Working with Systemic-functional Grammars: I

Starting up and modifying a simple `grammar’: a step-by-step tutorial

In this tutorial we see how to work with systemic-functional grammars with the computer, letting the computer do much of the more automatic work such as following paths through the system network, collected realization statements, and constructing compatible syntactic structures. No previous use of a computer is assumed. You should have had at least a first basic introduction to the notion of a systemic grammar and system networks however.

The first step is to find out where the grammar development software lives. This program is called KPML and may well be reachable by some shortcut on the PC or other machine that you are using. If you have downloaded the software yourself, then see the installation instructions for how to start up the program; otherwise, you should have been told where the software is to be found.

When you have located the folder where it has been installed, you should click twice on the icon `simplekpml.img’. All clicking described in this tutorial will generally be with the left mouse button unless explicitly stated otherwise.

� EMBED Word.Picture.6 ���

Clicking on the icon will bring up the window above; note that you may have to wait a little while for this to happen because sometimes your local PC must first bring the program over across the network and the program is quite large. Once the window above appears, you can start working; if it does not appear, something is wrong and you should seek help. Do not get impatient and click again: each time you click twice the PC will try and start another version of the program, will start bringing it across the network, and will thereby slow down still further its loading of the other versions of the program that it was already trying to start!

In order to work with a grammar, we usually use some existing grammar and modify this as we require. Clicking on the menu option `Load Resources’ (1 in the diagram above) will bring up a small menu of grammars that the program already knows about. This might look something like as follows, the exact names of grammars loaded might differ slightly for your installation.

� EMBED Word.Picture.6 ���

To select a grammar, you must click with the left mouse button on one of the mentioned language `varieties’ (that is, here, either `Kim’ or `Titles’). In the examples of this tutorial below, we will be working with the smallest grammar fragment available, the one called `Titles’. This provides the first three systems of a grammar for selecting various titles in English (e.g., `Mr’, `Mrs’, etc.). When you have done this, a small dot appears in the white circle to the left of the name.

�

You can then activate the choice by clicking on the text `Click here to accept’ shown in the bottom left of the menu (3). Alternatively, you can click on the small cross in the upper righthand corner of the menu (2). Many of the menus you will use with this program are of this form: you first make a selection by clicking with the mouse, and then you must confirm that you really want that selection. This gives you at least one more chance to change your mind if you click something that you do not want!

Once you’ve done this, the program will ask you to confirm that it is going to load the grammar that you meant with the information window:

�

Here you should again confirm, either by clicking in the lower left text `Click here to start’ or on the top-righthand cross. At this stage, you don’t have to worry about the information that this window is trying to give you.

Following this, you can proceed to the `development’ window where you can examine and change the grammar that you’ve loaded. You reach this by clicking on the long grey button called `Launch Development Windows’ in the middle of the first window that came up (4). This brings up the main working window which looks as follows.

� EMBED Word.Picture.6 ���

To look at the grammar that you have loaded, click down and hold on the `inspect’ item on the top grey menu bar (5). This lets you look at the objects that make up the grammar: the menu that appears looks as follows.

�

To get an overview of the grammar click on the option at the bottom: `Graph Region’. This will display all of the Titles grammar, because this grammar is small enough only to have one region (a real grammar might have 30-40 different `regions’, each concerned with a different kind of meaning). This will bring up the following view of the grammar that you have loaded.

� EMBED Word.Picture.6 ���

Here you can see that there are three systems loaded; these are called TITLED, PERSON, and GENDER. The first system, TITLED, has choices `no-title’ and `title’; the second, PERSON, has choices `person3’, `person2’ and `person1’; and the last has choices `female’ and `male’.

The particular version of the program you are using only allows you to interact with one window at a time: that is, once you have brought up the system network of the title grammar, you cannot go back to any of the other windows that you have opened until you first exit this one. If, therefore, you get to a window where you want to do some operation and it is not listening to you, it is probably because there is a more recent window waiting for you to finish off there first. You can always see what is the most recent window on a PC running Windows by looking at the toolbar, usually found at the bottom of the screen. The latest window can be brought to the front by clicking on the icon furthest to the right; e.g.:

� EMBED Word.Picture.6 ���

To see what such a grammar `generates’: that is, to see what sentences or other grammatical units it covers, we need to go back to the Development window. We do this by selected Quit from the upper grey menu bar (7). Then we go back to the Development window and click on the command `Generate Sentence’ (6 above). This starts stepping us through the grammar network. Each choice point, or system, that is reached causes the program to ask you what choice should be made. You can therefore select paths through the grammar to see what structures those paths generate.

