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1 Introduction 
The starting point for the following remarks is WOLFGANG WILDGEN'S paper “Zur Dynamik 
lokaler Kompositionsprozesse: Am Beispiel nominaler ad hoc-Komposita” (WILDGEN 1982) 
written more than twenty years ago. Wildgen begins his paper with the following statement: 

Nominal composition still is a challenge to the available models of grammar, since on the one hand it 
exhibits quasi-syntactic properties and thus is comparable to noun phrases and relative clause 
constructions, yet on the other hand the result of the composition process is a word and shares the 
phonological and semantic integrity of words. Particularly problematic is the description of ad-hoc 
compounds, which cannot be assigned a marginal place in the grammar as mere lexical phenomena 
(free translation: KHW).1

Wildgen then formulates a number of assumptions (“Thesen”) concerning the composition 
process, the first three of which will play a role in the following discussion: 

Assumption 1: The distinction between relational and substantival constituents […] is an essential basis 
for the semantic aspect of the composition process.2

Assumption 2: The functional incompleteness of non-relational compounds creates a semantic wake 
whose result is that  

(a) the information encapsulated in the word form is exploited, 
(b) co-textual and contextual information is increasingly spliced into the composition process. 

If both sources become unavailable the speaker/hearer can enrich the lexical semantics and the context 
by his own invention.3

Assumption 3: The semantics of the constituents of the compound which is made accessible by the 
functional wake has several levels of accessibility. The relations or predicate constants derived from 
sentences or propositions in traditional research on compounds can be obtained from the lexical 
semantics (unless they are explicated by co-texts and contexts).4

In contrast to lexicalized compounds, whose idiosyncratic properties render their semantics 
increasingly opaque and non-compositional, ad-hoc compounds in order for them to be 
interpretable by the hearer must obey some version of the principle of compositionality. This 

                                                 
1 Die nominale Komposition stellt immer noch eine Herausforderung an die vorhandenen Grammatikmodelle 
dar, da sie einerseits quasi-syntaktische Eigenschaften aufweist und insofern mit Nominalphrasen und 
Relativsatzkonstruktionen vergleichbar ist, andererseits ist das Ergebnis des Kompositionsprozesses ein Wort 
und es teilt die phonologische und semantische Ganzheitlichkeit von Wörtern. Besonders problematisch ist die 
Beschreibung von ad hoc-Komposita, die man nicht als lexikalische Phänomene in Randbereiche der Grammatik 
abschieben kann (WILDGEN: 297). 
2 These 1: Die Unterscheidung zwischen relationalen und substantivischen Konstituenten […] ist eine 
wesentliche Grundlage für den semantischen Aspekt des Kompositionsprozesses (WILDGEN: 298). 
3 These 2: Die funktionale Unvollständigkeit nichtrelationaler Komposita erzeugt einen semantischen Sog, 
welcher dazu führt, daß  
(a) die in der Wortgestalt verkapselte Information ausgebeutet wird, 
(b) ko- und kontextuelle Informationen verstärkt in den Kompositionsprozeß einfließen. 
Wenn beide Quellen versiegen, kann der Sprecher/Hörer noch die Wortsemantik und den Kontext durch freie 
Erfindung anreichern (WILDGEN: 300). 
4 These 3: Die Semantik der Konstituenten des Kompositums, welche durch den funktionalen Sog erschlossen 
wird, hat verschiedene Zugänglichkeitsebenen. Die in der traditionellen Kompositionsforschung aus Sätzen oder 
Satzbegriffen abgeleiteten Relationen bzw. Prädikatskonstanten können aus der Wortsemantik gewonnen werden 
(sofern sie nicht durch Ko- und Kontexte expliziert sind)(WILDGEN: 301). 



principle assumes that meaning of an expression is derivable from the meanings of its 
constituent elements together with its syntactic structure and surrounding context. 
This is not the place to review the many proposals that have been made to account for the 
various problems one encounters when dealing with nominal compounds. These proposals 
include frameworks as diverse as case grammar (HÜLLEN 1976:71–95;WAGNER 1971; 
KÜRSCHNER 1974), Montague grammar (FANSELOW 1981), Discourse Representation Theory 
(DRT) (MEYER 1993), or even Head Driven Phrase Structure Grammar (HPSG) (REINHARD 
2001). 
In the following it will be argued that the theory of CONCEPTUAL GRAPHS (CGs) which has 
been developed by John F. Sowa since the 1970s and has gained growing influence 
particularly after the publication of his first book (SOWA 1984; cf. also SOWA 1988; 1991; 
1992; 1993a; 1993b; and 2000) is sufficiently rich to account for many of the problems 
discussed in WILDGEN'S paper in a comprehensive and unified manner, and includes many of 
the advantages of other frameworks, notably case grammar, Montague grammar, and DRT. 
For example, the distinction mentioned above between relational and substantival 
constituents and their role in the interpretation of ad-hoc compounds can be accounted for by 
role types and natural types, respectively. The theory provides precise representations and 
operations defined on them that enable us to make the interaction between lexical semantics 
and background knowledge explicit and transparent.  

