Delete some examples
❍ Example runner: Monolingual generation, Starting the example runner
❍ Examples using features: Show examples with features, definition: Examples Using

Features
❍ Feature survey: Features used in examples
❍ Generate from example SPL: Generate from example SPL
❍ Graph example structure: Graph example structure
❍ Load examples: Loading particular kinds of , Load Examples
❍ Show examples with features: Show examples with features

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-E.html (1 von 2) [11.12.2004 22:01:03]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

❍ Write examples: Simple resource set saving, Write Examples
Example records

❍ definition: Examples
❍ general: Inspection operations on examples, Running modes, Inspecting the results of ,

Example sets and test , Example sets and test , Graph example structure, Examples
❍ mouseable structures: Using the mouseable structures
❍ updating: Update Example Record Fields, Example sets and test , Modes and internal

flags, Modes and internal flags
❍ versions: Copy examples with new , Example record versioning

Examples
Examples, Examples Using Features

Exiting
Quiting the interface

Example runner
● general: Example runner
● level of detail: Levels of detail while
● errors: Starting the example runner
● features used:Features used in examples
● flags: Starting the example runner
● starting from lisp: Generating the example set
● high detail: High detail example running
● implementation modes:

Examples
● low detail: Low detail example running
● medium detail:Medium detail example running
● new lexical items: Automatic lexical item acquisition
● results directory: Environment Directories, Starting the example runner
● useage: Example sets and test

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-E.html (2 von 2) [11.12.2004 22:01:03]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: F

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

F
Fast generation methods

❍ compiling inquiries: Compilation of inquiry implementations
❍ monolingual generation: Strictly Monolingual Generation
❍ overview: Faster Generation
❍ package reduction: Knowledge base package reduction

FAT (function association table)
Show Associations, Show Associations, Choosers, Inquiries

Features
Term-Graph structures

fetch-atomic-feature (lisp function)
Other Access Functions

fetch-feature (lisp-function)
Other Access Functions

fetch-feature-symbol (lisp function)
Other Access Functions

fetch-minimal-relation (lisp function)
Other Access Functions

fetch-non-minimal-reified-relation (lisp function)
Other Access Functions

fetch-reified-relation (lisp function)
Other Access Functions

fetch-relation (lisp function)
Other Access Functions

fetch-relation-range (lisp function)
Other Access Functions

fetch-relation-spec (lisp function)
Other Access Functions

fetch-subc-feature (lisp function)
Other Access Functions

:Flags (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-F.html (1 von 2) [11.12.2004 22:01:10]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Flags, The root commands: overview, Automatic lexical item acquisition , Print Chooser,
Starting generation, Starting generation, Starting generation, Inspecting the results of , Levels
of detail while , Operations on displayed strings, Inspect selection expression, Operations on
displayed structures, Show selection expression, Acquiring lexical items

:Focusing operations (KPML command>
❍ general: The root commands: overview, Introduction
❍ definition: Focusing Operations
❍ examples: Loading particular kinds of
❍ language focusing: Language focusing
❍ linguistic object focusing: Linguistic object focusing
❍ releasing object focusing: Linguistic object focusing

Force a choice and continue
Boundary conditions

Function bundle (fundle)
Realize Selectively, Introduction to structure graphs, Show Constituent Starts, Introduction

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-F.html (2 von 2) [11.12.2004 22:01:10]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: G

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

G
Gates

Graphing systemic networks
:Generate again (KPML command)

Pause, Starting generation, example: Copy examples with new
:Generate from example SPL (KPML command)

Graph example structure
:Generate sentence (KPML command)

Simple resource set loading, Starting generation, Overview of commands, Monolingual
generation, Contrastive generation, Running modes, Pause, Generate from example SPL,
Graph example structure, example: Copy examples with new

Generation server
Establishing and using a

German
The functionality of the

get-global-terms (lisp function)
Other Access Functions

get-symbol-term (lisp function)
Other Access Functions

global-fetch-feature, lisp function
Other Access Functions

:Grammar consistency tests (KPML command)
Static tests on whole

Graph
Graph from feature

❍ contrastive mode:Contrastive graphing
❍ example:

Graph example structure
❍ generation path: Graphical representation of systemic
❍ multilingual mode:

Multilingual graphing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-G.html (1 von 2) [11.12.2004 22:01:17]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

❍ graphing modes:
Basic graphing options and

❍ graphing modes (content):
Content-oriented resource graph options

❍ graphing modes (layout): Layout and hardcopy oriented
❍ monolingual mode: Monolingual graphing
❍ :graphing networks: Graphing systemic networks
❍ print: Printgraph
❍ printing eps files: Producing graphs for inclusion
❍ graph pruning: Pruning the displayed graph
❍ graphing region: Graphing systemic networks, Graphing regions
❍ graphing grammatical structure: Introduction to structure graphs
❍ graphing grammatical structure (options): Structure Grapher Options

:Graph grammar (KPML command)
Graphing systemic networks, Graph Grammar starting from , Traversal and resource graphs,
Graph Grammar

:Graph region (KPML command)
Graphing regions, Graphing systemic networks

:Graph structure (KPML command)
Introduction to structure graphs, How to debug resources:

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-G.html (2 von 2) [11.12.2004 22:01:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: H

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

H
Hubs (semantic)

Display options, Accessing semantic information, Show Associations, Example sets and test ,
Examples

Hyperlinks
Specifying additional links in input

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-H.html [11.12.2004 22:01:21]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: I

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

I
:id (term-graph slot)

Term-Graph structures
ID-inquiry (identifying inquiry)

