Grammar and
 Feature Unification

Problems with CF Phrase Structure Grammars

- Difficult to capture dependencies between constituents
- the boy runs
- the boys run
- * the boy run
- * the boys runs

Problems with CF Phrase Structure Grammars

- Difficult to capture dependencies between constituents
- the boy opens the door
- *?? the boy opens
- the boy hops
- *?? the boy hops the table

CF Solution

- exploding the number of rules is one way to provide a solution...

```
S }->\mathrm{ NPsing VPsing
S }->\mathrm{ NPplural VPplural
NP }->\mathrm{ NPsing
NP }->\mathrm{ NPplural
NPsing }->\mathrm{ Detsing Nsing
NPplural }->\mathrm{ Detplural Nplural
VPsing }->\mathrm{ Vintsing
VPplural }->\mathrm{ Vintplural
VPsing }->\mathrm{ Vtrsing NP
VPplural }->\mathrm{ Vtrplural NP
```

Detsing \rightarrow \{a, this, the $\}$
Detplural \rightarrow \{some, these, the $\}$
Nsing \rightarrow \{boy, girl, $\ldots\}$
Nplural \rightarrow boys, girls, $\ldots\}$
Vintsing \rightarrow \{hops, $\ldots\}$
Vintplural \rightarrow \{hop, $\ldots\}$
Vtrsing \rightarrow \{opens, $\ldots\}$
Vtrplural \rightarrow \{open, ...\}

A better solution...

- What we really want to say is that some constituents share properties

The boy runs

the 'Subject' and the 'Verb' agree in number

- i.e., they share the same value for their number feature

Phrase structure rules with features

$$
\mathrm{S} \quad \rightarrow \begin{gathered}
\text { NP } \\
+ \text { singular }
\end{gathered} \quad \begin{gathered}
\text { VP } \\
+ \text { singular }
\end{gathered}
$$

$\mathrm{VP} \quad \rightarrow \quad \mathrm{V} \quad$ (NP)
+singular +singular

Phrase structure rules with features

$$
\mathrm{S} \quad \rightarrow \begin{gathered}
\mathrm{NP} \\
+ \text { plural }
\end{gathered} \quad \begin{gathered}
\mathrm{VP} \\
+ \text { plural }
\end{gathered}
$$

$\underset{+ \text { plural }}{\mathrm{VP}} \rightarrow \underset{\text { +plural }}{\mathrm{V}} \quad(\mathrm{NP})$

Features \rightarrow Feature structures

Attribute-value matrices (AVMs)
+singular
[number: singular]
+ing-form
[verb: ing-form]
+masc

+ sing
(gender: masc number: sing

Feature structures
Unification

Compatibility
Information

Phrase structure rules with features

$$
\mathrm{S} \quad \rightarrow \begin{gathered}
\text { NP } \\
+ \text { singular }
\end{gathered} \quad \begin{gathered}
\text { VP } \\
+ \text { singular }
\end{gathered}
$$

$\mathrm{VP} \quad \rightarrow \quad \mathrm{V} \quad$ (NP)
+singular +singular

Phrase structure rules with features

$$
\mathrm{S} \quad \rightarrow \underset{ }{[\text { number: sing }]} \mathrm{NP} \stackrel{\text { VP }}{\text { [number: sing] }}
$$

$\mathrm{VP} \rightarrow \mathrm{V} \quad$ (NP)
[number: sing] [number: sing]

Phrase structure rules with features

$$
\mathrm{S} \quad \rightarrow \underset{[\text { number: } \mathrm{pl}]}{\mathrm{NP}} \quad \begin{gathered}
\mathrm{VP} \\
{[\text { number: } \mathrm{pl}]}
\end{gathered}
$$

$\mathrm{VP} \rightarrow \mathrm{V} \quad$ (NP)
[number: pl] [number: pl]

Phrase structure rules with features

Phrase structure rules with features

Generalised Rules

$$
\mathrm{S} \quad \rightarrow \begin{gathered}
\mathrm{NP} \\
{[\text { number: } \mathrm{x}]}
\end{gathered} \quad \begin{gathered}
\text { VP } \\
{[\text { number: } \mathrm{x}]}
\end{gathered}
$$

$\mathrm{VP} \quad \rightarrow \quad \mathrm{V} \quad$ (NP)

[number: x] [number: x]

Example Grammar

Parameter start symbol is S		Rule	\{VP intransitiv\}VP -> Vi.
Rule	\{Satz\}		
	S -> NP VP.		
		Rule	\{VP transitiv\}
Rule	\{NP-Name\}		VP -> Vt NP.
	NP -> Name.		
		Rule	\{VP transitiv mit PP\}
Rule	\{NP\}		VP -> Vt NP PP.
	NP -> Det N .		
		Rule	\{VP ditransitiv\}
			VP -> Vt2 NP NP.
		Rule	\{VP mit PP-Objekt $\}$
			VP -> Vpo PP.
PATR-formalism			
		Rule	\{einfache PP\}
			PP -> P NP.

