
GeM Project Report
University of Stirling
University of Bremen

http://purl.org/net/gem
e-mail: rhenschel@uni-bremen.de

GeM Annotation Manual
Preliminary version

Renate Henschel

February 13, 2002

1 Introduction

The GeM project assumes that language, layout, image and typography are all purposive
forms of communication, and aims to analyze all these elements within one common frame-
work. The focus of the project is to extricate how the use of the two modes – the visual and
the verbal – varies across different genres (cf. Delin, Bateman & Allen forthcoming). The
GeM annotation therefore considers these two communication modes as the main perspec-
tives that must be captured in its annotation scheme. It identifies textual elements (verbal
mode) and layout elements (visual mode) in a multi-layered annotation, and specifies how
these elements are grouped into a hierarchical structure (the rhetorical structure for textual
elements, the layout structure formed by the layout elements). The alignment between these
two intersecting hierarchies is achieved by specification of the ‘GeM base’—a list of the basic
units out of which the document is constructed. In accordance with the goal of the project,
the granularity of the linguistic basic units employed in the annotation is approximately the
sentence level. Each layer is represented formally as a structured XML (Extensible Markup
Language) specification (World Wide Web Consortium 2000), whose precise informational
content and form is in turn defined by an appropriate Document Type Description (DTD).

The markup for one document consists generally of the following four layers:

Name content dtd
GeM base base units gem-base.dtd
RST base rhetorical structure gem-rst.dtd
Layout base layout properties and structure gem-layout.dtd
Navigation base navigation elements and structure gem-nav.dtd

They will be described in detail below. The formal document type definitions for each of the
four data files are given in the appendix.

2 Base level annotation

2.1 Basic constituents

The purpose of the base level annotation is to identify the minimal elements which can
serve as the common denominator for textual elements as well as for layout elements. Where
speech-oriented corpora use the time line as basic reference method, and syntactically oriented
corpora use the sequence of characters or words, the GeM annotation operates at a less delicate
level and uses bigger chunks (mostly sentences and graphical page elements) as the bases of
the markup. Everything which can be seen on each page of the document has to be included.
How the material on each page is broken up into basic units is given by the following list. We
mark as base unit:

• orthographic sentences
• sentence fragments initiating a list
• headings, titles, headlines
• photos, drawings, diagrams, figures (without caption)
• captions of photos, drawings, diagrams, tables
• icons
• tables cells
• list headers
• list items
• list labels (itemizers)
• items in a menu
• menu items in an interactive pop up menu
• page numbers
• footnotes (without footnote label)
• footnote labels
• running heads
• horizontal or vertical lines which function as delimiters between columns or rows
• lines, arrows, polylines which connect other base units

Sentences divided by a page or column break should be marked as two base units. The
caption of figures, tables etc. is always marked as an extra base unit. Horizontal or vertical
lines are marked as separate base units if they cannot be viewed as part of another layout
element. Examples for lines to be marked are vertical lines which serve to separate columns
in newspapers, horizontal lines which serve to separate paragraphs; whereas lines appearing
at the top and the bottom of a figure are seen as the figure’s border and are not marked as
base units.

The base annotation has a flat structure, i.e. it consists of a list of base units. This list
is comprehensive, i.e. it comprises everything which can be seen on the page/pages of the
document.

The tag used to mark base units is the <unit>. Each base unit has the attribute id, which
carries an identifying symbol. If the base unit consists of text, the start and end of this text is
marekd by the <unit> tag. Illustrations, however, are not copied into the GeM base. Thus,

2

base units which represent an illustration or another graphical page element are empty XML-
elements. They can optionally be equipped with an scr and/or an alt attribute however.
The value of src is the source location of the illustration, if there is one available. The value
of alt gives a name to the graphical element which reminds the user of its content, or – for
HTML documents – the alt value may be taken directly from the source file.

The following examples illustrate how the annotation looks for different elements of a docu-
ment.

Sequence of sentences in a text:

<unit id="u-21.7">Huge (90cm) unmistakable seabird.</unit>
<unit id="u-21.8">Watch for white, cigar-shaped body and long

straight, slender, black-tipped wings.</unit>
<unit id="u-21.9">In summer, yellow head of adult inconspicuous.</unit>
<unit id="u-21.10">Plunges spectacularly for fish.</unit>
<unit id="u-21.11">Sexes similar.</unit>

Illustration:

<unit id="u-21.6" alt="gannet-photo"/>

Vertical line:

<unit id="u-21.5">--</unit>

2.2 Embedded base units

In certain cases, we diverge from the flat structure of the base file, and allow nested markup,
i.e., base units inside base units. This is envisaged for the following situations:

• emphasized text portions in a sentence/heading
• icons or similar pictorial signs in a sentence
• text pieces in a diagram or picture
• arrows and other graphical signs in a diagram or picture
• document deictic expressions occurring in a sentence

Generally any text portion which is differentiated from its environment by its layout (e.g.
typographically, background, border) should be marked as a base unit. Whether it constitutes
a separate unit in the main level of the base units list, or an embedded unit inside another
base unit depends to what extent it can be moved around the page without disrupting the
content.

In headings, the chapter/section numbering part should be marked as an embedded base unit.
Below we give some examples:

3

• Emphasized text:

Adult has white plumage with, in breeding season, faint yellow-pink tinge;
usually looks pure white at distance.

<unit id="u-21.6" Adult has <unit id="b-32.1">white plumage</unit>
with, in breeding season, <unit id="b-32.2">faint yellow-pink
tinge;</unit> usually looks pure white at distance.</unit>

• Headings:

4.3.2 Modal Adjuncts

<unit id="u-32.1">
<unit id="u-32.1.1">4.3.2</unit>
Modal Adjuncts

</unit>

• Document deictic expressions (see below and: Paraboni & van Deemter in press):

You will need to fit battery packs as described on page 6.

