@Y

JCTOOIVII 4

* basic theoretical tools of computational
linguistics
— logic: lambda calculus
— typed feature structures

— fixing the problems

— fixing the problems caused by the fixes: moving
towards mild context-sensitivity with CCGs

)

O
=
(Vg
=]
oo =
= _ c
— S £
— m w
(O S
- El E
O S T
e ._._,.L.qw 5
(O = =
+ =
- S 2

&
O
O

Bas

3
S,
Q
D

ona

mlt

)
0Q
—t
O
O
(Vp)

* basic computational linguistic tools for

representing semantics . generation
— logic .

— event-based semantics ¢ anaIyS|s

— ontologies

— lambda expressions

* basic computational linguistic tools for
representing information

— feature structures
— unification

_____ computational model

computational implementation

5.
-5
"
O

9,
(@)
3

O
-5
D
(0p)
.
o
S
(0p)

~0
D
D
(_I')
D

chase (x, y) — run (x) A run (y)

Some combination of
predicates and logical
connectors

5.
-5
"
O

9,
(@)
3

O
-3
D
(0p)
.
o
=
(0p)

~0
D
D
(_I')
D

Y X qy chase (X, y) = run (x) A run (y)

—

-

Then you bind the
variables with appropriate
quantifiers

-

-5

=
)

~0
D
D
(_I')
D
-
@)
0Q
(@)
Q)
0
(0p)
.
O
n

O

Y X 3y chase (X, y) = run (x) A run (y)

g
—

All the variables that occur in
the body of the formula, are
usually bound with a
quantifier at the front!!!

FOPC (non.free)

I"\ML\IJ EIV\ V\(‘
Ldliivud LA |J 15

We can turn expressions into functions
using lambda expressions

\Ax)\yj chase (x, y)

{AX Ay chase (X, y)] (farmer, duckling)
|

chase (farmer, duckling)

'Y o

ons

I__
Q)
=3
O
O
M
5

ﬂ
'C

We turn expressions into
functions by using lambda
expressions

AX Ay chase (x, y)

{)\x Ay chase (x, y)] (farmer)

|
Ay chase (farmer, y)

Unification

-\
< >3
o .. £

e
S g2

V) -—
) -
M 5 Q
O uv >
N

Evammnl
CXdMmpie

"cat: S

subj: [cat: N

verb: [

-

num: #1

cat: V
num: #1

J

).

4 N\
. , N
Z ~ —

& >3
llm P)
T S i E
32 g2

s __

oY 2

© 5 3

O O >

_ J

subj: [cat: N

E V\

Example
"cat: S

verb: [
_

num: #1

cat: V
num: #1

J

).

N
" subj: [
\.
" verb: {
N

cat: N
num: sg

cat: V
num: pl

I
:

J
?

Thy IJII -F

m A ~~d "
lyped uniticat

ION

* Nowadays grammars usually work with typed
unification

— distinct information types are defined as having
particular combinations of attributes

— types are organised into inheritance lattices

-
O

'S
(O
O

-
D
o

.

Q.
>

)

Q
-

(O

N
s’

L

S

" cat:

cat: N J
num: pl
]/

|
wl

subj:

nominal

V

cat:
num: pl

Ne)
. -

QL

-

clause

clause

nominal

verb:

\ verbal

[cat: N

|

cat: V
num: pl

J

/

| | I[num:sg]

-

verb: [

cat: V J
num: pl

£

v\

+1 1 o ¥t
LUl CUIIITC LI

IE€S

)

I:f\"\ £\

read e

 Much of modern linguistics is now expressed
as bundles of features

e and how these are distributed around
syntactic structures

* Some special kinds of features flow along the
‘backbone’ provided by the tree structures:
head features

!D

ona

mlt

basic computational linguistic tools for
representing information
— feature structures

— unification ?

