
Automatic Genre-Driven Layout Generation∗

Renate Henschel
University of Stirling
Stirling, Scotland

rhenschel@uni-bremen.de

John Bateman
University of Bremen
Bremen, Germany

bateman@uni-bremen.de

Judy Delin
University of Stirling and

Enterprise IDU
Newport Pagnell, England
judy.delin@enterpriseidu.com

Abstract
It has long been recognized in natural lan-
guage generation that, for generated texts to
be realistic, they will have to consist of more
than simple sets of strings separated by full-
stops. A common assumption in this work has
been that the form of information presentation
straightforwardly follows the rhetorical struc-
ture. More recently, this assumption has been
shown to be too simple to account for naturally
occuring document design: not only the doc-
ument content, but also the visual appearance
of the presented information, serves to achieve
the communicative goal of the author. The de-
sign of this visual appearance therefore needs
to be controlled more flexibly. In this paper,
we present a general algorithm for layout pro-
duction which, dependent on features of the
chosen genre, transforms a rhetorical structure
into a not necessarily isomorphic layout struc-
ture. The algorithm has been implemented as
the XSL stylesheet gemLayout. We illustrate
gemLayout in two different genres drawn from a
growing corpus of multimodal documents, bird
guides and instruction manuals.

1 Introduction
It has long been recognized in natural lan-
guage generation (NLG) that, for generated
texts to be realistic, they will have to consist
of more than simple sets of strings separated
by full-stops. Hovy and Arens (Hovy and
Arens, 1991), for example, presented a frame-
work where a text plan expressed in the terms
of rhetorical structure theory (RST: Mann and
Thompson, (Mann and Thompson, 1988)) could
guide selection of particular LATEX elements
such as enumeration, bullet lists, and empha-
∗ The GeM project is a project funded by the UK ESRC.

sis. Approaches to multimodal generation have
also been concerned with presenting more than
linear text, with combinations of textual and
graphical/pictorial information appearing side-
by-side. Here again it has been common to ap-
peal to rhetorical structure as providing a de-
scription of the communicative intentions that
the composite communicative act is to fulfill
(e.g., (André et al., 1993; de Carolis et al.,
1997)). In most of this work, it has been as-
sumed that the form of information presen-
tation can follow the rhetorical structure rel-
atively straightforwardly. More recently, this
assumption has been shown to be too sim-
ple to account for naturally occuring document
design decisions. Bouayad-Agha, Power and
Scott (Bouayad-Agha et al., 2000) argue that
there are often extreme mismatches between
‘extended’ punctuation (such as that addressed
by Hovy and Arens) and the rhetorical struc-
ture; while Bateman, Kamps, Kleinz and Re-
ichenberger (Bateman et al., 2001) show that
this is equally true for the larger scale units of
layout and formatting chunks presented on a
page.
In this paper we build on the work presented

by Bateman et al. (Bateman et al., 2001) and
show how we are exploring a genre-based ap-
proach to constraining this very flexible aspect
of multimodal document generation. Within
the project ‘Genre and Multimodality’ (GeM:
http://purl.org/net/gem), we are collecting a
corpus of multimodal documents from several
distinct multimodal genres or text types. This
is serving as a source of systematic and moti-
vated constraints for sophisticated layout gen-
eration. We present here a prototype imple-
mentation of a general algorithm for transform-
ing an RST structure into a not necessarily
isomorphic layout structure dependent on fea-

tures of the chosen genre. The implementation
experiments with the application of emerging
industry-standard tools for processing XML-
based documents—in particular, extended style
sheet transformations (XSLT), XSL formatting
objects (XSL-FO), and commercial renderers
for presenting formatting object documents in,
for example, the Adobe portable document
format (pdf) or postscript such as RenderX
(http://www.renderx.com). We illustrate the
prototype with two different genres drawn from
the GeM corpus, bird guides and instruction
manuals. With this work, we are moving to-
wards a position in which sophisticated docu-
ment layout is a natural and expressive com-
ponent of an overall NLG process in which not
only the document content, but also the visual
appearance of the presented information, may
be deployed in order to achieve the communica-
tive goals of the author.