Inquiries, Choosers
Ideation base

Metafunctions
Ideational metafunction

Metafunctions, Inquiries
Images (KPML standalone executables)

Making an executable image
Implementation modes (inquiries)

Generate from example SPL
❍ deimplemented: Running modes
❍ implemented:

Running modes, Starting generation
in-language (macro)

Resource definition files
in-region (macro)

Resource definition files
Inheriting linguistic resources

Inheriting language definitions
Input completion

Introduction
Inquiries

❍ defaults: Semantic defaults and macros
❍ definition: Inter-stratal organization: interfaces, Inquiries
❍ editing:Modifying linguistic resources
❍ printing: Print Inquiry

Inquiry implementations
❍ definition:

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-I.html (1 von 2) [11.12.2004 22:01:27]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Running modes
❍ editing: Modifying linguistic resources, Modifying linguistic resources
❍ Lisp packages: Changing the Lisp package
❍ printing: Print Inquiry Implementation

inquiry-implementations.lisp (file)
Directory structure and contents

inquiry-increment.lisp (file)
Directory structure and contents

Interaction base
Metafunctions

Interpersonal metafunction
Metafunctions

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-I.html (2 von 2) [11.12.2004 22:01:27]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: J

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

NO ENTRIES.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-J.html [11.12.2004 22:01:32]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: K

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

K
KB (knowledge base information source)

Inquiries, Inquiries, Examples
Knowledge representation

Data Access Functions used
Komet

The functionality of the
KPML client

An example of a
kpml-kb (Lisp package)

Changing the Lisp package , Changing the Lisp package
kpml:say (Lisp function from KPML client)

Creating a KPML client

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-K.html [11.12.2004 22:01:37]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: L

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

L
Language range

Language variety range declarations
Language focusing

Language focusing
Language focusing (clearing)

Language focusing
Language conditionalization

The functionality of the , Language variety conditionalization
❍ declarations

Resource definition files, Simple resource set loading
:Launch development windows (KPML command)

The root commands: overview, The root commands: overview
Lexical features

Lexicons
Lexical items

❍ automatic creation: Automatic lexical item acquisition
❍ definition: Lexicons
❍ editing: Modifying linguistic resources
❍ printing: Print Lexical Item

Linguistic object focusing
Linguistic object focusing

Linguistic object focusing (clearing)
Linguistic object focusing

Linguistic resources
Installing the released linguistic

Lisp listener
Introduction, The `new-style' root window:

:Load examples (KPML command)
Directory structure and contents

:Load lexicon files (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-L.html (1 von 2) [11.12.2004 22:01:43]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Lexicons
:Load linguistic resources (KPML command)

Simple resource set loading, Linguistic object focusing, Notational conventions in this ,
Monolingual loading, Contrastive loading, Monolingual saving, Contrastive saving,
Multilingual saving, Semantic defaults and macros, Patching and loading linguistic , Patching
and loading linguistic , Directory structure and contents, Directory structure and contents

load-kpml-patches (Lisp function)
Making an executable image

Loading (focusing on selected linguistic objects)
Loading particular kinds of

Loading linguistic resources
Loading existent linguistic resources

Loom (knowledge representation system)
Installing the KPML system

Lucid Lisp
Availability of the system, Known bugs/problems, Known bugs/problems, Known
bugs/problems, Installation and Startup, Installing the KPML system, Making an executable
image , Quiting the interface, The `old-style' KPML interface, Various mouse-click triggered
commands

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-L.html (2 von 2) [11.12.2004 22:01:43]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: M

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

M
Marked-up generation output

Using the mouseable structures
Merging mode (loading)

❍ merging: Merging mode
❍ overwriting:

Overwriting mode
Make no choice and continue (boundary condition)

Boundary conditions
Metafunction

Metafunctions
Metastrata

A generic computational systemic
modification-specification-id (inquiry)

Special inquiries
Morphology

Morphology style declarations, Morphological realization constraints
Mule (multilingual editor)

Installing the Emacs/Mule-interface, Modifying linguistic resources, Language-font
associations

:Multilingual behaviour modes (KPML command)
General Multilingual Operations, Contrastive loading, General Multilingual Operations ,
The root commands: overview

Multilingual behaviour modes (example)
Loading particular kinds of

Multilingual modes
General Multilingual Operations and ,

Multilingual modes (contrastive)
❍ definition:General Multilingual Operations and
❍ generation: Contrastive generation
❍ graphing: Contrastive graphing

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-M.html (1 von 2) [11.12.2004 22:01:48]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

❍ loading: Contrastive loading
❍ printing: Contrastive definition printing
❍ saving: Contrastive saving

Multilingual modes (monolingual)
General Multilingual Operations and

❍ generation: Monolingual generation
❍ graphing: Monolingual graphing
❍ loading resources:Monolingual loading
❍ printing: Monolingual definition printing
❍ saving resources:

Simple resource set saving, Monolingual saving
Multilingual modes (multilingual)

General Multilingual Operations and
❍ graphing: Multilingual graphing
❍ loading (flag): Multilingual behaviour flags
❍ loading resources: Multilingual loading
❍ printing: Multilingual definition printing
❍ saving (flag): Multilingual behaviour flags
❍ saving resources: Multilingual saving

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-M.html (2 von 2) [11.12.2004 22:01:48]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: N

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

N
Nigel grammar (English)

The functionality of the

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-N.html [11.12.2004 22:01:53]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: O

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

O
Old style user interface

The `old-style' KPML interface
operator code (of inquiries)