2 Conceptual Graphs 
CONCEPTUAL GRAPHS (CGs) are a system of logic which is based on the EXISTENTIAL GRAPHS 
of CHARLES SANDERS PEIRCE5, the semantic networks of artificial intelligence and cognitive 
psychology, and contributions from linguistics. What makes them attractive is that they 
express meaning in a form that is logically precise, computationally tractable, without 
sacrificing human readability. Conceptual graphs have been implemented in a number of 
computational projects including natural language processing.  
In a nutshell, the system of conceptual graphs makes use of the following formal objects 
(cf. SOWA & WAY 1986: 59; more details in SOWA 1992): 

• Concepts with type labels and referents. 
• Conceptual relations with type labels and arcs. 
• Conceptual graphs, which consist of concepts linked by relations. 
• Contexts, which are complex concepts of type proposition or situation and permit the 

nesting of conceptual graphs to express negation, modality, tense, and propositional 
attitudes (belief, certainty, uncertainty, etc.). 

• Lambda abstractions, which are parameterized conceptual graphs used in the 
definition of types, schemata, or prototypes.  

• A lexicon for associating word forms with their syntactic categories and concept types. 
Other objects in the theory such as canonical graphs, which will play an important role in the 
discussion below, as well as type definitions, are derived from these in a controlled way. 
Together they form a rich SEMANTIC NETWORK of general information about some domain of 
discourse, which can be drawn upon in the interpretation of nominal compounds. 

                                                 
5 There is an accessible tutorial text by Peirce himself (PEIRCE 1909) with a commentary by John F. Sowa. For a 
more detailed discussion see ROBERTS (1973) and SHIN (2002). 



PERSON: John AGNT CUT ROPE: #
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Figure 1. A conceptual graph in display form 

A conceptual graph is an abstract structure that can be used to represent the meaning of an 
expression such as a sentence. Conceptual graphs are formally defined by an abstract syntax 

that is independent of any notation and can be 
visualized in different ways.6 The most 
transparent realisations are diagrams like 
Figure 1 (display form DF) representing the 
sentence John cut the rope with a knife. 
Besides this graphical form there is also a 
linear form (LF), which is intended as a more 

compact notation than DF, retaining good human readability. It is exactly equivalent in 
expressive power to the abstract syntax and the display form. Figure 2 shows the LF for 
Figure 1. 

(PAST) → [[CUT] – 
 (AGNT) → [PERSON: John] 
 (PTNT) → [ROPE: #] 
 (INST) → [KNIFE]].  

Figure 2. A conceptual graph in linear form 

In graph-theoretical terms a conceptual graph is a finite connected directed bipartite graph. A 
graph is called bipartite if the nodes it contains can be partitioned into two disjoint sets. In the 
case of conceptual graphs these are concept nodes (represented by boxes in DF or square 
brackets in LF) and relation nodes (represented by circles in DF or round parentheses in LF).7 
The conceptual graph in Figure 1 contains four concepts: [PERSON: John] and [ROPE: #] refer 
to specific instances of a person and a rope, whereas [CUT] refers to some unspecified instance 
of cutting; and [KNIFE] refers to an unspecified knife.8

2.1 Concepts 

Concepts represent the meanings of lexemes. They may refer to entities, properties, events, 
activities or actions in the world. Every concept has a type and a referent. To distinguish the 
type of the referent from the specific individual, the concept box is divided into two parts: a 
type field and a referent field: [<type>:<referent>]. For example, the concept [PERSON: John] 
is an individual concept with type PERSON and referent John. The concepts [KNIFE] and [CUT] 
are called generic concepts, because they specify only the type but do not identify a particular 
individual. 

                                                 
6 A definition of the abstract syntax can be found in an ISO-Standard proposal for CGs edited by John F. Sowa 
(cf. URL: http://www.jfsowa.com/cg/cgstand.htm; see also Sowa 2000:476–491). 
7 The exact shapes are irrelevant. "Circles" often take the form of ellipses to accommodate longer labels. 
8 Since conceptual graphs are a system of logic, they can be translated to other versions of logic, such as 
predicate calculus (cf. SOWA 1992).  



2.2 Referents 

In the basic notation for conceptual graphs only three kinds of referents are available: 
• Existential referents, represented by the symbol *, indicating that there exists at least 

one individual of the appropriate type. It thus corresponds to the existential quantifier 
∃ in formal logic. The full notation [KNIFE: *] can be abbreviated to [KNIFE]. 

• Individual markers, represented by the symbol # followed by a positive integer, e.g. 
#32415 (identification number): An individual marker uniquely identifies a single 
individual in a given context and corresponds to an individual constant in formal logic. 
Real-life examples are the matriculation number of a student (i.e. [STUDENT: #32145] 
= ‘the student with the matriculation number 32145’), the chassis number of a car, the 
serial number of a product etc.  