2 Modelling layout

Starting from the hypothesis that the visual ap-
pearance of presented information also helps ful-
fill the communicative goals of an author, we
consider each piece of information on a page (in
a document) from two perspectives: its seman-
tic content and communicative intention on the
one hand, and its visual appearance or layout
realization on the other. As most commonly
adopted in NLG, we use Mann and Thompson’s
RST for the former. For the layout perspective,
we have developed within the GeM project a
new layout model which serves as a general de-
scriptive framework for the documents placed in
our corpus. The GeM layout model abstracts
away from specific domains of application and
describes chunks of information solely in terms
of their visual properties. The layout of a docu-
ment is then determined by three components:
information about what the minimal layout el-
ements are, about which typographical proper-
ties they have, and an account of how they are
grouped into more complex layout chunks on
the page.
Layout units. In typography, the minimal
layout element (in text) is the glyph. In the
GeM project, we are primarily concerned with
typographical and formatting effects at a more
global level, and so consider as minimal lay-
out elements text blocks of the paragraph level,

pictures in their entirety, and all other layout
elements which are differentiated as a whole
from their environment visually (e.g. running
head, title, caption, page number, list items, ...).
We call these minimal layout elements layout
units.
Typographical realization. The most obvi-
ous difference to be observed in realized layout
units is the mode in which they are realized—
typically linguistic or graphical. Dependent on
the chosen mode, different sets of features de-
scribe other layout characteristics. For textual
elements, we consider type family, type size,
type weight, type style (italics or not), justifi-
cation, color, case, and so on. Since our goal is
to explore precisely which combinations of fea-
tures are useful for discriminating between dif-
ferent genres in our corpus, we adopt only those
features which show themselves to be useful in
this respect; this means that the features enu-
merated are by no means comprehensive: for a
full set, from which we make a motivated se-
lection, we employ standards such as the XSL-
formatting objects specification. For the graph-
ical layout units, the only choice we have for
their realization presently is their size, because
we are currently working with ready-to-show
pictures as input. This is modelled in the layout
structure.
Layout structure. The layout structure
describes how layout units are hierarchically
grouped into larger layout chunks. For in-
stance, the heading and its associated text form
together a larger layout element, or the cells
of a table form the larger layout element “ta-
ble”. The criterion for grouping layout units
into chunks is that the chunk should consist of
elements of the same visual realization (font-
family, font-size, . . .), or the chunk is differen-
tiated as a whole from its environment visually
(e.g. by background colour or a surrounding
box); motivations and methods for identifying
layout chunks have been discussed by Reichen-
berger et al. (Reichenberger et al., 1995). Any
layout chunk can consist of layout elements in-
volving different modes (text and graphics).
The layout structure of a document is a hi-

erarchical structure, with the entire document
being the root. Each layout chunk is a node
in the tree, and the minimal layout units are
the terminal nodes of that tree. The grouping

into complex chunks—the layout structure—is
determined by: (i) the rhetorical structure of
the information to be presented; and (ii) can-
vas constraints—constraints arising from the
medium used (paper size and quality) and from
presentation decisions imposed on a document
as a whole. Examples for layout chunks de-
rived from the RST structure are chapters, sec-
tions, and paragraphs. The chapter–section–
paragraph hierarchy has also been explored by
(Power, 2000), who labels it document struc-
ture. Examples for layout chunks generated by
canvas constraints are pages and columns. Typ-
ical for this second kind of layout grouping is
that even sentences are broken apart, and can
readily belong to different layout chunks in the
output document. The final layout which ap-
pears before the reader shows a layout structure
which meets both types of constraints (RST
constraints and canvas constraints).
The layout of a document is not fully deter-

mined by grouping layout units into a tree struc-
ture; further information is required about the
actual position of each unit in the document (on
or within its page). For this, we introduce an
area model,1 which recursively specifies rect-
angular sub-areas of the page area in a grid-like
manner. These sub-areas then serve to deter-
mine the position of each layout chunk or layout
unit. Two layout elements are called adjacent,
if they are placed into two either horizontally or
vertically adjacent subareas.
Figure 1 shows an example layout structure.
The described layout structure differs from

Power’s (Power, 2000) document structure in
that

• it reflects the production and canvas con-
straints which the realization of a given
document structure is subjected to (deci-
sions about pagination, columns, margins,
hyphenation, etc.);

• it specifies navigational elements—layout
elements which are not derived from the
content, but which serve to guide the reader
through the document (e.g. page numbers,
pointers, running heads, titles);

• it specifies the position of layout elements
on the page.

1This should not be confused with the similarly
named but different construct from XSL-FO.

