
Multilinguality in a Text Generation System
For Three Slavic Languages

Geert-Jan Kruij�a, Elke Teichb, John Batemanc, Ivana Kruij�-Korbayov�aa ,
Hana Skoumalov�aa , Serge Sharo�d , Lena Sokolovad , Tony Hartleye,

Kamenka Staykovaf , Ji�r�i Hanaa

aCharles University, Prague; bUniversity of the Saarland; cUniversity of Bremen;
dRRIAI, Moscow; eUniversity of Brighton; f IIT, BAS, So�a

http://www.itri.brighton.ac.uk/projects/agile/

Abstract

This paper describes a multilingual text generation

system in the domain of CAD/CAM software in-

structions for Bulgarian, Czech and Russian. Start-

ing from a language-independent semantic represen-

tation, the system drafts natural, continuous text

as typically found in software manuals. The core

modules for strategic and tactical generation are im-

plemented using the KPML platform for linguistic

resource development and generation. Prominent

characteristics of the approach implemented are a

treatment of multilinguality that makes maximal use

of the commonalities between languages while also

accounting for their di�erences and a common repre-

sentational strategy for both text planning and sen-

tence generation.

1 Introduction

This paper describes the Agile system1 for the

multilingual generation of instructional texts as

found in software user-manuals in Bulgarian,
Czech and Russian. The current prototype fo-
cuses on the automatic drafting of CAD/CAM
software documentation; routine passages as

found in the AutoCAD user-manual have been
taken as target texts. The application sce-
nario of the Agile system is as follows. First,
a user constructs, with the help of a GUI,
language-independent task models that spec-

ify the contents of the documentation to be

generated. The user additionally speci�es the
language (currently Bulgarian, Czech or Rus-
sian) and the register of the text to be gen-
erated. The Agile system then produces con-

tinuous instructional texts realizing the speci-

1EU Inco-Copernicus project PL961004: `Automatic
Generation of Instructional Texts in the Languages of
Eastern Europe'

�ed content and conforming to the style of soft-
ware user-manuals. The texts produced are

intended to serve as drafts for �nal revision;
this `drafting' scenario is therefore analogous to
that �rst explored within the Drafter project.
Within the Agile project, however, we have ex-
plored a more thoroughly multilingual architec-

ture, making substantial use of existing linguis-
tic resources and components.

The design of the Agile system overall rests
on the following three assumptions.

First, the input of the system should be spec-

i�ed irrespective of any particular output lan-
guage. This means that the user must be able to

express the content that she wants the texts to
convey, irrespective of what natural language(s)
she masters and in what language(s) the out-

put text should be realized. Such language-
independent content speci�cation can take the

form of some knowledge representation pertain-

ing to the application domain.

Second, the texts generated as the output of

the system should be well-formulated with re-
spect to the expectations of native speakers of
each particular language covered by the system.
Since di�erences among languages may appear
at any level, language-sensitive decisions about

the realization of the speci�ed content must be
possible throughout the generation process.

And third, the notion of multilinguality em-
ployed in the system should be recursive, in
the sense that the modules responsible for the

generation should themselves be multilingual.

The text generation tasks which are common
to the languages under consideration should be
performed only once. Ideally, there should be
one process of generation yielding output in

multiple languages rather than a sequence of



monolingual processes. This view of `intrin-
sic multilinguality' builds on the approach set
out in Bateman et al. (1999). Each module of
the system is fully multilingual in that it simul-
taneously enables both integration of linguistic
resources, de�ning commonalities between lan-

guages, and resource integrity, in that the in-
dividuality of each of the language-speci�c re-
sources of a multilingual ensemble is always pre-
served.

We consider these assumptions and the view
of multilinguality entailed by them to be cru-
cial for the design of e�ective multilingual text
generation systems. The results so far achieved
by the Agile system support this and also o�er
a solid experiential basis for the development of
further multilingual generation systems.