Show Inquiry Answer Source
Ordering

❍ defaults: Non-systemic system dependencies, Default orderings
❍ loading from Lisp:Linguistic Resource Loading Operations
❍ patching: Patching and saving linguistic
❍ realization statements: Basic realization constraints
❍ saving from Lisp: Saving the resources
❍ tracing: Show Ordering Constraints, Show Ordering Events, Show Ordering Results,

Orderings, Modes and internal flags, Modes and internal flags, Modes and internal flags

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-O.html [11.12.2004 22:01:58]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: P

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

P
Packages (Lisp)

❍ inquiry implementations: Changing the Lisp package
❍ KPML system: Installing the KPML system
❍ kpml-kb: Changing the Lisp package , Changing the Lisp package
❍ penman: Installing the KPML system
❍ penman-kb: Changing the Lisp package
❍ upper and domain model: Domain concepts and links

Paradigmatic relations
Intra-stratal organization: choice and

:parent (term-graph structure slot)
Term-Graph structures

Patching KPML
KPML system version maintenance:

Patching linguistic resources
Introduction

Path augmentation
Show Preselections

:Pause (KPML command)
Pausing and restarting generation, Resume

:Pause on inquiry (KPML command)
Pausing on inquiries

PC version of KPML
Availability of the system

penman (Lisp package)
Installing the KPML system

penman-kb (Lisp package)
Changing the Lisp package

Penman Text Generation System
The functionality of the

:Print (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-P.html (1 von 2) [11.12.2004 22:02:03]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Introduction
:Print graph (KPML command)

Producing graphs for inclusion
:Print chooser (KPML command)

Showing the chooser associated , Print associated chooser, Show chooser of feature, Print
chooser, Individual chooser tracing, Choosers

:Print graph (KPML command)
Printgraph, Print Chooser, Introduction to structure graphs

:Print inquiry (KPML command)
Print inquiry

Printing
❍ chooser: Print Chooser
❍ concept: Print Concept
❍ inquiry: Print Inquiry
❍ inquiry implementation: Print Inquiry Implementation
❍ lexical item: Print Lexical Item
❍ system: Print System

Punctuation rules
Punctuation

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-P.html (2 von 2) [11.12.2004 22:02:03]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: Q

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

Q
Q-inquiry (branching inquiry)

Choosers, Inquiries
Q-inquiry (example)

Inquiries
:Quit (KPML command)

Quiting the interface, Quit, Introduction to structure graphs
:Quit resource grapher (KPML command)

Quit Resource Grapher

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-Q.html [11.12.2004 22:02:07]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: R

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

R
Rank (definition)

Intra-stratal organization: choice and
Realization statements

Intra-stratal organization: choice and , Introduction
❍ agreement: Basic realization constraints
❍ ask (who can): Who can ask
❍ classify (definition): Basic realization constraints
❍ classify (who can): Who can classify
❍ conflate (definition): Basic realization constraints
❍ display modes: Basic realization constraints
❍ expand (definition): Basic realization constraints
❍ inflectify (definition): Basic realization constraints
❍ inflectify (who can): Who can inflectify
❍ insert (definition): Basic realization constraints
❍ insert (who can): : Who can insert, Who can insert
❍ lexify (definition): Basic realization constraints
❍ lexify (who can): Who can lexify
❍ morphology: Morphological realization constraints
❍ order (definition): Basic realization constraints
❍ order (who can) : Who can order
❍ orderatend (definition): Basic realization constraints
❍ orderatfront (definition): Basic realization constraints
❍ outclassify (definition): Basic realization constraints
❍ partition (definition): Basic realization constraints
❍ partition (who can): Who can partition
❍ preselect (definition): Basic realization constraints
❍ preselect (who can): Who can preselect
❍ showing realizations: Showing the realization statements

:Redisplay (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-R.html (1 von 2) [11.12.2004 22:02:12]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Redisplay
Region (functional regions)

❍ declaration: Resource definition files, Systems
❍ definition: Functional Regions
❍ from Lisp: Linguistic Resource Loading Operations
❍ graphing: Graphing systemic networks, Graphing regions
❍ resource organisation: Directory structure and contents
❍ focusing: Region focusing

:Reset generation modes (KPML command)
Introduction to generation debugging , Generation Display Modes

Resource merging
Merging mode

Resource loading
Loading existent linguistic resources

Resource versioning
Simple resource set saving

:Resume (KPML command)
Pausing and restarting generation

Root of resources
Simple resource set loading

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-R.html (2 von 2) [11.12.2004 22:02:12]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: S

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

S
Selection expression

Network traversal, Introduction to structure graphs
Semantic term

Inspect corresponding semantic term
Server communication file

Creating a KPML generation
:Set default language (KPML command)

General Multilingual Operations and , General Multilingual Operations , Creating
unconditionalized linguistic resources, Patching and loading linguistic , Patching and loading
linguistic , Modifying linguistic resources

:Set language (KPML command)
Switching Languages, Language-font associations, Switching languages

:Show cumulative history (KPML command)
Viewing focused results, Activation of tracing, Individual chooser tracing

:Show examples with collected features (KPML command)
Show examples with collected , Traversal and resource graphs, Display generated string

:Show path to (KPML command)
Show path to, Basic realization constraints

site-specifics.lisp (file)
Making an executable image

SPL defaults
Semantic defaults and macros, Semantic defaults and macros, Standard default environments

SPL defaults (declaration)
SPL macros and defaults

SPL defaults (limitations)
Known bugs/problems

SPL macros
SPL macros and defaults

Starting up the KPML interface
The `new-style' root window:

:Stop pausing on inquiry (KPML command)

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-S.html (1 von 2) [11.12.2004 22:02:17]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Pausing on inquiries
:Store linguistic resources (KPML command)

Linguistic object focusing, Simple resource set saving, Directory structure and contents,
Resource definition files

:suspend (KPML command)
Suspending the interface

:symbol (term-graph structure slot)
Term-Graph structures

Syntagmatic relations
Intra-stratal organization: choice and

System integrity in multilingual graphs
Multilingual graphing

Systems (grammatical)
❍ definition: Systems
❍ disabling: Disabling and enabling systems
❍ editing: Modifying linguistic resources
❍ graphing

Graph Grammar starting from
❍ printing: Print System, Showing a full system

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-S.html (2 von 2) [11.12.2004 22:02:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: T

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

T
Tactical generator

Blackbox operation as a
term-eq-p (Lisp function)

Other Access Functions
term-graph (data structure)

Term-Graph structures
term-graph-features (slot accessor function)

Term-Graph structures
term-graph-id (slot accessor function)

Term-Graph structures
term-graph-parent (slot accessor function)

Term-Graph structures
term-graph-symbol (slot accessor function)

Term-Graph structures
term-graph-type (slot accessor function)

Term-Graph structures
term-resolve-id (inquiry)

Special inquiries
term-role-p (Lisp function)

Other Access Functions
term-type-p (Lisp function)

Other Access Functions
Test suites

❍ definition: The functionality of the , Resource Verification: Example Sets
❍ example runner: Flags
❍ examples: Examples

Text base
Metafunctions

Textual metafunction
Metafunctions, Inquiries

TP

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-T.html (1 von 2) [11.12.2004 22:02:23]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html

Index: A

Inquiries, Examples
:Trace inquiries of chooser (KPML command)

Individual chooser tracing
:Trace inquiry (KPML command)

Individual inquiry tracing
:Trace system (KPML command)

Individual system tracing
Tracing

❍ activation: Activation of tracing
❍ choosers: Individual chooser tracing, Summary of generation process
❍ clearing: Clearing tracing selections
❍ focusing: Introduction to generation debugging
❍ generation: Introduction to generation debugging , Generation tracing modes, Summary

of generation process
❍ generation path: Traversal and resource graphs, Traversal and resource graphs,

Summary of generation process
❍ inquiries: Individual inquiry tracing, Summary of generation process
❍ last generated node: Structure Grapher Options
❍ overview: Summary of generation process
❍ systems: Individual system tracing, Summary of generation process
❍ tty tracing: Installing the KPML system, Information display modes and

Traversal cycle
Realize until constituent number, Show corresponding fundle

Traversal cycle (use)
Partial re-generation

:Traversal graph (KPML command)
Dynamic traversal tracing

Types
Term-Graph structures

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-T.html (2 von 2) [11.12.2004 22:02:23]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: U

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

U
Unconditionalized resources

Installing the KPML system, Creating unconditionalized linguistic resources
:Untrace inquiries of chooser (KPML command)

Individual chooser tracing
:Untrace inquiry (KPML command)

Individual inquiry tracing
:Untrace system (KPML command)

Individual system tracing
Upper model

Accessing semantic information
User model

Metafunctions
user-specifics.lisp (file)

Making an executable image

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-U.html [11.12.2004 22:02:30]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: V

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

NO ENTRIES UNDER V.

John Bateman -- GMD/IPSI --
Darmstadt, Germany

mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-V.html [11.12.2004 22:02:35]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: W

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

W
Warnings

Run-time warnings
where-am-i-id (inquiry)

Special inquiries
:`Who can' commands (KPML command)

see: here
:`Who has' commands (KPML command)

see: here
Window types

Notational conventions in this
:Write lexicon file (KPML command)

Simple resource set saving
WWW

An example of a WWW generation server

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-W.html [11.12.2004 22:02:39]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: X

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

NO ENTRIES UNDER X.
but I'm working on it... :-)

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-X.html [11.12.2004 22:02:49]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: Y

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

NO ENTRIES UNDER Y.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-Y.html [11.12.2004 22:02:54]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Index: A

next

up

previous

contents

Next: Prerequisites Up: No Title Previous: List of Tables

Index: Z

...A ...C ...D ...E ...F ...G ...H ...I ...J ...K ...L ...M ...N ...O ...P ...Q ...R ...S ...T ...U ...V ...W ...X ...Y

...Z

NO ENTRIES UNDER Z.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/index-Z.html [11.12.2004 22:03:12]

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node5.html
http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Installation and Startup

next

up

previous

contents

index

Next: Installing the KPML system Up: No Title Previous: Pointers to further information

Installation and Startup

The current release version of the KPML system will normally be made available as a single
compressed Unix tar file containing the software of the system. Sets of linguistic resources for the
system are available as separate tar-files. It is possible to update the system without affecting locally
developed resources and to obtain linguistic resource updates without having to reinstall the system.
The system and the resources should be seen as two conceptually independent components.

 Note: the current instructions and released version is compatible for installation with Allegro
Common Lisp versions 4.2 and 4.3 with Clim 2.0 and 2.1, and (with reduced eventual
functionality: see Chapter 8) Lucid Common Lisp versions 4.1 and 4.2.1 with Clim 1.0 and 2.0.
Only the Allegro release is fully supported at the time this document was produced. For newer
Allegro or Clim releases consult the ftp-directory for a help file that may contain revised
instructions for loading.