3 RST structure and layout
structure

In its original form, RST investigates the rela-
tions which hold between consecutive clauses,
or bigger adjacent fragments of a text—the so-
called text spans. An RST relation typically
combines two adjacent text spans of unequal
importance, a text span which is central to the
writer’s communicative goal, the nucleus, and
a text span which supports the message of the
nucleus, the satellite. Multinuclear relations
between two or more spans of equal importance
(e.g. list, joint, sequence, ...) are also possi-
ble. Adjacent text spans which are related by
an RST relation form then together a bigger
text span, which itself is the nucleus or satellite
of an RST relation. So the RST relations are
recursively applied on progressively larger text
portions, resulting in a tree structure the root
of which is the whole text, and whose terminal
nodes are the clauses of this text. RST struc-
tures have been used as data structures medi-
ating between text planning and tactical gen-
eration in pipeline organized NLG systems; the
terminal nodes of the RST tree are then seman-
tic propositions. We adopt this latter model
for the generation process developed here, but
generalize the RST structure to hold over mul-
timodal presentations.
One central question of our investigation is

the relation which holds between the RST struc-
ture behind a document and the corresponding
layout structure found on the page. Inspec-
tion of our corpus has so far led to two in-
sights. First, there are layout elements which
do not contain information from the input RST
structure, but serve to help the reader navi-
gate through the document (e.g. page num-
bers, running heads, pointers), which we call
navigational elements. Second, the output lay-
out structure does not generally preserve the
RST input structure. We observe three princi-
ple types of structural transformation:

1. Sequential layout (concatenation):
The terminal nodes of an RST tree are
all realized inside one and the same lay-
out block (in case of text, with identical
typography) maintaining the adjacency of
nucleus/nuclei and satellites of one and the
same relation.

cell−11

cell−12cell−11= subarea title−cols

cell−12

cell−21

cell−11

cell−31

cell−41

cell−51

cell−51
cell−41cell−31

(title−cols)(title−cols)
cell−11

body

phrase 2phrase 1

Table
Text Photo

Page

Title

Figure 1: Layout structure of a page similar to that given in Figure 3 below

=> A B C
A B C

A B

C

2. Emphasis: A certain satellite or nucleus
is realized with different layout properties
than its sister nodes, thus creating an extra
layout block, but maintaining adjacency
with the other relation constituents (nu-
cleus and satellites).

=>
A adjacent B

A B C
C

B

A

A
B

C

3. Extraposition: A certain satellite or nu-
cleus is cut from the RST tree and realized
at a different place in the document, not
necessarily adjacent to its sister nodes.

A

A
C

BA

=> C B

C

B

For multinuclear relations, we state that they
should be of equal layout status: if one nucleus
is cut, all are cut; if one nucleus is emphasized,
all of them are emphasized. Thus ’emphasis’
here cannot be seen as a mechanism to highlight
something against a context, but to distinguish
constituents from one another.
Typical examples for sequential layout are

paragraphs. The layout of diagrams or pho-

tos in a textual environment already requires
emphasis, because the size of the picture usu-
ally does not fit into the fixed line-height of a
paragraph. Extraposition can be found, for ex-
ample, in books where illustrations are placed
in an extra section at the end of the book, or
on a page where illustrating material is gener-
ally placed at the top or bottom and referred to
from the text. A typical example for multinu-
clear emphasis is the layout of a ‘sequence’ or
‘list’ relation as a list.
These three structural possibilities can occur

at different places in one and the same RST tree.
We assume here sequential layout as the default
layout structure. We will mark the cutting (ex-
traposition) of an RST subtree by vertical dou-
ble lines which cross the arc between the cut tree
and its parent node, and the emphasizing of an
RST subtree by a box around the subtree’s root
node. We call an RST tree marked in such a way
layout-marked. Note that the layout structure
generated by a cut is not homomorphic. It does
not maintain adjacency relationships between
the constituents (nuclei, satellites) of one rela-
tion. Layout structures which are isomorphic or
homomorphic to the RST structure are special
cases of the above definition. Isomorphic lay-
out can be obtained by cutting or emphasizing
every satellite. It can also be obtained, if e.g.
every satellite in the top part of an RST tree is
cut, but not in the bottom part.
Crucially, we argue that this breaking of RST

relations is a genre dependent process. It is then
a primary aim of the GeM project, and its cor-
pus collection, to ascertain which constraints
on the decomposition process can be allocated
to genre considerations, which to canvas con-

straints, and which remain free.