<unit id="u-2.17">
You will need to fit battery packs as described on
<unit id="u-2.17.1">page 6</unit>.

</unit>

The purpose of the GeM base is to identify the base units only. Every unit however can
be viewed as a layout object on the one hand or as a sign carrying semantic meaning on
the other. In the following we strictly separate these two perspectives in the annotation.
The layout base specifies layout units (sets of base units) and assigns layout properties to
them. From the semantic perspective, we have (i) base units which contribute directly to
the content of the document, these are the RST segments, (ii) base units which only serve
to help the reader navigate through the document, the navigation elements, and (iii) units
which are both. The rst base determines which base units (or groups of base units) serve as
segments for a rhetorical structure analysis of the document and represents such an analysis.
The navigation base lists the navigation elements and their function. The distribution of
the different kinds of elements is shown in Figure 1.

3 Layout base

The layout base consists of three main parts: (a) layout segmentation – identification of the
minimal layout units, (b) realization information – typographical and other layout properties
of the basic layout units, and (c) the layout structure information – the grouping of the layout
units into more complex layout entities. We explain these three components in detail below.

4

base unitsLayout
Semantic

Content

RST

segments

navigational

elements

layout units

Figure 1: The distribution of base elements to layout, rhetorical and navigational elements

3.1 Layout segmentation – Identification of the layout units

In typography, the minimal layout element (in text) is the glyph. In GeM, however, we
are primarily concerned with typographical and formatting effects at a more global level
for a page; therefore we do not go into such detail, instead considering the paragraph as
minimal layout element. That means, a sequence of sentences with the same typographical
characteristica which makes up one paragraph is marked as one layout unit. In addition
to that we mark all graphically realized elements from the GeM base as layout units. Also
highlighted text pieces in sentences, or text pieces within illustrations are marked as layout
units. Hence the same list which has been given for the markup of the base units applies
here, but with paragraphs instead of orthographic sentences.

• paragraphs
• headings, titles, headlines
• photos, drawings, diagrams, figures (without caption)
• captions of photos, drawings, diagrams, tables
• text in photos, drawings, diagrams
• icons
• tables cells
• sentence fragments initiating a list
• list items
• list labels
• items in a menu

5

• page numbers
• footnotes (without footnote label)
• footnote label
• running heads
• emphasized text
• horizontal or vertical lines which function as delimiter between columns or rows
• lines, arrows, polylines which connect other base units

The tag for a layout unit is <layout-unit>. Each layout-unit has the attribute id, which
carries an identifying symbol, and the attribute xref which points to the base units which
belong to this layout unit. It is possible, but not necessary, to store the corresponding text
portions of the original text file between the start and end tag of a layout-unit:

<layout-unit id="flegg-text" xref="u-21.7 u-21.8 u-21.9 u-21.10 u-21.11">
Huge (90cm) unmistakable seabird. Watch for white,
cigar-shaped body and long straight, slender, black-tipped
wings. In summer, yellow head of adult inconspicuous.
Plunges spectacularly for fish. Sexes similar.

</layout-unit>

3.2 Realization information

The second part of the layout base is the realization. Each layout unit specified in the layout
segmentation has a visual realization. The most apparent difference is which mode has been
used – the verbal or the visual mode. Following this distinction, the layout base differentiates
between two kinds of elements: textual elements and graphical elements marked with the tags
<text> and <graphics> respectively. These two elements have a differing sets of attributes
describing their layout properties. For textual elements, the following typographical attributes
are annotated:1

xref

font-family family-name | inherit

font-size length | inherit

font-style normal | italic | oblique | backslant | inherit

font-weight normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 |
700 | 800 | 900 | inherit

case caps | mixed | smalls | smallcaps | inherit
color color | inherit
justification* left | right | justified
border* none | rectangular | circular | lined | underlined | overlined)

1Attributes with a star are optional.

6

We usually mark the font size in point; so font-size=“8” would mean 8 point. For web pages,
however, we use the sizes 1 to 6, which are normally used in html.

Justification has to be marked only on textual elements which form more than one line.
justification=“left” is used for right-ragged text, justification=“right” for left-ragged text,
justification=“justified” for text which is justified at both margins. Within the font-weight
attribute, bold corresponds to the weight 700, normal to the value 400.

Embedded textual base units which are typographically highlighted against their environment
are marked with the tag <hi-text> and are annotated with exactly the same attributes as
ordinary <text> elements, but they have an extra context attribute, which refers to the id
of the embedding <text> element. Those properties of the <hi-text> element which make
it stand out against its context are annotated with values, those properties which are shared
with the context receive the value “inherit”.

For graphical elements, the following attributes are marked:

xref ids of the layout units which are realized with the following values
type illustration | photo | diagram | two-d-element
color-no* number of used colors
colors list of used colors | color | inherit
border* none | rectangular | circular | lined | underlined | overlined | speech-bubble

The value “two-d-element” (two-dimensional graphical element) is used for lines, arrows,
icons, etc. If the value ‘two-d-element’ has been chosen as the type of some graphical element,
then three additional attributes have to be annotated on that element:

two-d-element-type line | polyline | rect-polyline | arrow | bi-arrow | arc | square
| triangle | icon

element-style inherit | solid | dashed | dotted | double
element-width normal | bold | extra-bold | light | width | inherit

2-d graphical elements of type “arrow” are marked with the extra attribute direction:

direction up | left | right | down | vertical | horizontal | diverse

The border attribute is optional in textual and graphical elements. If the actual element
has in fact a border, then we also give the following additional information about the layout
properties of that border:

border-color <color> | inherit
border-style hidden | dotted | dashed | solid | double
border-weight normal | light | bold | extra-bold | width | inherit

Different layout units with an identical typographical realization can be represented with
only one <text> or one <graphics> element. Every text and graphics element has an xref
attribute, under which the ids of the layout units which share the typographical properties
given in this text element are stored. The id of each layout unit of the segmentation part
of the layout base has to occur exactly once under xref in the realization part: either in a
<text> or a <hi-text> or a <graphics> element. In the following coding example, we have
five layout units which share typographical characteristics. These correspond to the five table
cells in the first column of a table.