The overall operation of the Agile system is
as follows. After the user has speci�ed some
intended text content (described in Section 2)

via the Agile GUI, the system proceeds to gen-
erate the texts required. To do this, a text
planner (Section 3) �rst assigns parts of the
task model to text elements and arranges them

in a hierarchical fashion{a text plan. Then, a

sentence planner organizes the content of the
text elements into sentence-sized chunks and
creates the corresponding input for the tacti-
cal generator, expressed in standard sentence

planning language (SPL) formulae. Finally, the

tactical generator generates the linguistic real-
izations corresponding to these SPLs{the text

(Section 4). In the stage of the project reported

here, we concentrated particularly on procedu-
ral texts. These o�er step-by-step descriptions
of how to perform domain tasks using the given
software tools. A simpli�ed version of one such

procedural text is given (for English) in Fig-
ure 1. This architecture mirrors the reference
architecture for generation discussed in Reiter
& Dale (1997). The modules of the system are
pipelined so that a continuous text is generated
realizing the intended meaning of the input se-
mantic representation without backtracking or
revision.

Several important properties have character-
ized the method of development leading to the

Agile system. These are to a large extent re-
sponsible for the e�ectiveness of the system.
These include:

Re-use and adaptation of available re-

To draw a polyline
First start the PLINE command using one of these meth-
ods:
Windows From the Polyline yout on the Draw tool-
bar, choose Polyline.
DOS and UNIX From the Draw menu, choose Poly-
line.

1. Specify the start point of the polyline.

2. Specify the next point of the polyline.

3. Press Return to end the polyline.

Figure 1: Example \To draw a polyline"

sources. We have re-used substantial bodies
of existing linguistic resources at all levels rel-

evant for the system; this played a crucial role
in achieving the sophisticated generation capa-
bilities now displayed by the system in each of
its languages of expertise|prior to the project
there were no substantial automatic generation
systems for any of the languages covered. The
core modules for strategic and tactical gener-

ation were all implemented using the Komet-
Penman Multilingual system (KPML: cf. Bate-

man et al., 1999)|a Common Lisp based gram-

mar development environment. In addition,
we adopted the Penman Upper Model as used
within Penman/KPML as the basis for our
linguistic semantics; a more restricted domain

model (DM) relevant to the CAD/CAM-domain

was de�ned as a specialization of the UM con-
cepts. The DM was inspired by the domain

model of the Drafter project, but presents a

generalization of the latter in that it allows for
embedding tasks and instructions to any arbi-
trary recursive depth (i.e., more complex text
plans). Already existing lexical resources and

morphological modules available to the project

were re-used for Bulgarian, Czech and Russian:
the Czech and Bulgarian components were mod-
ules written in C (e.g., Haji�c & Hladk�a, 1997,
for Czech) that were interfaced with KPML us-
ing a standard set of API-methods (cf. Bate-
man & Sharo�, 1998). Finally, because no
grammars suitable for generation in Bulgarian,
Czech and Russian existed, a grammar for En-
glish (NIGEL: Mann & Matthiessen, 1985) was
re-used to build them; for the theoretical basis
of this technique see Teich (1995).

Combination of two methods of resources
development. Two methods were com-
bined to enable us to develop basic general-



language grammars and sublanguage grammars
for CAD/CAM instructional texts at the same
time. One method is the system-oriented one
aimed at building a computational resource
with a view of the whole language system: this
is a method strongly supported by the KPML

development environment. The other method
is instance-oriented, and is guided by a detailed
register analysis. The latter method was partic-
ularly important given the Agile goal of being
able to generate texts belonging to rather di-

verse text types| e.g., impersonal vs. personal;
procedural, functional descriptions, overviews
etc.

Cross-linguistic resource-sharing. A cross-
linguistic approach to linguistic speci�cations
and implementation was taken by maximizing
resource sharing, i.e. taking into account sim-
ilarities and di�erences among the treated lan-
guages so that development tasks have been dis-

tributed across di�erent languages and re-used

wherever possible.

2 Language-independent Content
Speci�cations

The content constructed by a user via the Ag-
ile GUI is speci�ed in terms of Assertion-boxes

or A-boxes. These A-boxes are considered to
be entirely neutral with respect to the language
that will be used to express the A-box's con-

tent. Thus individual A-boxes can be used for
generating multiple languages. A-boxes spec-

ify content by instantiating concepts from the

DM or UM, and placing these concepts in rela-
tion to one another by means of con�gurational

concepts. The con�gurational concepts de�ne
admissible ways in which content can be struc-
tured. Figure 2 gives the con�gurational con-
cepts distinguished within Agile.

Con�gurational concepts are devoid of actual
content. The content is provided by instantia-
tions of concepts that represent various user ac-

tions, interface events, and interface modalities
and functions. Taken together, these instanti-

ations provide the basic propositional content
for instructional texts and are taken as input

for the text planning process.