• Literal: A literal identifies an individual on the basis of its form. Example: in “John” 
is name the quoted string “John” indicates the word John, corresponding to the 
concept [WORD: “John”]. Similarly strings of digits represent themselves, e.g. 3.14159 
in the number 3.14159 is called Pi, corresponding to [NUMBER: 3.14159]. 

This list of referent types has been extended in a number of ways to enhance the expressive 
power of the notation (cf. WAY 1991: 110): 

Kind of referent Example English reading 
Existential [CAT] or [CAT: *] a cat or some cat 

Individual [CAT: #10872] the cat #10872 

Definite Reference [CAT: #]9 the cat 

Named individual [CAT: Muffy] Muffy or the cat Muffy 

Specified set [CAT:{Muffy,Yojo}] Muffy and Yojo 

Generic set [CAT: {*}] cats or some cats 

Counted generic set [CAT: {*} @5] five cats 

Definite set reference [CAT: {*}#] the cats 

Universal quantifier [CAT: ∀] every cat 

Universal negative [CAT: ~] no cat 

Universal plural [CAT: {*}∀] all cats 

Universal negative plural [CAT: {*}~] no cats 

Fuzzy quantifier [CAT:{*}@many] many cats 

Table 1: Referents 

2.3 Conceptual Relations 

The concepts in a conceptual graph are connected by conceptual relations that indicate what 
kind of relationship holds between their referents. In the formal theory there is only one 
primitive (dyadic) relation called LINK. In a system with only this primitive relation the 
empirical content must obviously be contained in the type system. All other conceptual relations 

                                                 
9 The symbol # in [CAT: #] is a control mark. Although it occurs in the referent field of a concept, it does not 
identify the individual referent directly, but triggers a search in the context for something that is known to both 
speaker and listener. In the concept [ROPE: #] the marker # is an indexical referent which indicates a specific 
rope whose identity is assumed to be known. Other examples of indexical referents include #I and #you for the 
pronouns I and you; #this and #that for the demonstrative pronouns this and that and #now for the time in the 
current context. 



that might be needed in a specific domain must ultimately be defined in terms of LINK. For 
convenience a number of relation types have been defined as a “starter set” (SOWA 1992:13). 
These include 

• Case relations or thematic relations identical to those of other frameworks like case 
grammar, government and binding theory or lexical functional grammar. 

• Spatial relations 
• Attributive relations 
• Intersentential relations 

Case relations or thematic relations indicate how states, processes, activities or actions, 
expressed by predicators are linked to other participants (or actants), expressed by the subject, 
objects, or other complements. Typical examples for thematic roles of this sort are agent 
(AGNT), patient (PTNT), theme (THME), experiencer 
(EXPR), recipient (RCPT), instrument (INST), destination 
(DEST) and result (RSLT). In the ubiquitous example of an 
“opening act”: The man opened the door with a key (the 
entity expressed by) the phrase the man is the agent, the 
door is the object (patient) affected by the act and a key 
the instrument which is used in the act (Figure 3). 

[OPEN] —  
 (AGNT) → [MAN: #]  
 (PTNT) → [DOOR: #]  
 (INST) → [KEY: *]. 

Figure 3.  

Spatial relation types represent spatial relationships that hold between two or more objects. 
These relation types include location (LOC) and a number of more specific relations such as IN, 
ON and ABOV, corresponding to spatial prepositions (in, on, above). For example, the sentence 
There is man at the door would be represented by the graph [MAN] → (LOC) → [DOOR: #]. 
Attributive relations indicate that an object has a certain property. These include the more 
general attribute relation (ATTR) as well as more specific relations such as part-of (PART) or 
characteristic (CHRC), where CHRC is used for inherent properties of an entity. The sentence The 
ball is red, for example, can be represented by the CG [BALL: #] → (CHRC) → [COLOR: red]. 
Intersentential relations express relationships between sentences (or propositions) and are 
comparable to conjunctions such as because, after, before or logical operators such as and and 
or. These relations link concepts of a special type called CONTEXT which have one or more 
conceptual graphs as their referent. 

2.4 Contexts 

The large box in Figure 1 represents a context containing the conceptual graph in Figure 4. 
This is actually an abbreviation for a concept of type SITUATION described by the graph in its 

referent field: [SITUATION: <graph>].10 Contexts are a special 
kind of concept type, whose referent field may consist of 
several graphs. Contexts are useful for describing situations or 
propositions. Thus the types PROPOSITION and SITUATION are 
subtypes of CONTEXT. Contexts are needed to form collections 
of one or more graphs such as schemata, prototypes or scripts. 

They permit the nesting of conceptual graphs to express negation, modality, tense, and 
propositional attitudes such as belief, certainty, or uncertainty.11 For the problem under 
consideration contexts are important, because they permit the representation of the 
background information that may come into play in the interpretation of ad-hoc compounds. 

[CUT] – 
(AGNT) → [T PERSON: John] 
(PTNTT) → [ROPE: #] 
(INST) → [T KNIFE]. 

Figure  4.  