7

<text xref="lay-21.12 lay-21.14 lay-21.16 lay-21.18 lay-21.20"
font-family="sans-serif"
font-size="10" font-style="normal" font-weight="bold"
case="mixed" justification="right" color="black"/>

In general, the layout annotation does not attempt to give always the precise numbers or
names as their attribute values, particularly for the typographical attributes font-family and
font-size. All attributes which allow arbitrary alphanumeric values (CDATA in the document
type definition) can be annotated with coarse values or names which are used document-
internally in a consistent manner, i.e. if the typographical layout is identical between different
layout elements, the annotation should reflect this by choosing identical attribute values.

The following example shows the annotation of the highlighted text piece in the sentence The
IN USE/CHARGE light comes on when the handset is correctly positioned in the charging
cradle.:

<hi-text id="lay-6.9.1" xref="u-6.9.1" context="lay-6.9"
font-family="inherit" font-size="inherit" font-style="inherit"
font-weight="inherit" case="caps" color="black">

IN USE/CHARGE
</hi-text>

And the last examples are realization XML elements for two graphical layout units, a diagram
and a vertical line:

<graphics xref="lay-3a" type="illustration" color-no="2"
colors="black white" border="none"/>

<graphics xref="lay-line1" type="two-d-element"
two-d-element-type="line" colors="black"
border="none" element-style="solid"
element-weight="extra-bold"/>

3.3 Layout structure

Similar to the RST structure which groups sentential text segments into larger text spans,
some of the layout units identified in the segmentation part of the layout base can be grouped
into larger layout chunks. For instance, the heading and its belonging text form together a
larger layout unit, or the cells of a table form the larger layout unit “table”. The criterion
for grouping layout elements into chunks is that the chunk should consist of elements of
the same visual realization (font-family, font-size, ...), or the chunk is differentiated as a
whole from its environment visually (e.g. by background colour or a surrounding box). In
Reichenberger, Rondhuis, Kleinz & Bateman (1995), the authors propose identifying layout
chunks by applying a decreasing resolution to the document. The grouping into chunks usually
can be applied in several steps, thus forming larger and larger layout chunks out of the basic
layout units up to the entire document. Note that one chunk can consist of layout elements
of different realizations (text and graphics).

8

page-21

header-21 body-21 page-no-21

lay-21.2 lay-21.3

Figure 2: Example page layout

The third part of the layout base then serves to represent this hierarchical layout structure.
Generally we assume that the layout structure of a document is tree-like with the entire
document being the root. Each layout chunk is a node in the tree, and the basic layout units,
which have been identified in the segmentation part of the layout base, are the terminal
nodes of that tree. In our annotation, we use five different tags for the nodes in the layout
tree. <layout-root> is the element describing the entire document, <layout-chunk> are
all non-terminal nodes in the layout tree except for the root, and <layout-leaf> represents
the terminal nodes. Non-terminal nodes in the layout structure tree which form an ordered
or unordered list are marked with the special tag <list> instead of <layout-chunk>. The
itemizer used in a list is a terminal node and is marked with the tag <itemizer> instead of
<layout-leaf>.

The elements <layout-chunk> and <list> have the following attributes:

id
location cell-11 | cell-12 | ... row-1 | row-2 |... col-1 | col-2... | multi | delimiter
area-ref id of an area defined in the area model

The elements <layout-leaf> and <itemizer> have the following attributes:

xref id of a layout-unit
location cell-11 | cell-12 | ... row-1 | row-2 |... col-1 | col-2... | multi | delimiter
area-ref id of an area defined in the area model (see below)
halign top | center | bottom | top-indent | bottom-indent
valign left | center | right | indent | right-indent

Note that for each list, its itemizer is represented only once as child in the layout structure,
although it appears several times in the actual document and in the layout segmentation.
The itemizer’s xref attribute must then contain a set of ids. The <layout-root> has an id
attribute only.

The layout structure is represented by hierarchical specification of the children chunks/leafs
for each layout chunk. A page in a two-column scientific journal, for instance, could consist of
three main layout elements – a header, a body and a page number. The body itself is formed
out of two layout chunks, the text in the first column (layout-unit lay-21.2), and the text in
the second column (layout-unit lay-21.3). This layout structure is shown visually in Figure 2;
it is described by the XML annotation below:

<layout-root id="page-21">

9

<layout-leaf xref="header-21"/>
<layout-chunk id="body-21">

<layout-leaf xref="lay-21.2"/>
<layout-leaf xref="lay-21-3"/>

</layout-chunk>
<layout-leaf xref="page-no-21"/>

</layout-root>

However, the page or page segment layout is not fully determined by grouping layout units
into a tree structure; further information is required about the actual position of each unit in
the document (on or within its page). For this, we introduce the area model, which serves to
determine the position of each layout-chunk/layout-leaf in an abstract way.

