Recap: where did we get to last week...

- Propositional logic:
 p's and q's and the truth tables for logical connectives
- Predicate logic:
 predicates as names for sets and relations (1-place,
 2-place, 3-place...)
- Quantifiers:
 for all (∀) and there exists (∃) for making
 generalizations

Truth Tables

HOMEWORK!!!

р	q	¬ p	$\neg p \rightarrow q$
F	F	Т	F
F	Т	Т	Т
Т	F	F	Т
Т	Т	F	Т

р	q	p \ q
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Recap: where did we get to last week...

- Propositional logic:
 p's and q's and the truth tables for logical connectives
- Predicate logic: predicates as names for sets and relations (1-place, 2-place, 3-place...)
- Quantifiers: for all (∀) and there exists (∃) for making generalizations

Summary: Logical Expressions

 $\forall x \forall y \text{ chase } (x, y) \rightarrow \text{run } (x) \land \text{run } (y)$

Some combination of predicates and logical connectors plus some quantifiers to 'bind' the variables

... and that gives us enough to come back and start talking about **linguistic semantics** in detail...

Sense (semantic) relations

- hyponyms
- synonyms
 - different words that mean the same
- opposites
 - different words that mean the opposite of each other

Kinds of phenomena that a theory of linguistic meaning should cover

- My brother is a bachelor
- My brother has never married.
- The anarchist assassinated the emperor.
- The emperor is dead.
- My brother has just come from Rome.
- My brother has never been to Rome.
- Rich people are rich.
- He is a murder but he has never killed anyone.

synonymy

entailment

contradiction

tautology

contradiction

Using Logic

Venn diagrams

All men are mortal.

 $\forall x: man(x) \rightarrow mortal(x)$

SUPERORDINATE TERM

mental states

HYPONYM

insane

SUPERORDINATE

HYPONYM

psychopathic

All psychopaths are insane.

 $\forall x: psychopath(x) \rightarrow insane(x)$

Relations as logical entailments

hyponyms

synonyms

- amble $(x) \leftrightarrow stroll(x)$

$$P(x) \leftrightarrow Q(x)$$

complementarity

- on $(x) \leftrightarrow \neg$ off (x)
- off $(x) \leftrightarrow \neg$ on (x)

$$P(x) \leftrightarrow \neg Q(x)$$

converseness

- north $(x, y) \leftrightarrow$ south (y, x)
- parent $(x, y) \leftrightarrow \text{child } (y, x)$
- wider $(x, y) \leftrightarrow narrow (y, x)$

$$P(x,y) \leftrightarrow Q(y,x)$$

Types of 'difference' in meaning

Incompatibility: antonymy

HOMEWORK!!!

the water is hot entails the water is not cold

- the water is cold entails the water is not hot

the water is not hot does not entail the water is cold

- the water is not cold does not entail the water is hot

Gradable

- this water is hotter than that water
- this water is neither hot nor cold

Empirical / Contingent Truth synthetic / a posteriori

we do **not** have to 'look' at the world to know whether this statement is true or not; it is true by virtue of the meaning of the lexical items

again, we do **not** have to 'look' at any particular cases to know if it is true, we have **proved** that it is always true

it is not the case that if I go swimming then I will not get wet

p ¬q

 $\forall p \forall q.$ $\neg (p \rightarrow \neg q) \leftrightarrow p \land q$

I go swimming and I get wet

it is not the case that if I go swimming then I will not get wet

$$\neg (swim(I) \rightarrow \neg wet(I)) \leftrightarrow swim(I) \land wet(I)$$
p
q

I go swimming and I get wet

Tautologies and Contradictions

Either **p** or not-**p**

Tautologies and Contradictions

$$\neg (p \lor \neg p)$$

p F T

That a below entails b:

- The anarchist assassinated the emperor.
- The emperor is dead.

Entailment defined by truth:

A sentence **p** entails a sentence **q** when the truth of the first (**p**) guarantees the truth of the second (**q**), and the falsity of the second (**q**) guarantees the falsity of the first (**p**).

- Step 1: If p (The anarchist assassinated the emperor) is true, is q (The emperor died) automatically true? Yes.
- Step 2: If q (The emperor died) is false, is p (The anarchist assassinated the emperor) also false? Yes.
- Step 3: Then **p** entails **q**. Note if **p** is false then we can't say anything about **q**; it can be either true or false.

Composite truth table for entailment

P		q	
Т	\rightarrow	T	
F	\rightarrow	T or F	
F	←	F	
T or F	←	T	

Let's 'prove' this 'composite' truth table ...

1. What is the **logical statement** of 'entailment' as described here?

Entailment defined by truth:

A sentence **p** entails a sentence **q** when the truth of the first (**p**) guarantees the truth of the second (**q**), and the falsity of the second (**q**) guarantees the falsity of the first (**p**).

entails (p,q) iff
$$(p \rightarrow q) \land (\neg q \rightarrow \neg p)$$

$$(b \rightarrow d) \lor (\neg d \rightarrow \neg b)$$

р	q
H	F
F	Т
Т	F
Т	Т

$$(p \rightarrow q) \land (\neg q \rightarrow \neg p)$$

р	q	$p \rightarrow q$	¬ q	¬р	$\neg q \rightarrow \neg p$	
F	F					
F	Т					
Т	F					
Т	Т					

$$(p \rightarrow q) \land (\neg q \rightarrow \neg p)$$

р	q	$p \rightarrow q$	¬q	¬p	$\neg q \rightarrow \neg p$	
F	F	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т
Т	F	F	Т	F	F	F
Т	Т	Т	F	F	Т	Т

$$(b \rightarrow d) \lor (\neg d \rightarrow \neg b) \qquad \Box$$

р	q	$p \rightarrow q$	¬q	¬р	$\neg q \rightarrow \neg p$	
F	F	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т
Т	F	F	Т	F	F	F
Т	Т	Т	F	F	Т	Т

3. What happens when p is true?

4. What happens when p is false?

5. What happens when q is false?

6. What happens when q is true?

$$(b \rightarrow d) \lor (\neg d \rightarrow \neg b) \quad \blacksquare$$

Composite truth table for entailment

P		q
Т	\rightarrow	T
F	\rightarrow	T or F
F	←	F
T or F	←	T

р	q	
F	F	Т
F	Т	Т
Т	Т	Т

Final Point: Relation between logic and linguistic features

 We can also consider our logical predicates as features

• • •

or our features as logical predicates

semantics

Features ⇔ Logic

one-place predicates

+male	male(x)
-human	– human (x)
+adult -male	adult(x) & - male(x)

The "predicate calculus" *Not, and, or*

True or false

Denotational semantics

Just as we saw ages ago with... Phonetic Features

+ nasal \rightarrow -stop

nasal $(x) \rightarrow \neg stop (x)$

sometimes there are 'dependencies' between features

Semiotic Triangle: words

Denotational semantics

Semiotic Triangle: words

Denotational semantics

The semiotic triangle

"rabbit"


```
rabbit (r) ↔
∃I ∃e ∃g .
leg(I) ∧ |I|=4 ∧
ear(e) ∧ long(e) ∧ |e|=2 ∧
grass(g) ∧ eat(r,g) ∧
run-around(r) ∧ ...
```


My brother is a bachelor

∃b.
brother (I, b) ∧
bachelor (b)

My brother has never married.

∃b.brother (I, b) ∧¬ married (b)

bachelor $(x) \leftrightarrow \neg$ married (x)

Semantics rules OK!!

but needs logic to really make it all go...