Let’s assume that you have selected the path {title, person2, male} by clicking one after another on the following menus as the program brought them up. Again, whenever you have selected an option (e.g., Title/No-title), you need to accept your choice by clicking in the lower left or upper right as described above.

�� EMBED Word.Picture.6 ����

The `result’ of selecting these features is shown in the development window, along with any comments that the program had on its progress through the grammar. This is shown below.

� EMBED Word.Picture.6 ���

Here we can see that the grammar caused two `sentences’ to be produced, one with the title before the name and one with the title after the name. Since the title after the name variant is not possible in English (in contrast to, for example, Japanese), we know that our grammar is not yet sufficient. It is not yet an accurate description of the possibilities offered by the English language and so it needs to be changed. The question is then: how do we do this?

Firstly, we can look at the grammatical structure lying behind these results. This structure is the structure that the grammar produced because of the path that we told it to follow. Clicking on `Graph Structure’ (8 in the picture above) causes the grammatical structure to be shown in another window. This looks as follows.

�

So we have a single grammatical unit called, not too accurately, `Sentence’, and this has two subconstituents, one called `Name’ and the other called `Title’. The first of these, `Name’, is expressed by “Smith”, the second of these, `Title’, is expressed as “Mr.”.

We can ask this structure directly for certain kinds of information concerning its production. For example, we can ask why there is a Title constituent at all by clicking on it and selecting `Insertions’ from the menu that appears (second from the top).

�

This gives, again in the development window, information about the place in the grammar that caused the selected constituent to be inserted into structure.

� EMBED Word.Picture.6 ���

When we ask about ordering information, however, (by selecting `Orderings’ from around the middle of the menu above), it tells us that it knows of no constraints that were applicable; so this suggests that the grammar perhaps was not explicit enough about ordering its constituents. Important is to realize that the grammar only knows what we tell it: it cannot assume that certain constituents come in a particular order. It is the job of the grammar (and so, ultimately, the job of the grammar writer) to make the grammar so explicit that all the necessary information to describe the grammatical constructions that the grammar is to cover is directly present in the grammar, either in terms of the choice points that are available or by writing the appropriate realization statements in.

� EMBED Word.Picture.6 ���

We can also go back to our overview of the grammar directly to remind ourselves of the path that we took through the network when generating. To do this, we first have to leave the Structure Graph by selecting the `Quit Structure Graph’ option in the grey menu bar at the top.

� EMBED Word.Picture.6 ���

We then bring up the grammar network again by the `Graph Region’ command underneath the `Inspect’ menu bar option as described above (5). This time, however, when we see the grammar it looks like this.

�

The path that we took during generation has been marked out in mauve (or in grey if you are reading this in black and white). We can quickly see, therefore, which of the realization statements (the statements in boxes) were used to construct our generated grammatical units. Collecting these all together, we get the statements set out in the following table.

+Title�
Insert a consituent labelled `Title’ into the grammatical unit being generated�
�
+Name�
Insert a constituent labelled `Name’ into that constituent�
�
Name ! Smith�
Use the lexical item `Smith’ to express the constituent labelled `Name’�
�
Title ! Mr�
Use the lexical item `Mr’ to express the consituent labelled `Title’�
�

Looking at the information in the table, we see that indeed nowhere did the grammar give any information about the relative ordering of the grammatical constitutents `Title’ and `Name’. This information has therefore to be added into the grammar.

In this case, the information to be added is quite simple and was easy to find. An ordering realization statement that places the constituent labelled `Title’ immediately before the constituent labelled `Name’ has to given. More important is exactly where we put this information in our grammar. The idea is to place the information in as general a position as possible (i.e., as far to the left of the network as we can). This means that we capture many generalisations, since the constraint then applies to all the particular structures that we reach by making choices to the right of the constraint in the network. If we place it too far to the left, however, then we might make statements that are not true: for example, that all clauses in English have Finite verbs, or Subjects, etc.

