Using Logic for Linguistic Semantics

Kinds of phenomena that a theory of linguistic meaning should cover

My brother is a bachelor

synonymy

My brother has never married.

The anarchist assassinated the emperor.

entails

The emperor is dead.

My brother has just come from Rome.

contradicts

• My brother has never been to Rome.

tautology

Rich people are rich.

contradiction

• He is a murder but he has never killed anyone.

Sense (semantic) relations

hyponyms

- synonyms
 - different words that mean the same

opposites

different words that mean the opposite of each other

meronyms

words where one thing is a part of the other

Representing these differences...

 Again, we can make everything we need much more explicit if we use....

... logic ...

!!!! **50 WE WILL**!!!

The semiotic triangle

"rabbit"

4 legged mammal with long ears that eats grass and hops around a lot ...

Semiotic Triangle: words

Semiotic Triangle: sentences

- The investigation of 'sound argument'
- Relation to Ancient Greek *rhetoric* (e.g., Aristotle)
- What patterns of argument can be guaranteed to lead to correct conclusions?
- One Example:

Modus Ponens

Modus Ponens

- a. If Arnd left work early, then he is in the pub.
- b. Arnd left work early.
- c. Arnd is in the pub.

premises

conclusion

Modus Tollens

- If Arnd has arrived, then he is in the pub.
- b. Arnd is not in the pub.
- c. Arnd has not arrived.

premises

conclusion

Hypothetical Syllogism

- a. If Arnd is in the pub, then he is drinking beer.
- b. If Arnd is drinking beer, then he is drinking Guinness.
- If Arnd is in the pub, then he is drinking Guinness.

Disjunctive Syllogism

- a. Arnd is in the public bar or he is in the lounge.
- b. Arnd isn't in the public bar.
- Arnd is in the lounge.

Empirical / Contingent Truth: a proposition can be true or false

Propositional Logic

- propositions are abbreviated by p, q, r, etc.
- and special logical operations are defined over those propositions (connectives):
 - negation (not)
 - conjunction (and)
 - disjunction (inclusive or)
 - material implication
 - biconditional implication
- using these, we can describe the patterns of argument rather than individual arguments

Modus Ponens

- a. If Arnd left work early, then he is in the pub.
- b. Arnd left work early.
- Arnd is in the pub.

premises

conclusion

$$\frac{\mathbf{p} \to \mathbf{q}}{\mathbf{p}}$$

Modus Tollens

- If Arnd has arrived, then he is in the pub.
- Arnd is not in the pub.
- c. Arnd has not arrived.

p → q ¬q ——— premises

conclusion

Hypothetical Syllogism

- a. If Arnd is in the pub, then he is drinking beer.
- b. If Arnd is drinking beer, then he is drinking Guinness.
- If Arnd is in the pub, then he is drinking Guinness.

p	\rightarrow	q
q	<i>→</i>	r
р	→	r

Disjunctive Syllogism

- Arnd is in the public bar or he is in the lounge.
- b. Arnd isn't in the public bar.
- Arnd is in the lounge.

- We also need to describe the meaning of these 'connectives'
- Fortunately, this is very simple, because we only have propositions that can be **True** or **False**

р Т F

 $p \wedge q$

p	q
T T F	T F T F

"conjunction" / logical and

 $p \vee q$

р	q	$\mathbf{p} \vee \mathbf{q}$
T	T F	T
F	T	\mathbf{T}
F	F	F

"disjunction" / logical or

р	q	p ∨ _e q
T T F	T F T F	F T T F

exclusive or

$$p \rightarrow q$$

p	q	$\mathbf{p} \to \mathbf{q}$
T T F	T F T F	T F T

"implication"

p is a sufficient condition for q

(p is enough to cause q, but other things might do too)

$$p \leftrightarrow q$$

$$p \equiv q$$

p	q	p ≡ q
T	T	T
F	F	F
F	T	T

p is a necessary condition for q

(if q happens, p is guaranteed to have happened too)

"biconditional"

"p if and only if q" ~ "p iff q"

р	q	$\neg p \rightarrow q$
		_
		_

р	q	¬ p	$\neg p \rightarrow q$
F	F	Т	F
F	Т	Т	Т
Т	F	F	Т
T	Т	F	Т

Proving logical statements

 $p \lor q \leftrightarrow p \land q$

n		
	1	4

р	q
F	F
F	Т
Т	F
Т	Т

$$\neg (p \rightarrow \neg q)$$

The Language of Logic

- The investigation of 'sound argument'
- Relation to Ancient Greek rhetoric

 What patterns of argument can be guaranteed to lead to correct conclusions?