● Installing the KPML system
● Installing the Emacs/Mule-interface
● Installing the released linguistic resources
● KPML system version maintenance: PATCHES
● Making an executable image of the system
● KPML resource version maintenance: RESOURCE PATCHES

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node29.html [11.12.2004 22:03:58]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Installing the KPML system

next

up

previous

contents

index

Next: Installing the Emacs/Mule-interface Up: Installation and Startup Previous: Installation and
Startup

Installing the KPML system

The software of the system is to be found in a file `KPML.tar.Z'.

Restoring the contents of this file will produce a directory structure rooted in the directory KPML. One
file in that directory-- KPML-INSTALLATION.lisp--should be edited in order to inform the
system of its current placement within the user's directory structure: this is done by changing the
pathnames assigned to three global variables. The points to change in `KPML-
INSTALLATION.lisp' are clearly marked. The first gives the address of the KPML system in its new
installation, the second gives the address where LOOM can be found (see below), and the third gives
where the linguistic resources are maintained. The latter directory can also be given when KPML is
running by using the Environment Directories command from the KPML window interface (see
Sections 5.4.1 and 12.1).

Note: the KPML system assumes that it is using the Loom knowledge representation system; this

should therefore also be installed prior to attempting installation of KPML. gif LOOM is available
free of charge from USC/ISI; the versions of LOOM currently supported are both LOOM 2.0 and 2.1.
KPML can then be started with or without a loaded version of Loom present in the Lisp world; if it is
not present, the standard KPML startup functions will attempt to load it, assuming that there is already a

compiled version to be found. gif The version of LOOM taken will be either the one in the image, or
the one reached by the specified pathname (see next paragraph); no additional information needs to be
given to KPML.

Various additional files may be included in the top level KPML directory; these should typically be left
there. Of these files the following are essential:

● defsys.lisp: this contains the system definitions (modules and their component files) for
KPML,

● kpml-package-def.lisp: this contains the definition of the Lisp package used for most
of the KPML source code. The main package is kpml, which, for historical reasons, is a
nickname of the package penman.

● emacs-side-interaction.el: this contains Emacs/Mule commands for interacting
with KPML from Emacs/Mule (cf. Section 3.2).

After making the required changes, loading the file KPML-INSTALLATION.lisp asks the user

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node30.html (1 von 4) [11.12.2004 22:04:09]

Installing the KPML system

whether the system is to be compiled. If the system is being newly installed, the answer to this
question should be yes (`y'). Subsequently, when the compiled version of the system has been
established, this is no longer necessary. Compiling and loading should be done from a Common Lisp
process, ideally where both LOOM and CLIM (Version 1.0 or 2.0) have already been loaded. For Lucid
Common Lisp it is also necessary to use the Lisp development system rather than the production

system. gif

During compilation of KPML, the user is asked to decide which components of the system overall
should be compiled. This takes place in a short dialogue where the user is asked to answer y or n to
several questions. Following compilation, the user is asked if KPML should be loaded.

During loading of KPML, the user is asked to configure the particular instantiation of the system to be
constructed. The decisions here concern whether the window interface is to be included, what set of
languages are to be expected, etc. The answers required should be clear from the questions posed. The
following configuration paths are possible:

● Setup window interface?: if yes, then a version of the KPML window interface will be
compiled/loaded.

❍ Load new style interface?. This is only an option if KPML is being compiled/loaded
under Allegro Common Lisp (at least version 4.2) with CLIM 2.0 present. If this is not
the case, this question will not be asked and the old-style interface will be loaded.

Opting not to load the window interface means that the system will provide all output and
tracing information directly to the standard output stream as if it were a simple teletype.
Chapter 14 describes how to use much of the generation functionality of KPML without the
window interface.

● Load general upper model?: Since most users will need the upper model in place regardless of
the linguistic resources they are using, it is possible to load the upper model at this
configuration stage. The current upper model is usually to be found in the Semantics
subdirectory of the GENERAL language variety of the current release of the KPML resources.
This is necessary for interpretation of the semantic input specifications for the grammatical
resources unless the user has redefined the interpretation processes in some way.

● Load general inquiry implementations?: The inquiry implementations are also mostly shared
across language resources; therefore, it is also possible to load the general inquiry
implementations at this stage. The general inquiry implementations will usually be found in the
Inquiry-implementations subdirectory of the GENERAL language variety of the
current release of the KPML resources.

● What range of languages is to be maintained?: provides the initial multilinguality
configuration for KPML.

The consequences of this question and its answer are as follows. At any time KPML is only
aware of some finite set of named language varieties. This set is used to define the maximal
range of applicability for language resources which have no language conditionalization (see
Section 12.3 for details of conditionalization). When language conditionalization is not
present, a specification is assumed to hold for all languages, where `all' is defined to be the
current set of language varieties known. Therefore, if the initial configuration sets up the

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node30.html (2 von 4) [11.12.2004 22:04:09]

Installing the KPML system

known varieties to be English and German, and then an unconditionalized language resource is
loaded, this resource will be declared applicable for English and German only. If then the
languages known to KPML are extended to include French (for example by creating a new
language resource by inheritance--Section 5.9.3), the original unconditionalized resources will
not then be considered applicable to French. If, however, the original configuration included
French, then when the unconditionalized resources are loaded, they would be considered
applicable to French.

An example interaction is shown in Figure 3.1.

Figure: Example configuration dialogue

Following successful loading, the user can make an image of the system as is, or can select particular
sets of linguistic resources to be included in such an image using the multilingual operations described
below (Sections 5.7 and 5.9.1).

The recommended sequence for a new installation is therefore as follows.