Procedure A procedure has three slots:
(i) Goal (obligatory,�lled by a User-Action),
(ii)Methods (optional, �lled by aMethod-List),
(iii) Side-Effect (optional, �lled by a User-

Event).

Method A method has three slots:
(i) Constraint (optional, �lled by anOperating-
System),
(ii) Precondition (optional, �lled by a Proce-

dure),
(iii) Substeps (obligatory, �lled by a Procedure-
List).

Method-List A Method-List is a list of Method's.

Procedure-List A Procedure-List is a list of
Procedure's.

Figure 2: Con�gurational concepts

3 Strategic Generation: From
Content Speci�cations to Sentence
Plans

To realize an A-box as a text, we go through suc-
cessive stages of text planning, sentence plan-

ning, and lexico-grammatical generation (cf.
also Reiter & Dale, 1997). At each stage there

is an increase in sensitivity to, or dependency
on, the target language in which output will
be generated. Although the text planner itself

is language-independent, the text planning re-
sources may di�er from language to language

as much as is required. This is exactly analo-
gous to the situation we �nd within the individ-

ual language grammars as represented within

KPML: we therefore represent the text planning
resources in the same fashion. For the text type
and languages of concern here, however, varia-
tion across languages at the text planning stage

turned out to be minimal.

The organization of an A-box is used to guide

the text planning process. Here, we draw a dis-
tinction between text structure elements (TSEs)

as the elements from which a (task-oriented)
text is built up, and text templates, which con-
dition the way TSEs are to be realized linguis-
tically. We focus on the relation between con-
cepts on the one hand, and TSEs on the other.
We are speci�cally interested in the con�gura-

tional concepts that are used to con�gure the
content speci�ed in an A-box because we want
to maintain a close connection between how the
content can be de�ned in an A-box and how
that content is to be spelled out in text.



3.1 Structuring and Styling

A text structure element is a prede�ned com-
ponent that needs to be �lled by one or more
speci�c parts of the user's content de�nition.
Using the reader-oriented terminology common
in technical authoring guides, we distinguish
a small (recursively de�ned) set of text TSEs;
these are listed in Figure 3.

Task-Document A Task-Document has two slots:
(i) Task-Title (obligatory),
(ii) Task-Instructions (obligatory), being a list
of at least one Instruction.

Instruction An Instruction has three slots:
(i) Tasks (obligatory), being a list of at least one
Task,
(ii) Constraint (optional),
(iii) Precondition (optional).

Task A Task has two slots:
(i) Instructions (optional),
(ii) Side-Effect (optional).

Figure 3: Text Structure Elements (TSEs)

The TSEs are placed in correspondence with

the con�gurational concepts of the DM (cf. Fig-
ure 2); this enables us to build a text structure

that follows the structuring of the content in an

A-box (cf. Figure 4).
Orthogonal to the notion of text structure el-

ement is the notion of text template. Whereas
TSEs capture what needs to be realized, the

text template captures how that content is to

be realized. Thus, a template de�nes a style
for expressing the content. As we discuss be-

low, we de�ne text templates in terms of con-

straints on the realization of speci�c (individ-
ual) TSEs. For example, whereas in Bulgarian

and Czech headings (to which the Task-Title
element corresponds: cf. Figure 4) are usually
realized as nominal groups, in the Russian Au-

toCAD manual headings are realized as non�-
nite purpose clauses as they are in English.

3.2 Text Planning & Sentence Planning

The major component of the text planner is
formed by a systemic network for text struc-
turing; this network, called the text structur-

ing region, de�nes an additional level of linguis-
tic resources for the level of genre. This region
constructs text structures in a way that is very
similar to the way in which the systemic net-
works of the grammars of the tactical genera-

tor build up grammatical structures. In fact,
by using KPML to implement this means for
text structuring, the interaction between global
level text generation (strategic generation) and
lexico-grammatical expression (tactical genera-
tion) is greatly facilitated. Moreover, this ap-

proach has the advantage that constraints on
output realization can be easily accumulated
and propagated: for example, the text plan-
ner can impose constraints on the output lexico-
grammatical realization of particular text plan

elements, such as the realization of text head-
ings by a nominalization in Czech and Bulgar-
ian or by an in�nite purpose clause in Rus-
sian. This is one contribution to overcoming the
notorious generation gap problem caused when

a text planning module lacks control over the
�ne-grained distinctions that are available in a
grammar. In our case, both text planning and
sentence planning are integrated into one and
the same system and are distinguished by strat-

i�cation.