Example Lexicon

Iw cried	Iw girl	Iw the
Ic Vi	Ic N	Ic Det
Iw saw	Iw student	Iw a
Ic Vt	Ic N	Ic Det
Iw gave	Iw book	Iw in
Ic Vt2	Ic N	Ic P
		Iw on
		Ic P

PATR-formalism

\square

Example Lexicon (with features)

Iw cried	Iw girl	Iw the
Ic Vi	Ic N	Ic Det
	If sg	
Iw saw		Iw a
Ic Vt	Iw student	Ic Det
	Ic N	
Iw gave	If sg	Iw in
Ic $\mathrm{Vt2}$		Ic P
	Iw book	
Iw sings	Ic N	Iw on
Ic Vi	If sg	Ic P
If 3 sg		
	Iw girls	
	Ic N	
	If pl	
	Iw students	
	Ic N	
	If pl	

Example Lexicon (with features)

Example Lexicon (with features)

Generalised Rules

$$
\mathrm{S} \quad \rightarrow \begin{gathered}
\mathrm{NP} \\
{[\text { number: } \mathrm{x}]}
\end{gathered} \quad \begin{gathered}
\text { VP } \\
{[\text { number: } \mathrm{x}]}
\end{gathered}
$$

$\mathrm{VP} \quad \rightarrow \quad \mathrm{V} \quad$ (NP)

[number: x] [number: x]

Feature Representation

- Syntactic tree becomes a more complex structure
- Each node in the tree is in fact a bundle of features
- Particular rules (specified in the grammar) specify what conditions hold on the feature structures
- Usually: local - i.e., conditions hold over a dominating node and its children

Generalised Rules (PATR formalism)

$$
\begin{aligned}
& \mathrm{S} \quad \rightarrow \quad \mathrm{NP} \\
& <\text { NP number }>=\text { VVP number> }
\end{aligned}
$$

$$
\mathrm{VP} \quad \rightarrow \mathrm{~V} \quad \text { (NP) }
$$

<VP number> = <V number>

Grammar $=\{P S-r u l e s+$ path equations $\}$

Feature Geometries

- Much of modern linguistics is now to do with bundles of features
- and how these are distributed around syntactic structures
- Some special kinds of features flow along the ‘backbone' provided by the tree structures: head features

Head features are usually 'passed up' to the dominating node

$\mathrm{S} \rightarrow \mathrm{NP}$ VP
<NP head num> $=<$ VP head num>
<NP head pers>
= $<V P$ head pers>

Head features are usually 'passed up' to the dominating node

```
Rule {VP intransitiv}
VP }->\mathrm{ V:
<VP head> = <V>
<V subcat> = i.
```

$\underset{\substack{\text { Ic } \mathrm{Vi} \\ \text { If } 3 \mathrm{sig}}}{\substack{\text { Iw sings }}} \xrightarrow[{[\text { lex: sings] }}]{[\text { cat: } \mathrm{V}] .}$

Let V be [cat: V].
Let Vi be V [subcat: i].
[cat: V
subcat: i]

exercise with the example grammar...

what structure (both tree structure and feature structure) does the grammar produce for:

"the boys sing"

and what would it do for

> "the boy sing"

Feature-based Parsing: "the boys sing"

1:


```
S:
[ cat: S
    subj: [ cat: NP
        lex: the
        num: pl ]
        head:
                            [ cat: 
                                lex: boys
        num: pl
        pers: 3 ] ]
    pred: [ cat: VP
        head: [ cat: v
        subcat:i
        lex: sing
        num: pl
        pers: 3 ] ] ]
1 parse found
```


Final move...

- All information is moved into the feature structure - even the tree structure...
- HPSG
(Head-driven Phrase Structure Grammar)