1. Edit pathnames in `KPML-INSTALLATION.lisp'.

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node30.html (3 von 4) [11.12.2004 22:04:09]

Installing the KPML system

2. Enter an appropriate Lisp system with CLOS
gif and CLIM already loaded (LOOM may also be

pre-loaded without ill effect.)
3. Load KPML-INSTALLATION.lisp.
4. Answer `yes' to the question should the KPML system be compiled.
5. Configure the system compilation as required.

6. Answer `yes' to the question should the KPML system be loaded. gif

7. Configure the system as required.
8. (For CLIM-1: If the window interface is being loaded, answer when prompted whether the

display is monochrome or color.)
9. Set the current Lisp package to kpml, with (in-package :kpml).

10. Start up the window interface with (kpml-i::startup).
11. (For CLIM-2: answer when prompted whether the display is monochrome or color.)
12. If no linguistic resources and no upper model have been specified in the configuration stage,

then an upper model should normally be loaded; most resources released will rely on some
version of an upper model being present.

13. Load desired set of linguistic resources.
14. Make an image of the system for subsequent use (KPML provides its own function for this as

described below).

next

up

previous

contents

index

Next: Installing the Emacs/Mule-interface Up: Installation and Startup Previous: Installation and
Startup

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node30.html (4 von 4) [11.12.2004 22:04:09]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Installing the Emacs/Mule-interface

next

up

previous

contents

index

Next: Installing the released linguistic Up: Installation and Startup Previous: Installing the KPML
system

Installing the Emacs/Mule-interface

KPML under Allegro Common Lisp (4.2 and newer) can provide direct editing facilities using GNU
Emacs or GNU Mule (cf. Section 11.5). To do this, the appropriate Emacs commands must be defined.
The KPML release directory contains an additional file called: emacs-side-interaction.el.
This must be loaded into Emacs/Mule to provide the necessary commands.

This can either be done explicitly as required with the Emacs command Meta-X load-file, or
automatically whenever Emacs is started by placing an appropriate (load
".../emacs-side-interaction") into the Emacs initialization file (.emacs); this is
typically found in the user's home directory. No further action on the KPML-side is required.

Alternatively, the commands can be loaded into Emacs/Mule by issuing the KPML function call (kpml-
i::editing-on) from the KPML Lisp listener (i.e., an Allegro Lisp listener). This also loads the
necessary Emacs command.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node31.html [11.12.2004 22:04:14]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Installing the released linguistic resources

next

up

previous

contents

index

Next: KPML system version maintenance: Up: Installation and Startup Previous: Installing the
Emacs/Mule-interface

Installing the released linguistic
resources

The currently released multilingual resources for use with KPML are to be found in a file `Rn.tar.Z'.
Where Rn is R1, R2, etc. depending on the current release of the KPML resource set.

Restoring the contents of this file will produce a directory structure rooted in the directory Rn. This
directory should be placed appropriately with respect to the directory given by the value of the *root-
of-resources* global variable edited in
KPML-INSTALLATION.lisp. As long as this constraint is satisfied, no changes are necessary to the
resource files themselves.

The tar file for the complete resource set is quite large and it may not always be the case that all
languages of the resource set are of interest to any particular user. It is possible to select particular
language sets and combinations directly from the resource descriptions reachable from the KPML WWW
home page:

URL=``http://www.darmstadt.gmd.de/publish/komet/kpml.html''.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node32.html [11.12.2004 22:04:17]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

KPML system version maintenance: PATCHES

next

up

previous

contents

index

Next: Making an executable image Up: Installation and Startup Previous: Installing the released
linguistic

KPML system version maintenance:
PATCHES

From time to time patches will be issued that correct bugs that have been found in the system or
which make new facilities available prior to a new full release. Patches will be placed in the ftp
directory for the appropriate KPML release; they will also be accessible from the World-Wide Web
with details of the patches included. In all cases, patches are obtained by retrieving a compressed tar
file and placing this in the KPML installation top directory. No further action is required. When a KPML
image is started, it will automatically install and load the latest patch file that it finds in the top
directory. The patch file itself is then removed and subsequent restarts of the image simply load the
installed patches.

Patch files all have names of the form:

kpml-patchesYYYYMMDD.tar.Z

The YYYYMMDD gives the date of release of the patch file; new patch files completely replace
previous patch files. The new patch file always includes all previous patches as well as the new ones.

gif

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node33.html [11.12.2004 22:04:25]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

Making an executable image of the system

next

up

previous

contents

index

Next: KPML resource version maintenance: Up: Installation and Startup Previous: KPML system
version maintenance:

Making an executable image of the
system
 The KPML function make-kpml-image is available under Allegro and Lucid Common Lisps. In
each case, this function makes an appropriate executable image and leaves it in the file whose name is
given (as a string) as argument to the function. Images made in this way will automatically load any
released patches on start up, will display the configured state of the system, and enter the window
interface if present. The image can also be started as a Lisp subprocess under GNU Emacs, which is
the recommended way of working with KPML.

 Under any other Lisp, the user should ensure that an up to date version of the patches file has been
placed in the KPML top directory. These can be installed (if necessary) and loaded by issuing the KPML
function call (kpml::load-kpml-patches). This should be done following loading of the KPML
system and prior to working with it (including bringing up the window interface).

Following loading of the KPML-patches, site-specific patches/additions may be automatically loaded
when starting up an image made with (make-kpml-image). For this to occur, the additions must
be placed in a file site-specifics.lisp in the top-level KPML directory. Finally, user-specific
additions, customizations, default working environments, etc. can also be automatically loaded by
including a file kpml-user-specifics.lisp in the user's home directory.