Area model. Each page usually partitions its space into sub-areas. For instance, a page is
often designed in three rows – the area for the running head (row-1), the area for the page
body (row-2), and the area for the page number (row-3) – which are arranged vertically. The
page body space can itself consist of two columns arranged horizontally. These rows/columns
need not to be of equal size. For the present, we restrict ourselves to rectangular areas and
sub-areas, and allow recursive area subdivision. The partitioning of the space of the entire
document is defined in the area-root, which structures the document (page) into rectangular
sub-areas in a table-like fashion.2

The tag to represent the area root is <area-root>, which has the following obligatory at-
tributes:

id
cols number of columns
rows number of rows
hspacing list of percentages | 100 | flexible | equal
vspacing list of percentages | 100 | flexible | equal

The tag to represent the division of a sub-area into smaller rectangles is <sub-area>, and
this has the same attributes plus a location attribute:

id
location row-1 | row-2 |... col-1 | col-2 |... cell-11 | cell-12 ...
cols number of columns
rows number of rows
hspacing list of percentages | 100 | flexible | equal
vspacing list of percentages | 100 | flexible | equal

The number of columns and rows specified in an area element define a grid on the available
space (the page).3 We assume that the sub-areas thus defined (the rectangles in this grid)
have generic names: cell-11 for the area of the first cell in the first row, cell-12 for area of
the second cell in the first row and so on. These names then serve as values for the location
attribute in the definition of sub-areas. If the space is divided into columns only (no rows),
we mark rows=“1”. For rows only, we use cols=“1” analogously. We use the names row-1,

2Note that the area-root need not to be a page; it is the entire book or brochure, if the document to be
annotated is a book or brochure.

3In case of a book, the cols-value is the number of double pages.

10

row-2, ... and col-1, col-2, ... as location values for entire rows or columns in documents
with cols=“1” or rows=“1”. Note that in the area model, the location value of a <sub-area>
always has to be understood with respect to its parent’s grid structure given with the cols
and rows numbers of this parent.

The parent area occupies a certain space, and the number of columns and rows specifies how
this space is topologically partitioned into sub-areas. The two spacing attributes specify the
size of each sub-area as a percentage of the whole area. vspacing gives the partition of
the height of the parent area into the heights of its constituting rows; hspacing gives the
partition of the width of the parent area into the widths of its constituting columns. If the
columns number is “1” (the area is divided into rows only), then hspacing has to be specified
as “100”; if the rows number equals “1”, then vspacing has to be specified as “100”.

In the above page example, the distribution of the page height to its rows – the running
head, the page body, and the page number – would be something like vspacing=“10 85 5”;
this means that the running head takes 10% of the entire page height, the page body 85%
and the page number 5%. The page body consisting of two columns would have a hspacing
of hspacing=“50 50” with the meaning that both columns are equal in width and take half
of the page’s width.4 Our example’s area model would then consist of a specification of the
area-root (called “page-frame”), and the specification of one particular sub-area located in
row-2 (called “body-frame”):

<area-root id="page-frame" cols="1" rows="3" hspacing="100"
vspacing="10 85 5" height="16cm" width="14cm">

<sub-area id="body-frame" location="row-2" cols="2"
rows="1" hspacing="50 50" vspacing="100"/>

</area-root>

This area model is visualized in Figure 3.

In many documents spacing is not predetermined, but comes out as a result of the sequential
arrangement of the layout children. Each child gets exactly as much space as it needs, and
after that the next child is printed. A typical example for this is the arrangement of paragraphs
in a text. Paragraphs form rows in their parent area. The vertical space (the height) for each
paragraph is not a feature designed by the page designer, but depends mainly on the length
of each paragraph, the type-size and the width of the parent chunk. We mark this kind of
spacing with the value flexible.5 Another non-numerical value for the spacing attributes is
equal. In this kind of partitioning, the space is equally split up between the sub-areas. Equal
spacing is often used in tables or lists. Also our above two-columns structure could have a
hspacing=“equal” markup instead of hspacing=“50 50”.

Location. The above defined area model specifies sub-areas in a document, which we will use
to allocate location values to the layout-chunks and leafs of the hierarchical layout structure.
A location of a layout-chunk/leaf is sufficiently determined by saying in which cell of which
area/sub-area it is located. This is realized with the attributes location and area-ref. The

4For the time being, we ignore space for margins, at least as long as they do not contain footnotes or other
text.

5Note, however, that it is often difficult to differentiate between a fixed spacing and a flexible spacing in
ready-made documents. If you are not sure, always prefer the percentage annotation!

11

“page-frame”

sub-area

“body-frame”

Figure 3: Visualized area model

location value is one of the generic location values explained above, and area-ref refers to
the id of a particular area of the area model whith respect to which the location value has
been chosen. We also allow the col- and the row-values in a table structure for cases where
one layout-chunk/leaf occupies more than one cell of a table.

In our page example the header layout unit would be in “row-1” of the page-frame, the
page body in “row-2” of the page-frame, and the page number in “row-3” of the page-frame;
moreover, the text in the first column of the page-body would be in “col-1” of the body-frame,
the text in the second column in “col-2” of the body-frame. The layout structure annotation
is as follows:

<layout-root id="page-21">
<layout-leaf xref="header-21" location="row-1" area-ref="page-frame"/>
<layout-chunk id="body-21" location="row-2" area-ref="page-frame">
<layout-leaf xref="lay-21.2" location="col-1" area-ref="body-frame"/>
<layout-leaf xref="lay-21.3" location="col-2" area-ref="body-frame"/>

<layout-leaf xref="page-no-21" location="row-3" area-ref="page-frame"/>
</layout-chunk>

</layout-root>

In this example the partitioning of the page area into sub-areas is isomorphic with the hier-
archical layout structure. Note that this is not always the case. A more complex relationship
between area model and layout structure can be seen in the complete annotation example
flegg-page at www.purl.org/net/gem under corpus. In non-isomorphic cases it often ap-
pears that a layout chunk is not located in a single area defined by the area model, but is
compoded out of children layout chunks/leafs which have a precise area allocation. The lo-
cation of the parent chunk is then the ’sum’ of the areas of the children; and this is makred
with location=“multi”.