basic computational linguistic tools for
representing semantics

— lambda expressions /

3
O

_______ computational model

Q.
(D
)
0Q
—t
O
O

computational implementation

(V)

Grammar and
Feature Unification

Problems with CF
Phrase Structure Grammars

 Difficult to capture dependencies between
constituents

— the boy runs
— the boys run

— * the boy run
— * the boys runs

Problems with CF
Phrase Structure Grammars

 Difficult to capture dependencies between

constituents

— the boy opens the door
— *?? the boy opens

— the boy sits
— *?? the boy sits the table

rCc L k1AN
Ol IULIUI I

[QPEN
ISV

e exploding the number of rules is one way to
provide a solution...

S — NPsing VPsing Detsing — {a, this, the}

S — NPplural VPplural Detplural — {some, these, the}
NP — NPsing

NP — NPplural Nsing — {boy, girl, ...}

NPsing — Detsing Nsing Nplural — {boys, girls, ...}

NPplural — Detplural Nplural
Vintsing — {sits, ...}
VPsing — Vintsing Vintplural - {sit, ...}
VPplural — Vintplural
Vtrsing — {opens, ...}
VPsing — Vtrsing NP Virplural > {open, ...}

VPplural — Vtrplural NP lexicon

grammar

A L
N

+4+ A by o4
M LLCI IUL

eter soiution..

* What we really want to say is that some
constituents share properties

The boy runs

the ‘Subject’ and the ‘Verb’ agree in number

ol g £ oal_

— i.e., they share the same value for their number
feature

Phrase structure rules with features

S - NP VP
+singular +singular
VP - V (NP)

+singular +singular

Phrase structure rules with features

S - NP VP
+plural +plural
VP - V (NP)

+plural +plural

Phrase structure rules with features

S - NP VP
[number: siwsing]
VP > V (NP)

[number: sing]

[number: sing |

NS

Phrase structure rules with features

S - NP VP
[number: pl]\[@ pl]
VP >V (NP)

[number: pImee)I]

Generalised Rules

S - NP VP
[number: x] [number: x]
VP >V (NP)

[number: x] [number: x]

Generalised Rules
(PATR formalism)

S - NP VP
<NP number> = <VP number>

VP >V (NP)

<VP number> = <V number>

Grammar = {PS-rules + path equations}

Features — Feature structures

+singular [number: singular]
+ing-form [verb: ing-form]
dmAacnr 1 o) hfl rmmacn b
rjfrIIiddou 6 IHIVAC T « T1T1IAdOGU
+sing number sing
Compatibility Feature structures

. Unification
Information

Susan laughs

S— NP VP
[Subj: #1

Actor: #1] [Subj: Susan

S Pred: laughs

Actor: Susan]

NP : [Subj: Susan] VP : [Pred: laughs
Actor: X]

psg6.grm

Feature Representation
Syntactic tree becomes a more complex

structure

Each node in the tree is in fact a bundle of
features

Particular rules (specified in the grammar)
specify what conditions hold on the feature
structures

Usually: local —i.e., conditions hold over a
dominating node and its children

Cin
r

INd

I v\ \7

move...

e All information is moved into the feature
structure — even the tree structure...

— HPSG
(Head-driven Phrase Structure Grammar)

X " Head: X

/\ Daughters: <Y Z ...>

Y Z Cat: C

1 1 ¥\ VA y AL

C -a ¥\ D N M\
9 Hitialy. ncueapy

* This is really the current state of the art in
computational linguistics: all linguistic
information is represented as feature bundles

* This is called a ‘information-based’ paradigm

W
-

©
=
=
(O
S
G
C
O

b
(O
O

G

C
=)
L

Q
-
S

’

L

: WinPatr System ...

PATR-II

I

C.
LA

Parameter start symbol is S

Rule {Satz}

S -> NP VP.
Rule {NP-Name}

NP -> Name.
Rule {NP}

NP -> Det N.