                                                 
10 More precisely, it represents a SITUATION which is described by a PROPOSITION stated by a specific GRAPH: 
[SITUATION] → (DSCR) → [PROPOSITION] → (STMT) → [GRAPH] (cf. SOWA 1992:13ff.).
11 The type field of CONTEXT is often omitted, so we just put brackets around to mark a context, e.g.: T

(PAST) → [[T PERSON: John] ← (AGNT) ← [OPEN] → [DOOR: #]]. 



3 Type hierarchy  
Concept types are organized in a hierarchy called a type hierarchy according to degrees of 
generality. Figure 5 shows a partial type hierarchy with the universal type  at the top and the 
general types ENTITY and SITUATION as proper subtypes. A type hierarchy is a partially 
ordered set of type labels which are specified as either primitive or defined. The partial 
ordering is achieved by the subtype relation "≤" ("<" for proper subtype, and its inverses "≥" 
for supertype, and ">" for proper supertype). The subtype relation is transitive, i.e. from 
PROCESS < EVENT and EVENT < SITUATION we can conclude that PROCESS < SITUATION. Every 
type of concept or relation in the semantic network organized around the type hierarchy may 
be associated with information structures such as type definitions, canonical graphs, 
schemata, and prototypes. 

T
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state

image

mobile-entity

living nonliving

event

own believe

plant
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dog
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pet car truck house
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Figure 5. A partial type hierarchy (cf. SOWA 1992:8) 

3.1 Canonical graphs 

Every concept and relation type in the semantic network is associated with a conceptual graph 
that specifies the selectional constraints expected for the types of concepts and relations it 
contains. Such a graph is called a canonical graph. The case 
frames of FILLMORE'S case grammar (FILLMORE 1968) are 
examples of canonical graphs. Figure 6 shows one of 
FILLMORE'S frames written in conceptual graph notation. 
This graph specifies that OPEN requires an animate agent, 
any entity as its patient, and a physical object as instrument. 

[OPEN] – 
 (AGNT)→[ANIMATE] 
 (PTNT) → [ENTITY] 
 (INST) →[PHYS-OBJ]. 

Figure 6. Canonical graph 

A graph is canonical if it is the representation of an observable situation. It is also canonical if 
it is the representation of an imaginable situation derivable from observable situations or 
gained by insight or creativity. The set of all such graphs in the lexicon, called the canonical 
basis or canon, determines selectional constraints. By definition, all graphs in the canon are 
canonical. All other canonical graphs are derivable from the canon by means of canonical 
formation rules (see below). Any graph derived by these rules will observe the constraints in 
the canon. Canonical graphs are not definitions. They only represent the structural constraints 
that must be obeyed to yield semantically well-formed sentences. In general, a type definition 
(see below) is much more detailed than a canonical graph.  



3.2 Natural types and role types 

Subtypes of ENTITY can be classified as natural types (PLANT, CAT, or BUILDING) or role types 
(PET, TEACHER, or CHILD), a classification that can account for the distinction between 
“relational” and “substantival” constituents made by Wildgen in his first assumption.  
An individual is an instance of a natural type if it can be identified as belonging to this type 
on the basis of its inherent attributes and characteristics. Thus a cat can be recognized as such 
with reference to its observable features, similarly with a dog or a person.  
An individual can only be identified as belonging to a 
role type by virtue of its relationship to other entities 
and situations. The type PERSON, for example, is a 
natural type, whereas TEACHER is a subtype of PERSON 
in the role of teaching. 
Other examples of role types include CHILD < PERSON, 
PET < ANIMAL, PARENT < PERSON, FOOD < PHYSICAL-SUBSTANCE, TOOL < ENTITY. 

TEACHER < PERSON  
[TEACHER] —  
 (AGNT) ← [TEACH] —  
 (RCPT) → [ANIMATE]  
 (PTNT) → [SUBJECT-MATTER]. 
Figure 7. Canonical graph of the role type TEACHER

Each of these role types is associated with a canonical graph specifying the implicit pattern of 
relationships it enters into. A child is a role played by one person with respect to another 
person who plays the role of parent; and conversely. A pet is an animal owned by some 
person and treated with care and affection. Food is a substance that people or animals eat or 
drink. A tool is an entity that plays the role of instrument for an act. 
The distinction between natural types and role types is not always that clear-cut, because very 
often an object can play a certain role by virtue of its inherent properties. For example, a 
hammer is normally recognizable by its characteristic shape and can thus be regarded as a 
natural type. On the other hand it serves as a specific tool. 

3.3 Canonical formation rules 

All operations on conceptual graphs are based on combinations of six canonical formation 
rules, each of which performs one basic graph operation making a CG more specialized, more 
generalized, or transforming it while leaving it logically equivalent to the original.  
The first two rules, which are illustrated in Figure 8, are copy and simplify. At the top is a CG 
for the sentence (The person) John is cutting a rope. The down arrow represents the copy 
rule. One application of this rule copies the AGNT relation, and a second application copies the 
subgraph → (PTNT) → [ROPE]. Both copies are redundant, since they add no new information. 
The up arrow represents two applications of the simplify rule, which performs the inverse 
operation of erasing redundant copies.  

