
Testing a phrase structure
grammar with

Jürgen Reischer’s
phrase structure program

(1) Download the program

• The program is available either directly from
Jürgen Reischer’s website (www.lingua-ex-
machina.de) or from the local copy kept on our
course website

• Copy this file to your own computer

• Unzip it (if you do not know how to do this, ask
someone who does!) so that you have a single
executable file, called “LingStr.exe”

(2) Start the program

• Click twice on the file “LingStr.exe”
• This should bring up a window looking like

this:

(3) Typing in a simple grammar

The simplest
way of

getting a
grammar into
the program
is to type into
this window.

A grammar is just as we have seen in class,
but it uses ‘=‘ instead of the arrow: e.g., you
must write S = NP VP instead of S → NP VP

When you have typed in your grammar, you
can see how it analyses sentences by typing
your sentence in the window In/out text at the
bottom.

• You could type in the following simple example
grammar

• Note how words are introduced into the
grammar: a list of alternatives within ‘<‘ and ‘>’
brackets.

(4) Example

S = NP VP
NP = Det N
VP = V NP

V = <“ate",“drank">
N = <“man","cat">
Det = <"a","the">

(example-1)

• After typing in the grammar, you can type in a

sentence in the bottom window marked In/out
text and press

the Parse CFG
button.

(4) Example

?

And: you
should
see
the result
here

(5) A parse tree (the result)

(6) A failed parse

• If you give a sentence that the grammar
cannot cover, then you get an error
message. For example, if you try the
sentence: ‘the man ate’, the program will
tell you:

(7) Extending the grammar

• In order to cover the sentence ‘the man ate’, we
have to change the grammar. This means,
empirically, that we have discovered that our
grammar is not sufficient (no surprise!)

• An appropriate extension to the grammar would
be to add a further rule:

VP = V

(7) Extending the grammar

• With the extra rule, the program can produce a
tree:

• A more concise way of writing the same thing is
to use the rule: VP = V [NP]
The square bracket means optional.

S

NP

DET

the

N

man

VP

V

ate

Some more shorthand...

• [X]: symbol can occur zero or one time
(optional element)

• {X}: symbol can occur 0 or more times
(repeatable Element)

• <X,Y,...>: at least one of the given
elements must occur

• (X,Y,...): one of the elements may occur

(8) Working with grammars

• When grammars get more interesting, it is better
to write them first into a text file.

• Then you can save them and load them into the
program whenever you want, without retyping,
by using the button.

• Your grammar files should have names like
‘mygrammar.cfg’

• The cfg stands for ‘context-free grammar’, which
is the technical name for this kind of phrase
structure grammar.

(9) Working with grammars

• For example, lets look now at a standard
linguistic example

• What is the structure of the sentences:

– time flies like an arrow

fruit-flies.CFG

START

S

NP

N

fruit

N

flies

VP

V

like

#0

NP

DETSING

a

N

banana

(10) Working with grammars

• For another example, try the example grammar
given by Reischer called ‘ambig2.cfg’ given on
the course website.

• Save this grammar somewhere on your
computer and then load it with

• You will see that if you give the test sentence:
“Der Mann sieht die Frau auf dem Hügel mit
dem Teleskop“ you get many result trees.

• Can you find the different meanings that each
tree has?

Click here to get the
different trees