12

It is assumed as default that the itemizers of a list are placed at the top left edge of each row
of the area in which the list is located. In this case we do not specify the itemizer’s location
attribute. The location will only be used in the case where the itemizers of a list are not
located at the left edge of the cell in which the entire list is placed.

Alignment. Layout children (chunks and leafs) vertically arranged in the cells of one and
the same column are assumed to be aligned with each other with respect to their left edge.
Alignment at the top edge is assumed for children arranged horizontally in one and the same
row. For layout-chunks/leafs which do not fit into this alignment assumption, the optional
attributes halign and valign allow to specify other possibilities. If none of the abstract values
(left/right/center) apply, then we mark valign=“indent”, and add an extra markup for the
identation, e.g. hindent=“5mm”. This applies in a similar way to halign and vindent. Note
that indentation under valign (values “indent”, “right-indent”) is horizontal and appears with
hindent; whereas indentation under halign (values “top-indent”, “bottom-indent”) is vertical
and appears with vindent.

In the following we discuss cases of layout structure which do not fit into the annotation
scheme presented so far. Two problematic cases will be discussed:

• Insets: Layout elements can displace or intrude into the space of other layout elements.

• Separators: Certain graphical elements (lines, arrows) do not always fit into a grid
structure, but can serve to indicate column or row separation.

Insets. One layout element – the inset – displaces another layout element – the flow object.
The content of the flow object is arranged around the inset, and both elements are children
of the same parent layout chunk. The inset chunk does not respect any structure which the
parent chunk has introduced. It is marked with location=“inset”. To determine the precise
location however, the height and the width of the inset as well as its alignment inside the
parent chunk’s space have to be specified in addition. And the attribute displace specifies
the id of the flow-object which is displaced by the inset. The flow-object, on the other hand,
refers to the inset-id under the optional attribute flow-around.

A slightly different situation occurs, where the inset layout element intrudes into the location
space of another layout element without displacing it. The latter does not need to be a
flow-object. One example for this is when text intrudes into the empty space surrounding
illustrations, and the background-colour of the illustration is the same as the background
colour of the text. Here both layout elements are siblings in the layout structure and have
their own location in the structure of their parent. These locations are adjacent. To annotate
this “overlapping”, we specify the id of the neighbour layout element whose space is used
under the attribute overlap in the layout element which intrudes into the neighbour’s space.

Separators. Graphical elements of type “line” are often used as delimiters between cells,
columns or rows, rather than as forming cells etc. by themselves. Graphical elements of
this kind should be marked with location=“delimiter”. Their actual location has then to be
marked with the additional optional attributes:

delimiter-before cell-xy, row-x or col-y
delimiter-after cell-xy, row-x or col-y

13

4 RST base

4.1 RST for multimodal documents

The RST base specifies the rhetorical structure of the document. The rhetorical structure is
annotated following the Rhetorical Structure Theory (RST) of (Mann & Thompson 1988).
RST investigates the relations which hold between subsequent clauses, or bigger adjacent
fragments of a text – the so-called text spans. An RST relation typically combines two
adjacent text spans of unequal importance, the text span which is central to the writer’s
communicative goal, the nucleus, and the text span which supports the message of the
nucleus, the satellite. Multinuclear relations between two or more spans of equal importance
(e.g. list, joint, sequence, ...) are also possible. Adjacent text spans which are related by an
RST relation form then together a bigger text span, which itself is the nucleus or satellite of
an RST relation. So the RST relations are recursively applied on ever longer text portions,
resulting in a tree structure the root of which is the whole text, and the terminal nodes are
the clauses of this text.

Some characteristics of RST vary between different research traditions, especially the granu-
larity of the segmentation, the assumed set of rhetorical relations and the branching style of
the rhetorical structure tree. Original RST allowed multiple branching, whereas the Marcu
annotation approach (e.g., Cristea, Ide, Marcu & Tablan 2000) works with binary branching
only. We commit ourselves in GeM to the following assumptions:

• We build on a sentence based segmentation.
• We use the extended relation set (see www.sil.org/˜mannb/rst/toolnote.htm).
• We allow multiple branching for multinuclear nodes.
• We allow more than one satellite per nucleus in the case that the relation holding

between each satellite and the nucleus is one and the same.

RST has been developed for traditional linear text. If one wants to apply RST to modern,
often multimodal, documents, new issues arise. In semiotics and design research, relations
have been proposed which hold particularly between text and image (Schriver 1996, Barthes
1977). In contrast instead of adding new text-image relations, (André 1995) parameterizes the
existing RST relation set by a mode parameter. We favour this second approach. The relations
proposed by Schriver and by Barthes, in most cases, can be easily reduced to traditional RST
relations with one constituting partner being in the graphical mode. However, there are other
problems when generalizing RST to multimodal documents, which have not been addressed
previously:

• The prominence of graphics in multimodal documents makes it often difficult to decide
upon nuclearity in multimodal relations.

• The linear order of the constituents of the document is lost.

• The minimal unit for RST segmentation cannot be restricted to a clause or clause-like
phrase.