NOTE: it remains the responsibility of the user to ensure that all such additions are compatible
with KPML-updates.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node34.html [11.12.2004 22:04:29]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

KPML resource version maintenance: RESOURCE PATCHES

next

up

previous

contents

index

Next: Notational conventions in this Up: Installation and Startup Previous: Making an executable
image

KPML resource version maintenance:
RESOURCE PATCHES

KPML provides methods for maintaining patch levels for a set of linguistic resources and for
constructing patch files automatically on the basis of changes made to linguistic resources during a
session with the system. The details of this mechanism are described in Chapter 11 below.

John Bateman -- GMD/IPSI -- Darmstadt, Germany
mail to bateman@gmd.de

http://www.darmstadt.gmd.de/publish/komet/kpml-1-doc/node35.html [11.12.2004 22:04:32]

http://www-cui.darmstadt.gmd.de/cgi-bin/email.pl?address=bateman@gmd.de&&link=http://www.darmstadt.gmd.de/publish/komet/kpml-doc/kpml-doc.html&linkname=KPML

	DOCUMENT HOME
	The KPML documentation

	www.darmstadt.gmd.de
	Differences to the hardcopy version
	Notational conventions in this document
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Index
	Introduction
	Computational Systemic-Functional Linguistics
	The purpose of the system
	The functionality of the system
	References
	Overview of the interface organization
	Overview of the documentation
	Availability of the system
	Known bugs/problems
	Troubleshooting
	The linguistic system
	Depth and Breadth
	Stratal organization
	Metafunctions
	Intra-stratal organization: choice and delicacy; structural realization
	Functional Regions
	Inter-stratal organization: interfaces
	A generic computational systemic functional system
	A specific instantiation: the Penman-style architecture
	The generation process: overview
	Network traversal
	Accessing semantic information
	Stopping traversal: bottoming out
	Pointers to further information
	Footnotes
	The KPML root interface windows
	Introduction
	The `new-style' root window: starting up
	The root commands: overview
	General System Behaviour
	Environment Directories
	Flags
	General Multilingual Operations and Modes
	Focusing Operations
	Linguistic object focusing
	Language focusing
	Region focusing
	Loading existent linguistic resources
	Simple resource set loading
	General commands for loading linguistic resources
	Loading particular kinds of linguistic objects
	Loading modes: overwriting and merging
	Overwriting mode
	Merging mode
	Loading and the multilingual modes
	Monolingual loading
	Contrastive loading
	Multilingual loading
	Resource clearing
	Saving and Creating linguistic resources
	Simple resource set saving
	General commands for saving linguistic resources
	Monolingual saving
	Contrastive saving
	Multilingual saving
	Inheriting language definitions
	Automatic lexical item acquisition and saving
	Creating unconditionalized linguistic resources
	Changing the Lisp package of inquiry implementations
	Interface suspension, exiting, etc.
	Quiting the interface
	Suspending the interface
	(Re-)Activating the interface
	Clearing the interface windows
	The KPML Inspector Window
	Overview of Commands
	Graphing systemic networks
	Basic graphing options and commands
	Quit Resource Grapher
	Printgraph
	Show examples with collected features
	Clear Collected Features
	Display Modes
	Content-oriented resource graph options
	Layout and hardcopy oriented resource graph options
	Continuation options
	Mail Intention to Work
	Producing graphs for inclusion as figures in documents
	Mouse activated resource graph options
	Showing a full system definition
	Showing the realization statements of a feature
	Showing the chooser associated with a system
	Collecting/Discollecting features
	Pruning the displayed graph
	Redisplaying a graph
	Spawning further graphs
	Graphing regions
	Contrastive and multilingual graphing
	Monolingual graphing
	Contrastive graphing
	Multilingual graphing
	Index: A
	Index: A
	Inspecting individual object definitions
	Introduction
	Display commands
	Print System
	Print Chooser
	Print Inquiry
	Print Inquiry Implementation
	Print Lexical Item
	Print Concept
	Print Relation
	Definition displaying and the multilingual modes
	Monolingual definition printing
	Contrastive definition printing
	Multilingual definition printing
	Object selection according to specified criteria
	`Who has' selections
	Who has as input
	Who has as output
	`Who can' selections
	Who can lexify
	Who can inflectify
	Who can classify
	Who can insert
	Who can order
	Who can partition
	Who can preselect
	Who can ask
	Who can identify
	Who can pose identifying inquiry
	Examples Using Features
	Direct inspection and information chains
	Introduction
	Inspection operations on grammatical systems
	Printing system definition
	Print associated chooser
	Graph Grammar starting from system
	Inspection operations on grammatical features
	Displaying usage of grammatical features
	Who has as input
	Who has as output
	Show path to
	Show chooser of feature
	Graph from feature
	Collect feature
	Uncollect feature
	Clear collected features
	Inspection operations on choosers
	Print chooser
	Show inquiries of chooser
	Systems of chooser
	Inspection operations on inquiries
	Print inquiry
	Print implementation
	Who can ask
	Who can pose identifying inquiry
	Inspection operations on lexical items
	Inspection operations on SPL terms
	Inspection operations on examples
	Overview of information inspection chains
	The KPML Development Window
	Introduction
	Window Layout
	Overview of commands
	Generation: basics
	Introduction to generation with KPML
	Starting generation
	Generation and the multilingual modes
	Monolingual generation
	Contrastive generation
	Semantic defaults and macros
	Run-time cautions
	Run-time warnings
	Running modes
	Boundary conditions
	Tracing and debugging during generation
	Introduction to generation debugging under KPML
	Generation tracing modes
	Show Constituent Starts
	Show System And Inquiry Activity