PERSON: John AGNT CUT ROPEPTNT

PERSON: John

AGNT

CUT ROPEPTNT

ROPEPTNT

AGNT

Copy Simplify

 
Figure 8. Canonical formation rules: copy and simplify 



To show that the two copies of [ROPE] are coreferent (refer to the same individual), they are 
connected with a broken line, called a coreference link. Alternatively, coreference can be 
indicated by variables in the referent field preceded with an asterisk. The conceptual graphs 
[PERSON: John] – – – [TEACHER] and [PERSON: John *x] [TEACHER: *x] are equivalent. 
Figure 9 illustrates the rules that restrict and generalize. At the top is a CG for the sentence A 
person is cutting some physical object. This is transformed to the CG for The person John is 
cutting a rope by first restricting the concept [PERSON], which represents some indefinite 
person, to the more specific concept [PERSON: John], which represents an individual person 
named John (restriction by referent). The second step is a restriction by type of the concept 
[PHYSICAL-OBJECT] to a concept of the subtype [T ROPE]. Two applications of the generalize 
rule perform the inverse transformation of the bottom graph to the top graph.  

PERSON AGNT CUT PHYSICAL-OBJECTPTNT

Restrict Generalize

PERSON: John AGNT CUT ROPEPTNT
 

Figure 9. Canonical formation rules: restrict and generalize 

Figure 10 illustrates the join and detach rules. At the top are two CGs for the sentences John 
is cutting a rope and A rope is thick. The join rule unifies the two identical copies of the 
concept [ROPE] to form a single CG for the sentence John is cutting a thick rope. The detach 
rule performs the inverse operation.  

PERSON:John AGNT CUT ROPE

Join Detach

PTNT ROPE THICKATTR

PERSON:John AGNT CUT ROPEPTNT THICKATTR
 

Figure 10. Canonical formation rules: join and detach 

3.4 Type definitions 

Concept and relation types are either primitive types that cannot be defined or types that are 
defined by lambda abstractions. A lambda abstraction can be derived from a conceptual graph 
by replacing one or more referents by variables bound by the lambda operator λ. For example, 
from [PERSON: John] ← (AGNT) ← [CUT] → (PTNT) → [ROPE] we can derive the monadic 
abstraction (λx) [PERSON: *x] ← (AGNT) ← [CUT] → (PTNT) → [ROPE]. This can also be 
expressed by putting the λ in the referent field of the concept in question: [PERSON:λ] ← 
(AGNT) ← [CUT] → (PTNT) → [ROPE], which represents the property of a person cutting a 
rope. Lambda abstractions can be used in various ways in the theory: 

• Definitions: Monadic abstractions are used to define concept types, and n-adic 
abstractions are used to define n-adic relations types. They specify necessary and 
sufficient conditions. 



• Nameless types: Instead of a permanently defined type label, the type field of a 
concept may contain a lambda abstraction that is created for temporary use. Nameless 
types can be used for restrictive modifications such as a knife with a sharp blade, 
which can be represented by [[KNIFE:λ] → (PART) → [BLADE] → (ATTR) → 
[SHARP]:*]. 

• Schemata: Like type definitions, schemata are defined by lambda abstractions. 
However, schemata differ from type definitions in that they only specify default 
values and expectations. 

• Prototypes: Lambda abstractions also play a role in the characterization of prototypes 
representing a typical individual. 

3.4.1 CONCEPT TYPES 

A concept type definition specifies that a type label t is defined by a monadic abstraction (λx) G, 
where G is a canonical graph. This can also be expressed by the notation type t(x) is G. The 
body G is called the differentia of t, and the type label of x is called the genus of t.  
Any generic concept in a given canonical graph can be selected as the genus of a type 
definition. Given the canonical graph [PERSON] ← (AGNT) ← [CUT] → (PTNT) → [ROPE] with 
the generic concepts [PERSON], [CUT], and [ROPE] we can derive three different type 
definitions by lambda abstraction, only two of which really make sense: 
type ROPE-CUTTER (x) is  
 [PERSON:*x] ← (AGNT) ← [CUT] → (PTNT) → [ROPE] 
This new type will enter the type hierarchy as a subtype of PERSON: ROPE-CUTTER < PERSON

type CUTTING-ROPE (x) is  
 [PERSON] ← (AGNT) ← [CUT] → (PTNT) → [ROPE:*X] 
CUTTING-ROPE < ROPE12

type rope-cutting (x) is  
 [PERSON] ← (AGNT) ← [CUT:*X] → (PTNT) → [ROPE] 
ROPE-CUTTING < CUT. 
If we include the instrument we can also derive a type ROPE-CUTTING-KNIFE as a subtype of 
KNIFE. 
type ROPE-CUTTING-KNIFE (x) is  
 [CUT] – 
  (AGNT) → [PERSON] 
  (PTNT) → [ROPE] 
  (INST) → [KNIFE:*x] 

A type definition simply assigns a label to a λ-expression to represent it in specific contexts 
such as the type field of a concept. Consequently, the type label in any concept can be 
replaced by the λ-expression that defines it, whose internal structure then becomes available 
for further processing if the need should arise. This is called type expansion. 
3.4.2 RELATION TYPES 

As has already been pointed out, the formal theory of conceptual graphs contains only one 
primitive relation type called LINK. This is a dyadic relation type from which others can be 
derived by relational definitions. 

