
An essential data structure: Lists

Lists

• A list is a finite sequence of elements
• Examples of lists in Prolog:

[mia, vincent, jules, yolanda]
[mia, robber(honeybunny), X, 2, mia]
[]
[mia, [vincent, jules], [butch, friend(butch)]]
[[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Important things about lists

• List elements are enclosed in square
brackets

• The length of a list is the number of
elements it has

• All sorts of Prolog terms can be elements
of a list

• There is a special list:
the empty list []

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail

• A non-empty list can be thought of as
consisting of two parts
– The head
– The tail

• The head is the first item in the list
• The tail is everything else

– The tail is the list that remains when we take
the first element away

– The tail of a list is always a list

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 1

• [mia, vincent, jules, yolanda]

Head:
Tail:

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 1

• [mia, vincent, jules, yolanda]

Head: mia
Tail:

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 1

• [mia, vincent, jules, yolanda]

Head: mia
Tail: [vincent, jules, yolanda]

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 2

• [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Head:
Tail:

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 2

• [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Head: []
Tail:

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 2

• [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Head: []
Tail: [dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 3

• [dead(z)]

Head:
Tail:

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 3

• [dead(z)]

Head: dead(z)
Tail:

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and Tail example 3

• [dead(z)]

Head: dead(z)
Tail: []

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Head and tail of empty list

• The empty list has neither a head
nor a tail

• For Prolog, [] is a special simple list
without any internal structure

• The empty list plays an important role in
recursive predicates for list processing in
Prolog

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

The built-in operator |

• Prolog has a special built-in operator |
which can be used to decompose a list
into its head and tail

• The | operator is a key tool for writing
Prolog list manipulation predicates

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

The built-in operator |

?- [Head|Tail] = [mia, vincent, jules, yolanda].

Head = mia
Tail = [vincent,jules,yolanda]
yes

?-

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

The built-in operator |

?- [X|Y] = [mia, vincent, jules, yolanda].

X = mia
Y = [vincent,jules,yolanda]
yes

?-

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

The built-in operator |

?- [X|Y] = [].

no

?-

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

The built-in operator |

?- [X,Y|Tail] = [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]] .

X = []
Y = dead(z)
Z = _4543
Tail = [[2, [b,c]], [], Z, [2, [b,c]]]
yes

?-

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Anonymous variable

• Suppose we are interested in the second
and fourth element of a list

?- [X1,X2,X3,X4|Tail] = [mia, vincent, marsellus, jody, yolanda].
X1 = mia
X2 = vincent
X3 = marsellus
X4 = jody
Tail = [yolanda]
yes

?-

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Another view of lists

• A list [a, b, c] can be seen as the following
structure:

a

c

b

[] or nil

Another view of lists

• [mia, vincent, marsellus, jody, yolanda].

mia

marsellus

vincent

jody

yolanda

Another view of lists
?- [X1,X2,X3,X4|Tail]

mia

marsellus

vincent

jody

yolanda
“pointer”

Another view of lists
?- [X1,X2,X3,X4|Tail]

yolanda

Exercise

• Work out what Prolog will tell us about the
following before looking at what it actually
does!!!

?- [X,Y,Z|Tail] = [[], dead(z), [2, [b,c]], [], Z, [2, [b,c]]]

Anonymous variables

• There is a simpler way of obtaining only
the information we want:
?- [_,X2, _,X4|_] = [mia, vincent, marsellus, jody, yolanda].
X2 = vincent
X4 = jody
yes

?-

• The underscore is the anonymous
variable

©
P

a
tr

ic
k
 B

la
ck

b
u

rn
,

Jo
h

a
n

 B
o
s

&
 K

ri
st

in
a
 S

tr
ie

g
n

it
z

Practical Work and Exercises

More examples and exercises

write a predicate to work out
whether something is an element
of a list of not...

memberof (Element, List)

should return yes, iff Element is one
of the members of the list.

CLUE: think recursively!!!

More examples and exercises

write a predicate to stick two lists together,
end to end, i.e., to append one list to
another...

app (List1, List2, Result)

e.g., if List1 is [a,b]
and List2 is [1,2,3]
then Result should be [a,b,1,2,3].

Instantiations

• When Prolog unifies two terms it performs
all the necessary instantiations, so that the
terms are equal afterwards

• This makes unification a powerful
programming mechanism

More examples and exercises
write a predicate to ‘look up’ the
corresponding value for a given key in an
association list consisting of pairs of keys
and values

lookup (Key, Alist, Result)

e.g., if Key is fred
and Alist is

[[mary,judy],[george,mary],[peter,june],
[fred,judy],[john,james]]

then Result should be judy.

More examples and exercises
write a predicate to reverse the elements
of a list!

rev (List, Result)

e.g., if List is [a,b,c,d]
then Result should be [d,c,b,a].