PATR-formalism

W\ v\

NiMd

e
|

{VP intransitiv}
VP -> Vi.

{VP transitiv}
VP -> Vit NP.

{VP transitiv mit PP}
VP -> Vit NP PP.

{VP mit PP-Objekt}
VP -> Vpo PP.

{einfache PP}
PP -> P NP.

\w cried
\c Vi

\w saw
\c Vit

\w gave
\c Vi2

E,
LA

\w girl
\c N

\w student
\cN

\w book
\cN

PATR-formalism

If\ 7\ I

dimpie L

)

FS'
O

\w the
\c Det

\w a
\c Det

\w in
\c P

\w on
\cP

fO3b.grm
f02.lex

EI
LAdIII

\w cried
\c Vi

\w saw
\c Vit

\w gave
\c Vi2

\w sings
\c Vi
\f 3sg

mple L

\w girl
\c N
\f sg

\w student
\cN
\f sg

\w book
\cN
\f sg

\w girls
\c N
\f pl

\w students
\cN
\f pl

\

\w the
\c Det

\w a
\c Det

\w in
\c P

\w on
\cP

C 1 M nlAa | 1: [vari¥
LAdII I|J C AIC \VVIL
\w cried \w girl \w the
\c Vi \c N \c Det
\f sg
\w saw \w a
\c Vt \w student \c Det
\c N
\w gave \f sg \w-in
\c V2 \cP
\w book
\w sings \c N \w on
\c Vi \f sg \cP
\f 3sg
\w girls
\c N
\f pl

\w students
\cN
\f pl

- [num: sg].

Let sg be

~ [num: sg

pers: 3].

Let 3sg be

[nui

sg [p

C. 1 iy | l:nf\n [\ani¥lh FAAFI1rac)
LA IIIJC AICUI | \VVILII ITdAl ICD}
\w cried \w girl \w the
\c Vi \c N \c Det
\f sg
\w saw \w a
\c Vit \w student \e-Det > [|eX: Student]
\cN .
\w gave \f sg \W in -~ [cat: N].
\c V12 \cP
\w book
\w sings e \w-oen » Tlay: cinAacl
\e Vi \f sg \c P LICA. oSllly9o]
\f 3sg — [Cat: V]
\w girls
\c N
\f pl

\w students
\cN
\f pl

Head features are usually
‘passed up’ to the dominating node

S — NP VP

<NP head num> = <VVP head num>
<NP head pers> = <VP head pers>

Head features are usually
‘passed up’ to the dominating node

Rule {VP intransitiv}

VP — V:
<VP head> = <V>
<V subcat> = 1.
Let V be [cat: V].
\w sings . [lex: sings] Let Vi be V [subcat: i].
\c Vi [cat: V].
f 3s9 [cat: V

subcat: i]

exercise with the example
grammar...

what structure (both tree structure and feature
structure) does the grammar produce for:

“the boys sing”

and what would it do for

“the boy sing”

Feature-based Parsing:

S
|
NP VP
| |
Det N \Y
t he boys si ng

“the boys sing”

S:
[cat: S
subj: [cat:
spec:
head:
pred: [cat:
head:
1 parse found

NP

VP

[cat:
lex:
num:

[cat:
lex:
num:

navc-*-=
PCI O -

[cat:
subcat:
lex:
num:
pers:

v\ f\'F 1 IIF'F"\ l

em Ot surtace interpre

)

Drahl
rUvl

f"l'
o

O

If we interpret a syntactic tree as a set of
instructions for forming a semantic
interpretation, then we do not need to rely on
a ‘deep’ structure for meaning...