Task-Title $ Goal of topmost Procedure
Task-Instructions $ Methods of Procedure

Side-Effect $ Side-Effect of Procedure
Task $ Goal of Procedure

Constraint $ Constraint of Method

Precondition $ Precondition of Method

Instruction-Tasks $ Substeps of a Method

Instruction $ Method

Figure 4: Mapping TSEs and con�gurational

concepts de�ned in the DM

Following on from the orthogonality of text
templates and text structure elements, the text

structuring region consists of two parts. One
part deals with interpreting the A-box in terms

of TSEs: traversing the network of this part of
the region produces a text structure for the A-
box conforming to the de�nitions above. The
second part of the region imposes constraints
on the realization of the TSEs introduced by

the �rst part. Diverse constraints can be im-
posed depending on the user's choice of style,
e.g., personal (featuring ppredominantly imper-

atives) vs. impersonal (featuring indicatives).

The result of text planning is a text plan.
This can be thought of as a hierarchical struc-
ture (built by TSEs) with bits of A-box content
at its leaves together with additional constraints

imposed by the text planning process: e.g., that



the Title segment of the document should not be
realized as a full clause but rather as a nominal
phrase or a purposive dependent clause. The
text plan may also include constraints on pre-
ferred layout of the document elements: this
information is passed on via html annotations.

The sentence planner then takes this text plan
as input, and creates SPL formulae to express
the content identi�ed by the text plan's leaves.
The resulting SPLs can also group one or more
leaves together (aggregation) depending on de-

cisions taken by the text planner concerning dis-
course relations. Furthermore, constraints on
realization that were introduced by the text-
planner are also included into the SPLs at this
stage.

Of particular interest multilingually is the
way concepts may require di�erent kinds of re-
alizations in di�erent languages. For example,

languages need not of course realize concepts
as single words: in Czech the concept Menu

gets realized as \menu" but the interface modal-

ity Dialogbox is realized as a multiword expres-
sion \dialogov�e okno" (whose components|i.e.,

an adjective and a nominal head|may undergo
various grammatical operations independently).

The Agile system sentence planner handles such

cases by inserting SPL forms corresponding to
the literal semantics of the complex expressions

required; these are then expressed via the tac-
tical generator in the usual way. The result-

ing SPL formulas thus represent the language-
speci�c semantics of the sentences to be gener-
ated. Otherwise, if a concept maps to a single

word, the sentence planner leaves the further
speci�cation of how the concept should be re-
alized to the lexico-grammar and its concept-

to-word mappings. More extensive di�erences
between languages are handled by conditional-

izing the text and sentence planner resources
further according to language.

4 Tactical Generation: From
Sentence Plans to Sentences

The tactical generation component that con-

structs sentences (and other grammatical units)
from the SPL formulae speci�ed in the text
plan relies on linguistic resources for Bulgarian,

Czech and Russian. The necessary grammars
and lexicons have been constructed employing

the methods described in Section 1. As noted

there, the crucial characteristic of this model
of multilingual representation is that it allows
for the representation of both commonalities and
di�erences between languages, as required to
cover the observable contrastive-linguistic phe-
nomena. This can be applied even among typo-

logically rather distant languages.

We �rst illustrate this with respect to some
of the contrastive-linguistic phenomena that are
covered by this model employing examples from
English, Bulgarian, Czech and Russian. We
then show the organization of the lexicons and
briey describe lexical choice.

4.1 Semantic and grammatical
cross-linguistic variation

One of the tenets of our model of cross-linguistic
variation is that languages have a rather high
degree of similarity semantically and tend to

di�er syntactically. We can thus expect to have
identical SPL expressions for Bulgarian, Czech

and Russian in many cases, although these may
be realized by diverging syntactic structures.
However, we also allow for the case in which

there is no commonality at this level and even
the SPL expressions diverge.2 Example 1 illus-

trates the latter case (high semantic divergence,

plus grammatical divergence), and example 2
the former (semantic commonality, plus gram-
matical divergence).