4 The gemLayout algorithm

The gemLayout algorithm creates from a given
RST structure a layout structure formed out
of layout units, and attributes them with cer-
tain typographical features and relative posi-
tions on the page. It allows a conditional
break (cut or emphasis) for all satellite arcs,
as well as emphasizing the nuclei of multin-
uclear relations. It is in these break condi-
tions that we bring the results of the corpus
analysis to bear: break conditions are consid-
ered genre dependent and are therefore given
as extra input. gemLayout without input break
conditions will generate a flat layout structure,
thus simulating traditional text generation pro-
grams. gemLayout has been implemented as a
cascade of three XSL stylesheets: gemTrans,
gemExtrapose and gemFO. It operates on the in-
put RST tree and the genre-specific break con-
ditions. Both are represented as XML descrip-
tions. The RST representation follows the GeM
RST format (see the GeM website for the DTD)
augmented by an XML representation of the
propositional content of the leaves. The first
two transformations produce a layout structure
specified in the form of an XML tree with the
elements <pro> (to indicate terminal propo-
sitions), <cut> (for extraposed subtrees), and
<block> for composite layout elements and em-
phasized subtrees. gemTrans is responsible for
the structural transformation of the input RST
tree (flattening the RST structure and adding
navigational elements) as well as for the order of
layout siblings. The flow-chart in figure 2 shows
in an informal manner one step of gemTrans’s
top-down recursive traversal through an RST
tree. In the diagram, $node is a node in the
input RST tree. $node can either be terminal
or denote an RST relation. This relation can
be a mononuclear relation, $nucleus and $satel-
lite are then the spans it combines. If $node
is a multinuclear relation, $nuc1 ... $nucn are
the nuclei which build $node. The alternative
actions for mono- and multinuclear nodes are
separated by a dashed line in the figure. Note
that in the figure we have always given a nucleus
before satellite order, although the sequence of
these constituent spans is in fact implemented
as dependent on the stated break conditions in

the last two action blocks (extraposition, iso-
morphic layout).
gemExtrapose serves solely to extrapose all

cut material out of its original RST neighbour-
hood. Finally the third gemLayout stylesheet,
gemFO, transforms the GeM layout structure
specified in XML into an XML formatting ob-
jects specification, and carries out tactical gen-
eration of the layout leaves.
This first prototype transfers the RST tree

directly into XML formatting objects; a planned
second prototype will create a layout structure
in the form of the GeM layout model (Section 2)
for more complex layouts.

5 Examples — bird guides and
telephone manuals

This section illustrates the layout generation al-
gorithm with two different genres present in the
GeM corpus: (1) bird guides, and (2) telephone
instruction manuals. The implementation is, for
the time being, restricted to a selection of simple
layout decisions in order to show the principle
behind the algorithm. The decisions considered
are: content-determined layout structure gen-
eration, simple layout element positioning, title
generation, typographic similarity/distinction,
and linguistic realization. In all cases, we are
concerned here with the generation of the lay-
out structure and the corresponding page, not
with the generation of the content for the lay-
out elements. The content generation is to be
treated in part by traditional NLG components
and so is not a major focus here; for example,
‘title generation’ means here the decision where
to add a title and where not (i.e. generation of
an extra layout element or not)—not the gener-
ation of the actual words of the title.
The determination of the position of layout el-

ements is in this first implementation restricted
to four possibilities for arranging nucleus and
satellite, or for arranging a cut satellite and
the remaining RST tree material. These are
nucleus-first and satellite-first in both dimen-
sions: horizontally and vertically. The question
of nucleus-satellite order inside a basic layout
unit (a paragraph) has in our examples been
simplified as ‘nucleus-first’ always; further re-
search concerning this problem can be found
elsewhere (e.g., (Bouayad-Agha et al., 2000)).
The genre-specific break conditions, which

layout

gemTrans1

<block> gemTrans1 ($node) </block>

emphasis

emphasize $node?

no

yes

<pro> $node </pro>$node terminal?

cut $satellite ?

be transformed?
RST tree currently to

$node is root of the

for i = 1 ... n do {gemTrans ($nuc−i)}

gemTrans ($satellite)
gemTrans ($nucleus)

<cut> gemTrans ($satellite) </cut>
gemTrans ($nucleus)

<block> gemTrans ($nucleus) </block>
<cut> gemTrans ($satellite) </cut>

yes

no

no

yes

no

yes

sequential layout

satellite extraposition

isomorphic

Figure 2: Algorithm gemTrans

trigger the start of an extra layout ele-
ment and break the traditional sequential text
arrangement—can be found in different sources:
semantic content of the satellite, mode in which
the satellite should be expressed, RST relation,
and structural properties of the RST structure.
The examples following utilise all four of these
types of information. We have extracted the
most apparent break conditions for bird guides
and telephone manuals from the material in our
corpus; at present this is done manually, al-
though the corpus has been extensively anno-
tated with respect to layout model and RST
structure in order to derive break conditions au-
tomatically in the future.