How to interpret the ‘surface’ structure?:
Compositional Semantics as Function Application

“lohn went”

f
I
|
\
\
\\
=~
/

NP : VP :
J AX.[go™ (x)]

CAaArmantir lnFarnratatrianam Dl
STIIIAdIIUIU |||LC||J|CLdL|U I NUIC
S function
/\ composition
NP VP

X AX.[VERB™ (x)]

Semantic composition represented
..t.0. Semantic features

S A
NP : VP :
S > NP VP

Semantic features

S - NP VP
VP

<S sem event> = <VP sem event>
[semessbxn adkdr> = <5 suldj sem: x] [sem: €]
<S subj> = <NP>

Semantic features

as informal feature values

S - NP VP

[sem:e(x,)] [sem: x] [sem: €]

as path equations

S - NP VP

<S sem event> = <VP sem event>
<S sem actor> = <S subj sem>
<S subj> = <NP>

CirivFarAan C+riimrtiirma
Sufrfadce Structure
* |f we had a surface structure, we could

Interpret it...
 But we don't...

* How can we produce the structures that
natural human languages use without
invoking far too powerful mechanisms?

‘Phrase Structure Rules ‘

l

underlying phrase markers

‘ Transformations ‘

> < derived sentences >

INCllid oniems...

ng pro

Transformations are in general Turing equivalent and hence
unlikely for a language model

Seems implausible that our language facility evolved as a
mechanism with that kind of power

Unification is also potentially a very expensive operation

Need strong constraint for just which structures are to be
unified with others

One way of achieving this is by making the syntactic
backbone do more work...

 Combinatory Categorical Grammar (CCG)

— generalisation of Categorial Grammars

e Ajdukiewicz (1935)
“Die syntaktische Konnexitat”. Studia Philosophica, 1:1-27.

* Bar-Hillel (1953)

“A quasi-arithmetic notation for syntactic description”.
Language 29:47-58.

promoted particularly for computational linguistics by Mark Steedman

Combinatory Categorical Grammar
CCG

* In a CCG all lexical items are given categories
that state their potential for combination with
other lexical (and non-lexical) units

* There are only general rules on how to
combine categories, no particular ‘grammar’
rules.

Anrnalhicic vanidlh O
M |d|y3|3 VVILIIT O

0

‘&
|\

Example: “leave the room”

collect the lexical items and their categories (given in the lexicon):

leave :- s/np
the :- np/n

room - n

0

Example: “leave the room”

leave :- s/np
‘the’ is a unit looking for an ‘n’

mm) the :-n p/n on its right to combine with to

give an ‘np’

room :-n

O
@,

leave :- s/np

the :- n

room:

0

leave :- s/np
the :- np/n
> the room :- np
room :- n

-

“forward application”

l

* (>) the room

- np

O
O

the room

leave

np/n

s/np

np

O
@,

leave :- s/

O
@,

® |eave the room :-s

leave :-s/np
the room :- np

O
O

the room

np/n

leave

s/np

np

NMAct hacicr ~ArmalhinAatiarnm ritlac
IVIUOSU UdoSIU LUINTIVITIAULIVUIL T | ITS

* Functional Application

—X/Y Y = X

forward application (>)

-Y X\Y = X

backward application (<)

C
\ P\

G)
Q)

“Keats eats apples”

Keats: N
apples: N
eats: (S\N) / N

)
Q)

4

)

p)

)

@
&)
2
o
Q)

<
%
»

2pples: NP Keats eats apples

eats:(S\NP)/NP

Steedman

Keats: NP
apples: NP

eats:(S\NP)/NP

pr: "\V\"\I\ lf‘:(‘
COU\U. dli IClIYDID
Keats eats apples
NP (S\NP)/NP NP
S\NP

Steedman

0
QU

=
—
-
O

'S
qe
-

O
-
@)
O

QL

S

O
—
=

e Coordination

—X CONJ X = X

)

@
&)
)
o
Q)

————
L
L]

Keats cooked and ate apples

Steedman

)

@
&)
)
o
Q)

————
L
L]

Keats cooked and ate apples
NP (SVYNP) /NP CONJ (SINP)/NP NP

(S \NP) /NP

SANP

Steedman

—t
=

Q)
D
W
-
O

lmamrmAvdEAant
|||||JU| Ldlll

* Highly lexicalized grammars
— Only lexical items in CCG
— Analysis is strongly restricted