Example 1: English and Russian spa-
tial PPs. The major lexico-grammatical dif-
ference between English and Russian preposi-

tional phrases is that the relation expressed by
the PP is realized by the choice of the prepo-
sition in English, whereas in Russian, it is in

addition realized by case-government. In the
area of spatial PPs, the choice of a particular

preposition in English corresponds to a distinc-
tion in the dimensionality of the object that re-
alizes the range of the relation expressed by the
PP. For both PPs expressing a location and PPs
expressing movement, English distinguishes be-
tween three-dimensional objects (in, into), one-
or-two-dimensional objects (on, onto) and zero-
dimensional objects (at, to).

In Russian, in contrast, zero-or-three dimen-
sional objects (preposition: v) are opposed

2This distinguishes our approach from interlingua-
based systems, which typically require a common seman-
tic (or conceptual) input.



to one-or-two-dimensional objects (preposition:
na). A further di�erence between the expres-
sion of static location vs. movement is expressed
by case selection: na/v+locative case expresses
static location, v/na+accusative case expresses
movement (entering or reaching an object) and

the preposition k+dative case expresses move-
ment towards an object (not quite reaching or
entering it). In the converse relation, motion
away from an object, s is selected for move-
ment from within an object, and ot for move-

ment away from the vicinity of an object. Here,
both prepositions govern genitive case. The di-
mensionality of the object is only relevant for
the distinction between v/na and s/ot, but not
for k. Since the conceptualizations of spatial re-

lations are di�erent across English and Russian,
the input SPL expressions diverge as shown in
Figure 5); rather than using domain model con-
cepts, these SPL expressions restrict themselves
to Upper Model concepts in order to highlight

the cross-linguistic contrast. This example illus-
trates well how it is often necessary to `semanti-
cize' events di�erently in di�erent languages in

order to achieve the most natural results. Note

that Czech is here very similar to Russian.

a. SPL Russian

(example
:name D0-Text1-Ru
:targetform "Pomestite fragment v bufer."
:logicalform
(s / dispositive-material-action

:lex pomestitj
:speech-act-id command
:actee (a / object :lex fragment)
:destination (d / THREE-D-OBJECT

:lex bufer)))

b. SPL for English

(example
:name D0-Text1-En
:targetform "Put the selection on the clipboard."
:logicalform
(s / dispositive-material-action

:lex put
:speech-act-id command
:actee (a / object :lex selection)
:destination (d / ONE-OR-TWO-D-OBJECT

:lex clipboard)))

Figure 5: SPL expressions

Example 2: English, Bulgarian and Czech
headers in CAD/CAM texts. Grammatical
units (1){(4) below show an example of cross-
linguistic commonality at the level of semantic
input and divergence at the level of grammar.
These units all function as self-su�cient Task-

titles for the descriptions of particular actions
that can be performed with the given software.

(1) En: To draw a polyline

(2) Bu: Qertaene

Drawing-

na

of

polilini�

polyline-indef
nominal

(3) Cz: Kreslen��
drawing-nominal

k�rivky
line-gen

(4) Ru: Qtoby
in-order

narisovat~

draw-inf
polilini�

polyline-acc

There are two major di�erences across (1){(4)
that need to be accounted for: (i) they exhibit
divergent grammatical ranks in that (1) and
(4) are clauses (non�nite), while (2) and (3) are
nominal groups (nominalizations); and (ii) they

show divergent syntactic realizations: (2)

and (3) di�er in that in Bulgarian, which does
not have case, the relation between the syntactic

head Qertaene (chertaene) and the modi�er po-
lilini� (polilinia) is expressed by a preposition

na (na), whereas in Czech, which has case, this
relation is expressed by genitive case (k�rivky).
Despite these di�erences, only the �rst diver-

gence has any consequences for the SPL expres-
sions required; the basic semantic commonal-
ity among (1){(4) is preserved. This is shown

in Figure 6 by means of the standard linguis-
tic conditionalization provided by KPML for all
levels of linguistic description. The condition-
alization shows that both the English (1) and

the Russian (4) are non�nite clauses while the

Bulgarian (2) and the Czech (3) are nominal-
izations. These SPL expressions also show the

use of domain concepts as produced by the text
planner rather than upper model concepts as in
the SPLs in Figure 5.
The second di�erence is handled by the gener-

ation grammars internally. Here, Bulgarian and
Czech share the basic functional-grammatical

description of postmodi�ers for nominalizations
(Figure 7). The di�erence in structure only
shows in syntagmatic realization and is separate
from the functional description: For Bulgarian,
the postmodi�er marker na (na: `of') is inserted,