14

Nuclearity in multimodal relations. Graphical illustrations are often used to rephrase
a text passage; but it is often difficult to decide which of the two segments – the illustra-
tion or the text passage – is in fact nulear and which is the satellite. This seems to be a
particular problem of graphics-text relations. To model this problem, we use the multinu-
clear restatement relation. A similar relation can also be found in Schriver under the name
supplementary.

Linear order. Conventional RST builds on the sequentiality of text segments. Relations are
only possible (with some minor exceptions) between subsequent segments/spans (sequentiality
assumption). With multimodal documents, the mutual spatial relations between the segments
changes (from relations in a string-like object to relations in a graph). Segments can have
not only a left and a right, but also an upper and a lower neighbour segment. In general one
can imagine neighbouring segments in any direction, not only the four which presuppose a
rectangular-based page layout. In addition to this, there can be more than one neighbour in
each direction. The simpliest solution to apply RST (with its sequentiality assumption) to
such a document would be to introduce a reading order on the segments of the document,
which is then used as the sequence behind the RST structure. However, this can easily fail
to reflect the actual reading behavior. A better, more straightforward generalization of the
sequentiality assumption, which we will adopt here, is to restrict RST relations to pairs (sets)
of document parts (segments/spans) which are adjacent in any direction. But again, in real
documents, one can sometimes find a layout where the rhetorical structure obviously is in
conflict with this adjacency condition. Our hypothesis here is that this is generally possible,
but that in such a case an explicit navigational element is required so as to indicate the
intimate relation between two separated layout units.

Clause as segment. The clause usually serves as minimal unit in RST. There are also
approaches, which allow prepositional phrases to be a segment on their own. This is straight-
forward because both approaches assume something which denotes an action, an event or a
state – also called eventualities – as the basic unit. However, if we move to modern docu-
ments, particularly multimodal documents, it is questionable whether the clause/PP basis
should be kept. Typical examples in multimodal documents are:

• a diagram picturing a certain object and a text label which identifies (puts a name to)
this object

• a list with an initiating sentence fragment, as in:

In the box are:
� three cordless handsets
� the base unit
� a mains power lead with adapter
� a telephone line cable
� two charger pods

• an attribute-value table, as in:

Juvenile Grey-brown, flecked becoming whiter, adult
plumage after three years.

Nest Mound of seaweed on bare rocky ledge.
Voice Harsh honks and grating calls at colony.

15

The cited examples are all expressions of states, or of static relationships between two ob-
jects or between an object and a property such as: identification, location, possession, and
predication relations. In a traditional linear text, such relations would have been expressed
as is- and/or has-clauses. Each such clause would constitute one basic RST segment. In our
examples above, however, the two constituents of such a static relation clause are broken out
and printed as separate layout units—in the first example, they are even given in differing
modes. It is their mutual arrangement on the page plus possible extra graphical devices that
expresses the relation between them. This raises the question as to what counts as a minimal
unit for an RST analysis in such documents. We have the following two possibilities:

1. We remain with the clause/PP assumption, and consider picture+label,
sentence-fragment+list, attribute+value as one basic RST segment.

2. We allow text phrases and pictures which denote an object as minimal RST segments,
and analyze the relations between them.

Possibility 1 has the disadvantage that we will not obtain deeper insights into the structure
and design of multimodal documents if we consider the mentioned static relations without
regard to their components.

Possibility 2 introduces an entirely new dimension to RST. It is clear that the static relations
between objects and objects/properties differ from the existing set of RST relations. But it
is not only the fact that we need to introduce a few new relations (identification, predication,
possession, location), we also have to face the fact that these relations do not exhibit a nuclear-
satellite relationship. It is very questionable whether one should compromise the basic ideas
behind RST to such an extent. Especially where the relations we are dealing with appear to
correspond well to the process types already established in Systemic Functional Grammar (cf.
Halliday 1985).

Because the GeM project is interested in the investigation of the relations between different
layout elements in a document we propose a golden mean. We will ascribe an RST structure
to clause-type elements only. But we will also analyse the object-object/property relations, if
they are clearly separate layout units. We adopt the following five relations based on Halliday
(1985), which we will collectively term ‘intra-clausal relations’:

Identification identity assertion
Class-ascription relation between an object and its superclass: isa(A,B),

inst(A,B)
Property-ascription relation between an object and its predicate: pred(A)
Possession relation between possessor and possessed: has(A,B)
Location relation between an object and its spatial or temporal loca-

tion: loc(A,B)

4.2 RST annotation

The tag used to mark the basic RST units is <segment>. In order to find out which base
units form segments, one has to filter out those base units which are in the document for
navigational reasons only. These are, for example, page numbers, running heads, footnote

16

labels, document deictic expressions. We also consider headings as navigational elements,
and do not include them in the RST analysis. Hence the following base units are marked as
segments:

• orthographic sentences
• headings, titles, headlines, if the content of it is more than a summary of the beheaded

following text and contributes necessary information to the document
• photos, drawings, diagrams, figures (without caption), if they are not part of an iden-

tification relation
• captions of photos, drawings, diagrams, tables, if they are not part of an identification

relation
• sentence fragments initiating a list, if the list items are noun phrases
• list items, if they are clauses
• footnote without footnote label

Sentences disrupted into two base units by page/column breaks will form only one segment
in the RST base.

In addition to these segments, we compose other complex segments consisting of more than
one base unit for the cases where a intra-clausal relation is expressed on the page by two (or
more) separate layout units. Typical examples are diagram + label, table celli,1 + table celli,2
in a two-column table, list initiating sentence fragment + list items.