	Show Why System Is Firing
	Show Disabled Candidate Systems
	Show System Entry Dependencies
	Show Preselections
	Show Immediate Realizations
	Show Lexical Selection
	Show Lexical Features
	Show Ordering Constraints
	Show Ordering Events
	Show Ordering Results
	Show Associations
	Show Inquiry Answer Source
	Show entailed inquiry response
	Generation process control options
	Realize Selectively
	Realize until constituent number
	Single Step
	Enter Debugger on Warnings
	Generation result focusing modes
	Cumulate System and Inquiry Activity
	Update Example Record Fields
	Viewing focused results
	The cumulative history window commands
	Redisplay
	Clear history
	Display options
	Quit
	Example of use
	Activating result focusing and tracing for particular linguistic objects
	Activation of tracing
	Individual system tracing
	Individual chooser tracing
	Individual inquiry tracing
	Clearing tracing selections
	Graphical representation of systemic network traversal
	Traversal and resource graphs
	Dynamic traversal tracing
	Additional generation process control options
	Disabling and enabling systems
	Pausing on inquiries
	Pausing and restarting generation
	Inspecting the results of generation: Graph Structure
	Introduction to structure graphs
	Structure Grapher Options
	Operations available on structure constituents
	Selection expression
	Preselections
	Orderings
	Lexical constraints
	Associations
	All structural constraints
	Inspecting the results of generation: Operations on the produced strings or textual structure displays
	Switching Languages
	Summary of generation process information chains
	How to debug resources: a sketch of a method
	The `old-style' KPML interface
	Description of the interface `sub-windows'
	Basic Old-Style Interface Operations
	Clear
	Flags
	Pause
	Quit
	Resume
	Reset
	Show Linguistic Object
	Generation Display Modes
	Resource Maintenance
	Multilingual Operations
	Graph Grammar
	Graph Sentence Structure
	Ready SPL Defaults
	Generate Again
	Further type-in commands
	Abort
	Environment Directories
	Show Path To
	Evaluate Lisp Expression
	Various mouse-click triggered commands
	Static Integrity Checks: Resource maintenance
	Background concepts
	Static tests during resource loading
	Static tests on whole resource set
	Resource Verification: Example Sets and Test Suites
	Example sets and test suites
	The example operations
	Load Examples
	Write Examples
	Clear Examples
	Generate from example SPL
	Graph example structure
	Display generated string
	Show examples with features
	Copy examples with new names
	Delete some examples
	Example runner
	Starting the example runner
	Levels of detail while example running
	Low detail example running
	Medium detail example running
	High detail example running
	Features used in examples survey
	Operations on example strings and textually displayed structures
	Operations on displayed strings
	Show corresponding fundle
	Graph corresponding constituent and below
	Inspect selection expression
	Inspect corresponding semantic term
	Partial re-generation
	Operations on displayed structures
	Graph this constituent and below
	Show selection expression
	Show corresponding semantic term
	Generate again up to but not including this constituent
	Full summary of linguistic resource information chains
	Maintenance: Resource Patching
	Introduction
	Patching and loading linguistic resources
	Patching and saving linguistic resources
	Some further consequences of using the patching facility
	Modifying linguistic resources
	Example record versioning
	Acquiring lexical items
	Resource Organization and Definition Formats
	Directory structure and contents
	Resource definition formats
	Resource definition files
	General language property declarations
	Morphology style declarations
	Standard default environments
	Language-font associations
	Disabling systems
	Language variety range declarations
	Systems
	Realization Statements
	Introduction
	Basic realization constraints
	User-defined realization operators
	Morphological realization constraints
	Choosers
	Inquiries
	Lexicons
	Examples
	Punctuation
	Non-systemic system dependencies
	Default orderings
	Domain concepts and links with the lexicon
	SPL macros and defaults
	Language variety conditionalization
	Requirements for resource definitions
	Special inquiries
	Special semantic concepts and relations
	Accessing external information sources
	Semantic information from inquiry implementations
	External information from the lexicon
	Morphological information from external components
	Using KPML without the window interface
	Blackbox operation as a tactical generator
	Bookkeeping functions
	Switching languages
	Establishing network connectivity
	Inquiry default initialization
	General initialization
	Multilingual behaviour flags
	Development tools
	Linguistic Resource Loading Operations
	Generating the example set
	Modifying the resources
	Saving the resources
	Using the mouseable structures for mousing and mark-up
	The structure produced
	Conditionalization of mouse sensitivity
	Specifying additional links in the SPL: annotations
	Window startup functions
	Faster Generation
	Strictly Monolingual Generation
	Knowledge base package reduction
	Compilation of inquiry implementations
	Establishing and using a generation server
	Creating a KPML generation server
	Creating a KPML client from Lisp
	An example of a KPML Lisp client: a WWW-KPML server
	Information display modes and corresponding internal flags
	Modes and internal flags
	More detailed tracing and display modes
	Loading and storing modes
	Miscellaneous global variables
	Data Access Functions used by Inquiry Operator Implementations
	Term-Graph structures
	Other Access Functions
	Knowledge representation interface functions
	About this document ...
	KPML documentation
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Index: A
	Installation and Startup
	Installing the KPML system
	Installing the Emacs/Mule-interface
	Installing the released linguistic resources
	KPML system version maintenance: PATCHES
	Making an executable image of the system
	KPML resource version maintenance: RESOURCE PATCHES