                                                 
12 This is similar in structure to eating apple but somewhat odd. 



A relational definition, relation t(x1 ... xn) is G, specifies that the type label t for a conceptual 
relation is defined by the n-adic abstraction (λ x1 ... xn) G. The body G is called the relator of t. 
For example, the relation type AGNT may be defined in terms of a concept of type AGENT as 
follows: 

T

relation AGNT(x, y) is  
[ACT:*x] ← (T LINK) ← [AGENT T

                                                

] → (LINK) → [ANIMATE:*y] 
The number of concepts required by a relation type is called its valence. The signature of a 
relation type is the sequence of the most general concept types to which it can be linked. 
Since the AGNT-relation links an ACT to an ANIMATE, its signature is <ACT, ANIMATE>. The 
signature poses restrictions on the use of a relation. A relation can only be linked to concepts 
whose types are either identical to those specified in the signature or are subtypes of them. 
Thus the conceptual graph [STONE] ← (AGNT) ← [CRY] in its literal meaning is not 
semantically well-formed, because while CRY is a subtype of ACT, STONE is not a subtype of 
ANIMATE. 
Although the primitive relation type LINK is dyadic, we can define relation types of arbitrary 
adicity. The conceptual graph represented in Figure 1 contains the monadic relation type PAST 
which is defined in terms of the dyadic relation types point of time (PTIM), successor (SUCC) 
and the contextually defined time #now as follows: 
relation PAST(x) is  

[SITUATION: *x] → (PTIM) → [TIME] → (SUCC) → [TIME: #now]. 
Relational expansion is the counterpart of type expansion. Given the relational definition: 
relation BUILD(x, y) is  

[PERSON: *x] ← (AGNT) ← [MAKE] → (RSLT) → [BUILDING: *y] or equivalently 
BUILD = [PERSON: λ1] ← (AGNT) ← [MAKE] → (RSLT) → [BUILDING: λ2], 
the type label build in [PERSON: John] ← (BUILD) → [HOUSE:*] can be replaced by its 
definition yielding 
[PERSON: John] ← ([PERSON: λ1] ← (AGNT) ← [MAKE] → (RSLT) → [BUILDING: λ2]) → [HOUSE:*], 
which can be simplified to [PERSON: John] ← (AGNT) ← [MAKE] → (RSLT) → [HOUSE: *] by a 
form of λ-conversion. 

3.5 Schemata and Prototypes 

Whereas types are defined by stating the necessary and sufficient conditions that distinguish 
them from other types, which is formally achieved by canonical graphs specifying a supertype 
(genus proximum) and the distinguishing concepts and relations (differentia specifica), 
schemata specify the concepts and relations that are commonly associated with a certain 
concept type. Schemata go beyond type definitions in that they incorporate domain-specific 
knowledge about the typical constellations of entities, attributes, and events in the real world. 
A concept type may have at most one definition, but arbitrarily many schemata.13

A prototype is a specialisation of a type by a collection of one or more schemata which show 
the form of a typical representative. Prototypes exhibit default values that are valid for a typical 
case, but not necessarily for a particular case.14

 
13 The set of related schemata associated with a concept is called a schematic cluster. 
14 Although metaphors are important for an analysis of compounding I will not consider them here. Metaphors 
appear to violate the rules for combining canonical graphs. However, WAY (1991) developed a technique for 
handling metaphors by dynamically extending the type hierarchy. 



4 Conceptual graphs in action 

4.1 The compositionality principle 

As has been pointed out in the beginning, the interpretation of non-lexicalised compounds 
presupposes some version of the principle of compositionality, assuming that the meaning of 
an expression is derivable from the meanings of its constituent elements together with its 
syntactic structure and surrounding context. 
The close relationship between syntax and semantics can be illustrated with sentences that are 
structurally ambiguous: 
(1) John talked to the man in the garden 
In this sentence the reference of the local prepositional phrase in the garden is ambiguous: 
(2) [[John]NP [talked [to the man]PP [in the garden]PP]VP]S

(3) [[John]NP [talked [to [the man [in the garden]PP]NP]PP]VP]S 

These different syntactic structures correspond to different semantic structures. In terms of 
conceptual graphs (4) is the reading corresponding to the analysis in (2) and (5) is the reading 
of analysis (3): 
(4) in the garden specifies the location (LOC) of talk 

[TALK] – 
(AGNT) → [PERSON:John] 
(RCPT) → [MAN:#] 
(LOC) → [GARDEN:#]. 