Then again, if we do not place the constraint far enough to the left, then we miss generalisations and will have to repeat information. For example, if we take the realization statement that we need here and place it on the feature `male’ then we will generate the correct form `Mr. Smith’. The grammar will have said what order the Title and the Name are to come in. But this will not tell the grammar anything about the order of Title and Name for the choice of the feature `female’. We will, therefore, have lost a generalisation; and that generalisation is that, for English, all Titles come before Names. So we need to put the ordering constraint at the first point where we have decided to have a title at all, i.e., on the feature `title’ in the system called TITLED.

To do this, we need to edit the system TITLED as it is given. We do this by going to the system network graph (as long as this is the most recent window, i.e., the one that is the furthest to the right on the Windows toolbar as described above), and placing the mouse over the name of the system we are interested in, here: `TITLED’ (the first system from the left in the networks above). Click the left mouse button once. This will bring up a close-up view of just that system in a separate window, which looks as follows.

�

This window gives us a bit more detailed information about the system and also allows us to change the system, which is what we are interested in here. To make our grammar get the order of its constituents correct, we want to add a realization statement to the feature `title’. We therefore move the mouse to this feature (a box should appear around the feature name when the mouse is positioned properly), and click left once. This brings up a menu of editing possibilities thus:

� EMBED Word.Picture.6 ���

We want to add a realization statement, so we select this option. We will see what some of the other options do below. Selecting to add a realization statement brings up a more complicated `menu’ that allows to build different realization statements. We have to select the realization statement type (e.g., inserting, ordering, etc.) and to say which grammatical constituents that statement is to apply to (e.g., to the `Title’ or the `Name’, etc.). The menu tells us when the realization statement is complete.

� EMBED Word.Picture.6 ���

We want to give an ordering realization statement, so we move the mouse to find `order’ from the first menu. When we click on `order’, the window changes to reflect what this type of realization statement needs to be considered complete.

� EMBED Word.Picture.6 ���

The window now needs us to type in the labels of the two constituents that are to be ordered. We do this by clicking on the places indicated above and marked by `NIL’, and typing in the names. Each name should be finished off by typing a return, or `enter’, so that the program knows that the name is finished. When this has been done for both constituents, the window changes again to indicate the status of the realization statement that you are writing. If you have typed the names in as required, then the window will look as follows, telling you that the realization statement is now complete.

� EMBED Word.Picture.6 ���

You can now accept the realization statement by clicking in the lower lefthand corner or in the upper righthand corner as usual. This causes the realization statement to be added to your system, and the picture of the system in the system editing window changes accordingly. This window will now look something like the following. Note that the window now also shows you the realization statements of the feature you are looking at in a separate table at the bottom. You can further edit these statements by clicking on them directly. Moving the mouse over them will show you which bits can be clicked on to select them for changes. A right mouse click on any of these realization statements will remove it from the system.

� EMBED Word.Picture.6 ���

When you are happy that you have changed the system in the way you wanted, you must tell the program that you are finished editing and that the new system should replace the old one. Until now, the changes that you have made in the system are only in the window you have been working with; you have not yet changed the grammar that the program uses to generate sentences. You can use the system editing window as a piece of rough paper for getting the realization statements right. In order to make the new system replace the old one, you must click on the Export command in the blue menu area (9). Exporting a modified system will then cause the grammar network in your network window to change accordingly. So that window will now change the TITLED system that it was showing to reflect your changes.

� EMBED Word.Picture.6 ���

 If you forget to export the system and just `Quit’ from the system editor window, then the program will warn you that you have made changes which are not yet `saved’. You then either ignore your changes or go back and export them.

Now with the changed grammar we can go back and see if this makes any difference to our generated `sentences’. We `Quit’ from the system editor, then from the system network graph, and go back to the Development window. Then we select Generate Sentence as before. This time we see that, indeed, there is only one result: `Mr. Smith’ as desired.

�

Having done this, we can turn to other areas of the grammar fragment and see if these are also sufficient. What happens, for example, if we select `female’ instead of `male’? The following windows show the result generated, and the path through the grammar (which we obtain by selecting Inspect>Graph Region as described above).

The program generates “<No Realization> Smith”, which is close to what we might expect in that it at least got the ordering of a Title and the name correct, but the particular choice of title appears lacking.