(example
:name D0-Text1
:logicalform
(s / DM::draw

:en :ru :PROPOSAL-Q & PROPOSAL
:bu :cz :EXIST-SPEECHACT-Q & NOSPEECHACT
:actee (d / DM::polyline)))

Figure 6: Multilingual SPL expression for the
header examples

and for Czech, the nominal group realizing the
Postmodi�er is attributed genitive case.3

(gate
:name MEDIUM-QUALIFIER
:inputs processual-mediated
:outputs
((1.0 medium-qualifier
(:bu :cz preselect Medium nominal-group)
(:cz preselect Medium noun-gen-case)
(:bu insert Mediumqualifiermarker)
(:bu lexify Mediumqualifiermarker na)))

:region QUALIFICATION)

Figure 7: Shared system for Bulgarian and

Czech

4.2 Lexical choice and lexicons

The lexical items for each language are selected
from the lexicon via the domain model. A DM

concept is annotated with one or more lexical

items from each language. If there is more than
one item per language, the choice is constrained

by features imposed by the grammar.

For example the concept DM::draw is anno-

tated with two lexical items which are the im-
perfective and perfective forms of the verb draw

in Czech, Bulgarian and Russian. If the gram-

mar selects imperfective aspect, the �rst is cho-
sen; if the grammar selects perfective aspect,
the second is chosen. This mechanism is used
also for the choice between a verb and its nom-

inalization, among others. With the help of the
lexicon, the inectional properties collected for
a particular lexical item during generation are
translated into a format suitable for external

3This description is also valid for Russian, which has a
nominal group structure similar to Czech. The Bulgarian
one is more like English.

morphological modules, which are then called.
The result of the external module, the inected
form, is passed back to the KPML system and
inserted into the grammatical structure.

5 Evaluation and Conclusions

A �rst round of evaluation has been carried
out on the Agile prototype. This directly as-
sessed the ability of users to control multilin-

gual generation in the three languages, as well
as the design and robustness of the system com-
ponents. Groups of users were given a brief
training period and then asked to construct
A-boxes expressing given content. Texts were
cross-generated: i.e., the languages were varied
across the A-boxes independently of the native
languages of the subjects who created them. Er-

rors were then classi�ed and recommendations
for the next and �nal Agile prototype collected.
The generated texts were then evaluated by ex-

pert technical authors. They were generally
judged to be of a broadly similar quality to
the texts originating from manuals, and both
kinds of texts received similar criticism. The

main source of criticism and errors was the de-

sign of the GUI which is now being improved
for the �nal prototype. The overall design of

the system has therefore shown itself to o�er an
e�ective approach for multilingual generation.
We are now extending the system to cover a

broader range of text types as well as the further
grammatical and semantic variation required by

the evaluators as well as by the additional text
types.

References

Bateman, J. A., Matthiessen, C. M. I. M., & Zeng, L.
(1999). Multilingual natural language generation
for multilingual software: a functional linguistic
approach. Applied Arti�cial Intelligence, 13 (6),
607{639.

Bateman, J. A. & Sharo�, S. (1998). Multilingual
grammars and multilingual lexicons for multilin-
gual text generation. In Multilinguality in the lex-
icon II, ECAI'98 Workshop 13, (pp. 1{8).

Haji�c, J. & Hladk�a, B. (1997). Probabilistic and
rule-based tagger of an inective language { a
comparison. In Proceedings of ANLP'97, (pp.
111{118).

Mann, W. C. & Matthiessen, C. M. I. M. (1985).
Demonstration of the Nigel text generation com-
puter program. In J. D. Benson & W. S. Greaves



(Eds.), Systemic Perspectives on Discourse, Vol-
ume 1 (pp. 50{83). Ablex.

Reiter, E. & Dale, R. (1997). Building applied natu-
ral language generation systems. Journal of Nat-
ural Language Engineering, 3, 57{87.

Teich, E. (1995). Towards a methodology for the
construction of multilingual resources for multi-
lingual text generation. In Proceedings of the IJ-
CAI'95 workshop on multilingual generation, (pp.
136{148).