(5) in the garden specifies the location of the man: 
[PERSON:John] ← (AGNT) ← [TALK] → (RCPT) → [MAN:#] → (LOC) → [GARDEN:#]. 

The semantic representation (in terms of conceptual graphs) is incrementally derived by joining 
the conceptual graphs associated with each constituent under the (partial) control of the syntactic 
rules. In the present context these are assumed to be based on some version of the X -schema, 
preferably with binary branching, augmented by arguments representing conceptual graphs and 
operations that perform a join on these graphs. We will assume the following framework: 
1. A lexicon that associates each word with a concept type and one or more canonical graphs. In 

the case of natural types the graph may consist of a single concept. With verbs, adjectives and 
role types the associated canonical graphs can be quite complex. Concept types may be 
primitive or defined, in which case the type definition may come into play. Concept types 
may be associated with schemata and prototypes to account for background knowledge. 

2. Every canonical graph associated with a node in the syntax tree contains a concept marked 
as its head concept. The head concept is the starting point for the unification of this graph 
with the graphs of other nodes.  

3. Each phrase structure rule has the general form Xn(G) → Y(G1) Xn–1(G0) Z(G2),  
{G = join(G0, G1, G2), where Y and Z may be empty. If both Y and Z are empty, G = G0. 

4. The canonical graph of category Xn-1 is formed by unifying the head concepts of the 
categories Y and Z either with the head concept of Xn-1 or with another concept in the 
graph associated with Xn-1. The head concept of Xn is identical with that of Xn–1.  

5. If there are more alternatives for the unification of the head concept with the concepts of the 
other graphs, the decision may be controlled by the syntax rule. The selection of the thematic 
role of the subject may follow a thematic hierarchy like (AGNT < EXPR < INST < PTNT < … etc.).  

6. Syntactic ambiguities may be resolved by constraints that hold for the unification of 
conceptual graphs. 

7. More complex conceptual structures may be built on the basis of schemata and prototypes. 



Unfortunately, the limited space available does not permit demonstrating this system in 
extenso. However, the general principles can be explained satisfactorily even with simple 

phrases such as a passionate girl* vs. a passionate 
teacher*.15 After all, the syntax of nominal 
compounds is very simple. Although these phrases 
have the same phrase structure (see Figure 11), 
they obviously differ in meaning. In the phrase a 

ive passionate refers to 
the attribute of a person, whereas in the most 
natural interpretation of a passionate teacher it 
refers to the manner of teaching. This can be 
accounted for in the following way: 

passionate girl the adject

girl

N2:G1

Det:G2 N1:G3

a N0:G5A2:G4

passionate  
Figure 11. Noun phrase structure 

The adjective passionate has two canonical graphs associated with it:  
1. [PASSIONATE] ← (ATTR) ← [PERSON] 
2. [PASSIONATE] ← (MANR) ← [ACT] T

The graph associated with the noun girl is simply the concept [GIRL]. Since GIRL < PERSON, the 
most likely reading of passionate is the first one. Thus we can assume the following equations: 
G4 = [PASSIONATE] ← (ATTR) ← [PERSON] [GIRL*] = G5

G3 = G4  G5, where  symbolizes the “maximal join” operator.16

In order to be able to perform the join, the concept [PERSON] must be type-restricted to [GIRL], 
which is permissible since GIRL < PERSON:  
G'4 = [PASSIONATE] ← (ATTR) ← [GIRL].  
Since the concept node in G5 has no relations attached to it, it can be merged with the concept 
node [GIRL] in G'4:  
G3 = G'4 = [PASSIONATE] ← (ATTR) ← [GIRL*] 
The canonical graph associated with the indefinite article in this context is the generic concept  
[ :*], where  is the universal concept type. Merging this with the head concept in G3 by 
type-restricting  to girl (GIRL < ) adds no information, hence G1 = G3. 

The noun teacher in a passionate teacher is a role type and 
associated with a more elaborate canonical graph specifying 
its role (see Figure 12). Here we have a potential ambiguity 
between passionate as a person and passionate as a 
teacher. Since TEACHER < PERSON the concept [PERSON] in 
the first reading of passionate can be type-restricted to 
[TEACHER] and unified with the agent in Figure 12. 

[TEACH] – 
 (AGNT) → [T TEACHER*] 
 (THME) → [SUBJECT-matter] 
 (RCPT) → [PERSON]. 

Figure 12. Canonical graph for TEACHER

[TEACH] – 
 (AGNT) → [T TEACHER*] [TEACHER] → (ATTR) → [PASSIONATE] 
 (THME) → [SUBJECT-matter] 
 (RCPT) → [PERSON]. 

Figure 13: Joining two graphs 

                                                 
15 Here the asterisk is used to mark the head of the phrase. 
16 Informally we can define a maximal join as an operation that derives the simplest CG from a set of CGs with 
a maximal number of join operations. 