Connectives

'and' : \land 'or': \lor 'not': \neg 'implies' \rightarrow

The syllogism revisited

- -Major premise:
 - All humans are mortal.
- -Minor premise:
 - Socrates is human.
- -Conclusion:
 - Socrates is mortal.

The syllogism revisited

- Major premise:
 - All H are M.
- -Minor premise:
 - s is H.
- -Conclusion:
 - s is M.

The Language of Predicate Logic

-Human and Mortal are

The Language of Predicate Logic

Predicates

- "one place"
 - door (x)
 - accountant (x)
 - book (x)
 - human (x)
 - mortal (x)

The Language of Predicate Logic

- Major premise:
 - All H are M.
- -Minor premise:
 - s is H.
- -Conclusion:
 - s is M.

The syllogism

-Major premise:

• All humans are mortal.

 $Hx \rightarrow Mx$

-Minor premise:

• Socrates is human.

Hs

-Conclusion:

• Socrates is mortal.

Ms

what about events and actions?

- Socrates runs
- Aristotle chases Socrates
- The gods gave Aristotle a good idea

Predicate Logic

Predicates

- "one place"
 - door (x)
 - accountant (x)chase (x, y)
 - book (x)
 - run (x)

- "two place""three place"
- read (x, y)

- eat (x, y) give (x, y, z)

what about events and actions?

- Socrates runs
- Aristotle chases Socrates
- The gods gave Aristotle a good idea

runs (Socrates)

what about events and actions?

- Socrates runs
- Aristotle chases Socrates
- The gods gave Aristotle a good idea

chase (Aristotle, Socrates)

what about events and actions?

- Socrates runs
- Aristotle chases Socrates
- The gods gave Aristotle a good idea

give (Gods, Aristotle, Idea)

what about events and actions?

The gods gave Aristotle a good idea

a: Aristotle

Gods (g) \(\)
Idea (i) \(\\ \)
Good (i) \(\\ \)
give (g, a, i)

Finally...

- we need to put something in to keep all these 'x' and 'y' under control!
- can't have them just running around in our formulae...

Quantifiers

• existence:

• for all: ∀

All men are mortal.

Socrates is a man.

Therefore Socrates is mortal.

Quantifiers

• existence:

• for all: ∀

All men are mortal.

Socrates is a man.

Therefore Socrates is mortal.

Quantifiers

- existence:
- for all: ∀

All men are mortal.

• $\forall x: man(x) \rightarrow mortal(x)$

Socrates is a man.

• man (Socrates)

Therefore Socrates is mortal.

→ mortal (Socrates)

Quantifiers

- existence:
- for all: ∀

All men are mortal.

Some man is mortal.

• $\forall x: man(x) \rightarrow mortal(x)$

• \exists x: man (x) \land mortal (x)

Using Logic

Venn diagrams

All men are mortal.

 $\forall x: man(x) \rightarrow mortal(x)$

Some man is mortal

 \exists x: man (x) \land mortal (x)

Logic: Venn diagrams

All men are mortal.

 $\forall x$: man (x) \rightarrow mortal (x)

Some man is mortal

 \exists x: man (x) \land mortal (x)

Summary: Logical Expressions

 $\forall x \forall y \text{ chase } (x, y) \rightarrow \text{run } (x) \land \text{run } (y)$

Some combination of predicates and logical connectors plus some quantifiers to 'bind' the variables

... and that gives us enough to come back and start talking about **linguistic semantics** in detail...