Base units which are not marked as segments are:

• Embedded base units
• Horizontal and vertical lines
• Page numbers
• Footnote labels
• Document deictic expressions, if they are not embedded in a base unit

Each segment has the attribute id, which carries an identifying symbol, and the attribute
xref, which points to the corresponding base unit-id. If the segment consists of more than
one base unit, the xref attribute has several values. The text inside the segment elements is
optional and not necessary for the completeness of the annotation, although it may be useful
for the annotator.

Sequence of sentences:

<segment id="s-21.7" xref="u-21.7">Huge (90cm) unmistakable seabird.</segment>
<segment id="s-21.8" xref="u-21.8">Watch for white, cigar-shaped body and long

straight, slender, black-tipped wings.</segment>
<segment id="s-21.9" xref="u-21.9">In summer, yellow head of adult inconspicuous.
</segment>
<segment id="s-21.10" xref="u-21.10">Plunges spectacularly for fish.</segment>
<segment id="s-21.11" xref="u-21.11">Sexes similar.</segment>

17

Composite segments which consist of two base units standing in a intra-clausal relation are
marked with more information. Three additional optional attributes specify the static relation
which holds between the base units:

id
process identification | class-ascription | property-ascription | possesssion | location
attribuend id of the base-unit which represents the identified, predicated, possessor or

located
attribute id of the base-unit which represents the identifier, predicate, possessed or

location

The annotation of sub-clausal relations is illustrated in the following XML code. It shows the
markup for the attribute-value table cited above.

<segment id="s-21.12" xref="u-21.12 u-21.13" process="property-ascription"
attribuend="u-21.12" attribute="u-21.12">
Juvenile Grey-brown, flecked becoming whiter,
adult plumage after three years.

</segment>
<segment id="s-21.16" xref="u-21.16 u-21.17" process="class-ascription"

attribuend="u-21.16" attribute="u-21.17">
Nest Mound of seaweed on bare rocky ledge.

</segment>
<segment id="u-21.18" xref="u-21.18 u-21.19" process="class-ascription"

attribuend="u-21.18" attribute="u-21.19">
Voice Harsh honks and grating calls at colony.

</segment>

Based on the defined segments, the RST structure is annotated as a flat list of spans. Re-
flecting the difference between multinuclear and mononuclear relations, we distinguish two
(empty) markup elements to denote nonterminal RST spans:

The span with the attributes:

id
nucleus id of the nucleus of this span
satellites list of ids of the satellites to this nucleus
relation elaboration | circumstance | solutionhood | background | enablement | moti-

vation | evidence | justify | volitional-cause | nonvolitional-cause | volitional-
result | nonvolitional-result | purpose | antithesis | concession | condition |
unless | otherwise | interpretation | evaluation | restatement | summary |
preparation

and the multi-span with the attributes

id
nuclei list of ids of the nuclei which form this span
relation joint | list | sequence | contrast | restatement

The root of the RST structure (the top span) is marked with the distinguished XML element
<rst-root>. The <rst-root> has an id, a relation and either a nuclei or a nucleus and a

18

satellite attribute.

The following XML code is the annotation for a rhetorical structure fragment; the constituting
segments are specified in the example code above.

<span id="s-21.31" nucleus="s-21.7" satellites="s-21.8 s-21.9 s-21.10"
relation="justify"/>

<multi-span id="s-21.33" nuclei="s-21.6 s-21.32" relation="joint"/>
<multi-span id="s-21.35" nuclei="s-21.13 s-21.15 s-21.17 s-21.19 s-21.21"

relation="joint"/>
<rst-root id="s-21.36" nucleus="s-21.33" satellites="s-21.35"

relation="elaboration"/>

This RST annotation scheme, which has been adopted in GeM, is aimed to overcome some
drawbacks found in existing RST annotation approaches. The two standards common in the
RST community are Daniel Marcu’s and Mick O’Donnell’s annotation tools. In both tools, the
annotated output is primarily seen as the program-internal representation of RST structures
to be visualized as graphical trees with the help of the tool, but not as output to be used for
further XML processing. Marcu’s tool produces a highly structured LISP expression and is
restricted to binary branching; it also does not associate IDs to other spans but to leaf nodes.
O’Donnell’s tool generates a flat XML output where the structure is encoded with the help
of a parent attribute. He allows for different RST relations with one and the same nucleus
and several ‘non-classical’ RST-like structures that violate the basic RST assumptions that
we adopt above. In both approaches the relation is encoded as a property of the satellite.

The more recent RAGS standard for RST representation has been developed with a different
aim in mind. RAGS provided an interchangeable data structure for RST structures for use in
the Natural Language Generation community. Such RST structures are not ordered and do
not refer to a ready text. Therefore, the RAGS standard does not include a text segmentation.
It is hierarchically structured. Information is stored in XML elements only, not in attributes.
This adds additional structure to the representation.

For a distributable, interchangeable form of RST annotation of texts/documents, we view the
following as desirable:

• flat characterization (+O’Donnell, -Marcu, -RAGS)

• IDs for larger spans (+O’Donnell, -Marcu, +RAGS)

• valid XML output accompanied with a DTD (˜ O’Donnell, -Marcu, +RAGS)

• separation between segmentation and rhetorical structure (+O’Donnell, -Marcu, -RAGS)

• the rhetorical relation is a property of the entire span, not of the satellite (-O’Donnell,
-Marcu, +RAGS)

The GeM approach is designed to meet all these issues. It is similar to O’Donnell’s approach,
but limits the allowed structure to one relation per nucleus. It also uses a top-down encoding,
which we consider far easier to read.