Bird guides. A bird guide is a list of simi-
larly appearing document pieces, each of which
is dedicated to one particular bird. To simplify
matters further, we assume here a one bird per
page layout (which is the situation in around
half of our investigated bird guides). We con-
sider now the layout generation for one vari-
able example bird—the bird in focus. Within
this genre, we observe that the Latin name of
the bird in focus and the information about its
family are typically separated layout units. In
addition, each bird page has at least one central
picture showing the bird (realized in older books
as a line-drawing, in more recent ones as a pho-
tograph); this graphical layout element is also
separated from the textual information. And,
finally, in one bird per page books, the informa-
tion to be presented in textual form is usually
split into two layout units—one represented as

linear text, the other as an itemized list. These
two layout elements have differing typographic
realization, indicating the nucleus-satellite dis-
tinction, but are otherwise of relatively equal
weight. Typically, each bird page has its own
title. In Table 1, we summarize the stated break
and title conditions as XSL paths that trigger
particular mappings into layout structure. The
table also shows their consequences for typo-
graphical and linguistic realization.

An application of gemLayout equipped with
the break conditions given in Table 1 to the rep-
resented RST structure for the communicative
intention of the page results in a tree of XSL
formatting objects, which may then be rendered
straighforwardly into a PDF output file (for this
we have used RenderX). Figure 3 shows the cor-
responding output page.

Instruction manuals. Our second example is
the generation of a page of a telephone manual
instructing the user how to install a new tele-
phone device. In the GeM corpus, it is apparent
that most pages from telephone manuals have
highly structured layout. It is rare that one can
find a paragraph formed by more than one sen-
tence. The analysis of the RST structure of such
a page reveals that it consists of a high percent-
age of multinuclear relations (sequences, lists
and restatements). All these relations undergo
an isomorphic transformation into layout, i.e.
each of their nuclei is realized as a separate lay-
out element, they do not form a sequential text.
However, these separate elements are generally
realized preserving adjacency. Thus we consider

cut condition satellite realization
//proposition/[@id=$satellite/]/pred=’latin’ font-style=’italic’

lingustics=’ellipsis’
dimension=’horizontal’

//proposition[@id=$satellite]/pred=’family’ font-style=’italic’
lingustics=’ellipsis’
order=’sat-first’
dimension=’vertical’

//proposition[@id=$nucleus]/@mode=’graphics’
//proposition[@id=$satellite]/@mode=’graphics’
count(id($nucleus)//proposition) font-family=’arial’
∼= count(id($satellite)//proposition) font-size=’smaller’
and count(id($nucleus)//proposition) > 6 lingustics=’itemized-list’

order=’nuc-sat’
title condition realization
//rst-root[@id=$node] font-weight=’bold’

font-size=’16pt’

Table 1: Break conditions for bird guides

Gannet

Sula bassana

Family Sulidae

Birds of the open ocean, Gannets breed on small islands off
the NW coast of Europe.They move away from land after
nesting to winter at sea.The young migrate south as far as
W Africa.Gannets feed on fish by plunge-diving from
25m.They nest in large, noisy colonies.The nest is a pile of
seaweed. A single egg is incubated for 44 days. The young
bird is fed by both parents and flies after 90 days.

Size Larger than any gull

Adult White, black wing-tips, yellow nape

Juvenile Grey, gradually becoming white over 5 years

Bill Dagger-like

In flight Cigar-shaped with long, narrow, black-tipped wings

Voice Usually silent, growling urr when nesting

Lookalikes Skuas, Gulls and Terns

Rendered by www.RenderX.com

Figure 3: Generated bird page

this break as an emphasis break. So, the first
and most powerful break condition for instruc-
tion manuals is to trigger an emphasis break
for all nuclei in any multinuclear relation. For

the realization of these nuclei, we have to dis-
tinguish between different RST relations. The
nuclei of a multinuclear restatement with one
of its nuclei in graphical mode are simply ren-
dered in two adjacent blocks arranged horizon-
tally, text first, diagram second. Multinuclear
relations of type ‘sequence’ are usually layouted
as lists. Our corpus analysis suggests three main
possibilities: the list items are separated against
each other by a horizontal rule, the list is real-
ized as an enumerated list, or the list is realized
as a bulleted list. These three possibilities are
applied during the RST-tree traversal one after
another from top to bottom. The list items (nu-
clei) are always arranged vertically. The break
conditions for instructions are as shown in Ta-
ble 2. Also, as in bird guides, each telephone
manual page has its own title. A resulting page
is given in figure 4.