* Construct syntactic and semantic
representations synchronously

0

—

(O
-
O

)

O

(O
—

)

e’

)
O

)
-
(O

QL
)

* eat := (S / npnom) \ npaCC

* A, Ax,. eat (x;, X,)

(e Aanalvicic wan+h canmanti~c
CU\U dlldlYDlD VVILII OSCI11IAdllIlICLO
AX,Ax; . eat (x,, X,)
cpples P Keats eals / app!es/a
eats:(S\NP)/NP NP l:S '\P“lej.l /NP NP S
S1NF
<

Steedman

e Aarnalvicice waan+h carmantir~e
U\ dlldlYDlD VVILIT SCTIHIIAdIILILOD
functional application
(S\ NP) / NP NP S\ NP
AX,Ax,. eat (x,, X,) a

Ax,. eat (x,, a)

A~ 1ntAr N N
MLl 111ILCI 11 |J

r_-'l'

* The syntactic structure is not itself important

* |tis just a record of the instructions that were
carried out to build the correct semantics

~Ff

+ £~ NC CC
Co Ul LU

lrmramrmAvrdEAanr ~fr1
|||||JU|Ld||L ITdlUl

* Highly lexicalized grammars
— Only lexical items in CCG
— Analysis is strongly restricted

* Construct syntactic and semantic
representations synchronously

* Highly constrained computational
complexity

0

\
—
L]
————

U')
W
M
0

P V\
LOompie y

e Subclasses of polynomial time

— Linear time: O(n)

— Quadratic time: O(n?)

— Cubic time: O(n3) CCG: O(nG)
* Exponential time: O (k")
* Non-deterministic polynomial time : NP

n: length of input k: difficulty of problem

D

Type O : unrestricted

TRANSFORMATIONAL GRAMMAR

Type 1 : context-sensitive

Mildly-context sensitive

Type 2 : context-free

Type 3 : regular

1 1 v\

+1 1 o -
LUl S Iiilid

~Ff
Ul

0)

[»\ 7
. |

1Cd Co \) O Yy

CCG is one of the most quickly developing grammatical
formalisms for linguistic processing developing at this time

Its flexibility appears well matched to real language use,
including sentence fragments and difficult combinations

Its computational complexity is low enough for real
processing

Semantic interpretation is provided at the same time as
syntactic analysis.

f"|'
5

Q)
C
n
™MD

("~
Lom

'Es

OpenCCG
— White, Baldridge, Kruijff, ...
— freely accessible

0

Grammars now using a particular kind of semantics:

— Hybrid-Logic Dependency Semantics

L
o
3
o
N
@)
oQ.
(@)
)
D
O
D
=
O
D
=
O
~<
wn
D
=
D
=
ct
o

N

flower + N(2)sg, X:thing |- '::@X:thing(ﬂower A {NUI‘*’I}SE)

A
A

complex category HLDS expression
definition
combining categories, feature thin g V\ON\
structures, and semantic
constraints x sg

X flower

Similarity between HLDS and
feature structures
Baldridge / Kruijff

£ O™ f vvras v\ £ A !'1,—1_1-._1.!.____7_..,_ A Jrr =\ T N\
(5) (SUBI) (1 A\ (AGR)singuiar \ (PRLCD)dog
A (COMP) (SUBJ)i
C] . T
(9) AGR singular

suBs []
PRED dog

COMP [SUBJ 1]

Bas

3
S,
Q
D

ona

mlt

)
0Q
—t
O
O
(Vp)

* basic computational linguistic tools for

representing semantics . generation
— logic .
— event-based semantics e analysis

— ontologies
— lambda expressions /
* basic computational linguistic tools for

representing information /

— feature structures
— unification

_____ computational model

computational implementation