19

5 Navigation base

Navigation in a document is performed with the help of pointers, text pieces which tell
the reader where the current text, or ‘document thread’, is continued or which point to an
alternative continuation or continuations. The addresses used by such pointers are either
names of RST spans or names of layout chunks. For long-distance navigation, typical nodes
in the RST structure and in the layout structure have been established for use in pointers; in
particular, chapter/section headings are names for RST spans and page numbers are names
for page-sized layout-chunks, which tend to be used for navigation. However, there can also
be other name-carrying layout-chunks or RST spans such as, for example, figures, tables,
enumerated formulas, and so on. The navigation base of a document lists all these “names”
which have been defined in this document to be actually or potentially used in pointers. We
call the names of RST spans entries because they are usually placed immediately before the
text of this span. We call the name of a layout-chunk index.

The tag for an entry definition is <entry>. It has the following attributes:

id
xref id of the base unit which is the heading
rst-span id of the RST span which the text in the base unit given under entry-

sign is heading

Note that we allow entries simultaneously to be segments.

We annotate the definition of an <index> as follows. xref refers to the base unit which serves
as the identifier.

id
name name used as pointer address
layout-chunk id of the layout chunk which is named
xref id of the base unit which tells us this name

The following are examples for an index and an entry markup.The text inside the tags is
optional:

<index id="i-21" name="21" layout-chunk="flegg-page" xref="u-21.23">21</index>

<entry id="e-21.1" xref="u-21.1" rst-span="s-21.36">GANNETS</entry>

Beside the list of entries and indices, which just defines addresses, the most important part of
the navigation base consists of all pointers occuring in the document. The surface realization
of pointers are “document deictic expressions”, a term coined by Paraboni & van Deemter
(in press). Document deictic expressions occur either within sentences or as separate layout
units. We have marked the first type as embedded base units and the second as main level
base units in the GeM base. In the navigation base, we specify the semantic meaning of
such a document deictic expression as pointer. We distinguish pointers which operate on
the layout structure, and pointers which operate on the RST structure. A pointer (or link)
operating on the RST structure points from the current segment (which entails the document
deictic expression) to an RST span – the goal RST span – which is layouted at a different
place and is not adjacent. A pointer operating on the layout structure points from the layout

20

chunk (which entails the document deictic expression) to another layout chunk which is not
adjacent. Another distinction is the pointer type, which indicates different pointing situations.
A continuation pointer is used in the situation where the layout of an article is broken into
two non-adjacent parts. The second part is often printed several pages later than the first
part. Continuation pointers are typically layout-operating pointers. Branching pointers
are used in the situation where a certain piece of information is with respect to its content
appropriate at two (or more) places in the same document. The designer has decided to put
it at one of the possible places. In order to indicate the other possible place, he puts a pointer
at the other place. A third type of pointers is the expansion pointer. It is used when more
information is available, but not central to the writer’s goal. An expansion pointer points to
this extra information. Coming along a branching or an expansion pointer, the reader has
the choice between two alternatives to continue reading the document. With a continuation
pointer he has only the choice between reading continuation or stop.

The tag for a pointer is <pointer>. The attributes are given below:

id
from id of the current RST segment or layout chunk
to id of the goal RST span or goal layout chunk | external
type continuation | branching | expansion
address-type absolute | relative
address id of an entry or an index
xref id of the base unit which denotes the document deictic expression
relation RST relation between current segment and goal RST span

For pointers to documents outside the considered document, we mark to=“external”. The
address-type attribute distinguishes between “absolute” (e.g. page 5, chapter 12) and “rel-
ative” (e.g. the next page, the previous section) pointers. We mark the address only for
absolute pointers. It is either an entry (e.g. section Installation) or an index (e.g. page 5).
The relation attribute is optional; it gives the RST relation which holds between the cur-
rent segment and the goal RST span. xref refers to the actual text of the document deictic
expression which realizes the pointer and has already been marked as a base unit.

References

André, E. (1995), Ein planbasierter Ansatz zur Generierung multimedialer Präsentationen,
Vol. 108, Infix, St. Augustin.

Barthes, R. (1977), Image – Music – Text, Hill and Wang, New York.

Cristea, D., Ide, N., Marcu, D. & Tablan, V. (2000), An empirical investigation of the rela-
tion between discourse structure and co-reference, in ‘Proceedings of the International
Conference on Computational Linguistics (COLING’2000)’.

Delin, J., Bateman, J. & Allen, P. (forthcoming), ‘A model of genre in document layout’,
Information Design Journal .

Halliday, M. A. K. (1985), An Introduction to Functional Grammar, Edward Arnold, London.

21

Mann, W. C. & Thompson, S. A. (1988), ‘Rhetorical structure theory: Toward a functional
theory of text organization’, Text 8(3), 243–281.

Paraboni, I. & van Deemter, K. (in press), Towards the generation of document-deictic refer-
ences, in K. van Deemter & R. Kibble, eds, ‘Information sharing’, CSLI.

Reichenberger, K., Rondhuis, K., Kleinz, J. & Bateman, J. A. (1995), Effective presentation
of information through page layout: a linguistically-based approach., in ‘Proceedings
of ACM Workshop on Effective Abstractions in Multimedia, Layout and Interaction’,
ACM, San Francisco, California.
URL: http://www.cs.tufts.edu/ isabel/mmwsproc.html

Schriver, K. A. (1996), Dynamics in document design: creating texts for readers, John Wiley
and Sons, New York.

World Wide Web Consortium (2000), ‘Extensible markup language (XML) 1.0 (second edi-
tion) – W3C recommendation’, Available at http://www.w3.org/TR/2000/WD-xml-2e-
20000814.
URL: http://www.w3.org/TR/2000/WD-xml-2e-20000814

22