� EMBED Word.Picture.6 ���

So the problem now is how to fix this. If we wish to generate, for example, both `Mrs. Smith’ and `Miss Smith’, what needs to be added?

Clearly first of all there needs to be a further distinction in the grammar between married and unmarried. Furthermore, this distinction only applies to the path `female’. We therefore need to grow a further grammatical system underneath (or to the right of) the feature `female’ in our grammar. We again do this from the system editor window. We go to the name of the system we are interested in: i.e., GENDER, and click left on this name to bring up a close-up view of this system. We want to add a further choice point below the feature `female’, so we again click left on this feature to bring up a menu of editing options. This time, however, we pick the option `Make a dependent system’ and this brings up a further editing window where we can put our new system.

� EMBED Word.Picture.6 ���

The first thing to do with the new system is to define its `features’, that is, the choices that are going to be made there. This we do with the menu option `Add new feature’ in the blue menu area. Each time we click on this option, a further little window is brought up for you to enter the name of the feature to be added.

�

As with the realization statements, you type the name you want in where it says ‘NIL’ by first clicking on NIL and then typing the name. You finish the name by typing `return’ (or `enter’). When you accept the name you will see that the system editing window changes to add the feature you have entered. You can then add realization statements as required in the same way as described above.

Let’s assume that we enter two new features for this system, `married’ and `unmarried’ and that we give each of these a single lexify realization statement to select the proper expression of the Title constituent. Lexify realizations are added in just the same way as ordering statements that was described above. The result should be as follows.

�

Then there remains just one thing to do before exporting the system, and that is to give it a name. Systems have to have names so that we can talk about them as find them in the graphs of the system network. We set a name by choosing `Rename system’ from the blue area. Let’s assume we call the current system `Marital Status’ thus:

�

Now we can export the system, quit any other windows that we opened to get to the last system (e.g., the system GENDER that we used to find the feature `female’), and look at the changed graph in the system network window.

�

If we see nothing else that we want to change at this point, we can Quit from this window and try generating again. This time, when we have chosen `female’, we are presented with the next choice that our grammar now offers:

�

And, depending on which of these we select, we get our required final grammatical units correctly generated.

�

Now we are ready to look at some more realistic grammar fragments!

Several networks concerning the selection of titles in English and, more importantly from the point of view of their linguistic description, of their functional and social motivations, are discussed in:

Poynten, C. (1985) Language and gender: making the difference. Oxford University Press. Particularly: Chapter 3: pp41-54.

You could try to put some of the networks Poynten proposes into the computer, checking that they indeed generate the titles expected for the features that you select. These examples include consideration of what happens when we want to add terms like `Ms.’ to the existing three terms `Mr.’, `Mrs.’ and `Miss’. This involves interesting issues of the relation between language and gender.

Finally, when you have developed some bits of grammar of your own, you might want to save these so that you can return to them later. Or you might just want to make your own copy of grammars that are already there (which often includes the examples of the differences between features of the grammar). To do this from a PC you will need a floppy disk and put this into the PC’s diskdrive.

You then need to tell the grammar program that you want to use this diskdrive instead of where it normally finds grammars. To do this, you go to the top grey menu bar of the development window and click on the File option. Under here you will see the command `Toggle local/non-local resources’ as shown in the next picture.

�

Clicking on this option switches the grammar program backwards and forwards between your disk in the diskdrive and the grammars that the program was using when you first started it up.

When you’ve selected the `local’ resources (i.e., your diskdrive), then must type in the command `Store resources’ after the prompt in the middle of the window as shown below.

� EMBED Word.Picture.6 ���

The program will then ask you which grammar you want to save with the menu:

�

Here you can choose between the ENGLISH and KIM examples. If you leave the `create new resource directory’ on T, then the program will always make a new copy of the grammar rather than changing any copy that you already have on your disk of the same name. If you move this to `NIL’, then the program will use any grammar fragment of the same name that is on your disk.

When you click on `click to start’, then the program saves the grammar on your disk in a form that it can read in again at a later time. This means that it is not so easy for you to look at the files themselves on your disk to see the grammar (although you can do this). You should first reload the grammar back into the grammar program.

You can do this at any time by starting up the program (KPML), selecting toggle to local resources as described above, and clicking Load Resources. Now, the program will look at the grammars on your diskdrive rather than those that we have been using as examples.