6 Conclusion

We have presented a brief overview of a general
algorithm, implemented as a cascade of XSLT
style sheets, for generating layout on the basis
of corpus-derived design decisions. The algo-
rithm gemLayout is capable of generating ho-
momorphic (as in (Power, 2000)) as well as non-
homomorphic layout structures, and moreover
it has made the crucial step from traditional lin-
ear top-to-bottom arrangement of derived lay-
out elements (again as in (Power, 2000)) to
a two-dimensional arrangement. For our next
round of implementation, we will fold in the
modules which for the present have been fac-

emphasis condition realization
//multi-span[@id=$node] and $break-count=0 realization=’rule’
//multi-span[@id=$node] and $break-count=1 realization=’olist’
//multi-span[@id=$node] and $break-count=2 realization=’ulist’
//proposition[@id=$nucleus-1]/realization/full
and

dimension=’horizontal’

//proposition[@id=$nucleus-2]/@mode=’graphics’

Table 2: Break conditions for instruction manuals

Connecting the base unit and chargers

1 Choose a suitable site for the base unit. Make sure it is not near to another telephone,
nor to other electrical equipment.

2 Plug the mains power lead and the
telephone line cord into the back of the base
unit.

3 Plug the mains adapter into a 230 V AC, 50
Hz mains socket, with the switch on the
socket set to OFF.

4 Switch on mains power at the socket.

1 Connect a mains power lead into the socket
on back of each charger pod.

2 Plug each mains adapter into a 230 V AC, 50 Hz mains socket and switch on mains
power.

The Pegasys 8 Triple charger pods must be used with mains adapter, part no. XX002101D,
supplied with the unit. Using any other adapter will result in non-compliance with EN41003,
and will invalidate any approval given to this apparatus.

Rendered by www.RenderX.com

Figure 4: Generated instruction page

tored out of the discussion; in particular: mode
allocation (graphics or text), more possibilities
for the position of layout elements, generation
of pointers/links, generation of captions, typo-
graphic features, color, background and mar-
gins, and canvas determined layout decisions.
For the present, we have demonstrated that
NLG will soon be capable of employing gen-
eral techniques for the generation of motivated
multimodal documents approaching, at least for

some genres, those produced by design profes-
sionals.

References
Elizabeth André, Wolfgang Finkler, Winfried Graf,
Thomas Rist, Anne Schauder, and Wolfgang
Wahlster. 1993. WIP: the automatic synthesis of
multimodal presentations. In Mark T. Maybury,
editor, Intelligent Multimedia Interfaces, pages
75–93. AAAI Press, Menlo Park (CA).

John A. Bateman, Thomas Kamps, Jörg Kleinz, and
Klaus Reichenberger. 2001. Constructive text, di-
agram and layout generation for information pre-
sentation: the DArtbio system. Computational
Linguistics, 27(3):409–449.

Nadjet Bouayad-Agha, Richard Power, and Donia
Scott. 2000. Can text structure be incompatible
with rhetorical structure? In Proceedings of the
International Natural Language Generation Con-
ference (INLG-2000), pages 194–200, Mitzpe Ra-
mon, Israel.

Berardina de Carolis, Fiorella de Rosis, and Sebas-
tiano Pizzutilo. 1997. Generating user-adapted
hypermedia from discourse plans. In Proceedings
of Fifth Congress of the Italian Association for
Artificial Intelligence (AIIA’97), pages 334–345,
Rome.

Eduard H. Hovy and Yigal Arens. 1991. Automatic
generation of formatted text. In Proceedings of
the 8th. AAAI, pages 92–96, Anaheim, California.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

Richard Power. 2000. Mapping rhetorical struc-
tures to text structures by constraint satisfaction.
Technical Report ITRI-00-01, ITRI, University of
Brighton.

Klaus Reichenberger, Klaas Jan Rondhuis, Jörg
Kleinz, and John A. Bateman. 1995. Effective
presentation of information through page layout:
a linguistically-based approach. In Proceedings of
ACM Workshop on Effective Abstractions in Mul-
timedia, Layout and Interaction, San Francisco,
California. ACM.