The join is achieved by deleting the identical concept node [TEACHER] and attaching the 
dependent subgraph → (ATTR) → [PASSIONATE] to the head node. The result is shown in 
Figure 14 

[TEACH] – 
 (AGNT) → [T TEACHER*] → (ATTR) → [PASSIONATE] 
 (THME) → [SUBJECT-MATTER] 
 (RCPT) → [PERSON]. 

Figure 14: Conceptual graph for a passionate teacher 

In the more natural reading passionate modifies the act of teaching.  
[PASSIONATE] ← (MANR) ← [ACT] 

[TEACH] – 
 (AGNT) → [TEACHER*]  
 (THME) → [SUBJECT-MATTER] 
 (RCPT) → [PERSON]. 

Figure 15: Canonical graphs for passionate and teacher. 

Since TEACH < ACT the concept [ACT] can be type restricted to [TEACH], permitting the join in 
Figure 16. This can be done by deleting the first of the identical concept nodes [teach] and 
attaching the dependent subgraph [passionate] ←(manr) ← to the remaining node (Figure 16 
[PASSIONATE] ← (MANR) ← [TEACH] – 

 (AGNT) → [TEACHER*]  
 (THME) → [SUBJECT-matter] 
 (RCPT) → [PERSON]. 

Figure 16: Canonical graph for passionate teacher 

Figure 17 is a visual representation of the bottom-up derivation under the control of the 
phrase structure. The canonical graphs associated with the indefinite article and the words 
passionate und teacher in the lexicon are assigned to the nodes Det, A2 and N0, respectively. 
In the next step the join of these two graphs is assigned to the node N1. And finally this is 
joined with the graph associated with Det and assigned to the node N2. 

teacher

N2:

Det: [T:*] N1:

a N0:A2:

passionate

[passionate] ←(manr) ← [act] [teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]

[teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]
(manr) → [passionate]

[teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]
(manr) → [passionate]

teacher

N2:

Det: [T:*] N1:

a N0:A2:

passionate

[passionate] ←(manr) ← [act] [teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]

[teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]
(manr) → [passionate]

[teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]
(manr) → [passionate]

 
Figure 17: A conceptual graph derivation 



4.2 The compositionality of nominal compounds 

The derivation of the meaning of compounds like silver spoon vs. soup spoon is quite 
analogous to that of phrases. Since their syntax is very simple (see Fig. 1817), there is no 

syntactic ambiguity either. Nevertheless, their interpretation is 
quite different.18 Again the different interpretation of silver 
spoon vs. soup spoon can be explained with the different 
canonical graphs associated with their constituents.19 For 
example, silver (concept [SILVER], SILVER < METAL) can be 
characterized as the material used in the production of an 
object. This can be accounted for by the canonical graph 
[SILVER] ← (MATR) ← [MAKE] → (RSLT) → [PHYS-OBJ]. A 
canonical graph for spoon (concept [SPOON]) would have to 

contain the information that it is a tool (SPOON < TOOL, relation INST), which is used to ingest 
liquid (or pulpy) food: [SPOON] ← (INST) ← [INGEST] → (PTNT) →[FOOD] →(ATTR) → [LIQUID-OR-PULPY].20 
The concept [SOUP] is compatible with "liquid (cooked) food". 

spoon

N:G1

N:G3N:G2

silver
soup

 
Figure 18: Compound structure 

For silver spoon the exact semantics of spoon does not really matter. It is sufficient to assume 
that SPOON is a subtype of PHYS-OBJ.  
G2 = [SILVER] ← (MATR) ← [MAKE] → (RSLT) → [PHYS-OBJ]   [SPOON*] = G3

Type restriction of PHYS-OBJ to SPOON produces G'2: 
G'2 = [SILVER] ← (MATR) ← [MAKE] → (RSLT) → [SPOON*]. This trivially joins with G3 to 
yield G1 = G'2. 
The derivation of the semantics of soup spoon is more complicated. Spoon can be considered 
both a natural type and a role type. For the interpretation of the compound the information 
related to its role is more relevant. Other information that may be contained in the schematic 
cluster associated with the type, e.g. the fact that a spoon consists of a "shallow bowl with a 
handle", can be added if required. Assuming for the sake of the argument a very simple type 
definition for soup like SOUP = [FOOD:λ] → (ATTR) → [LIQUID], i.e. ignoring the fact that soup 
is made by boiling certain ingredients in water or stock, the basic meaning of the compound 
can be derived as follows: 
G2 = [SOUP] 
G3 = [SPOON] ← (INST) ←[INGEST]→(PTNT)→ [FOOD]→(ATTR)→[LIQUID-OR-PULPY] 
G'2 = [FOOD] → (ATTR) → [LIQUID] from G2 by type expansion 
G'3 = [SPOON] ← (INST) ←[INGEST]→(PTNT)→ [FOOD]→(ATTR)→[LIQUID] by type restriction 
since LIQUID < LIQUID-OR-PULPY

G'1 = G'2  G'3 = G'3
G1 = [SPOON] ← (INST) ←[INGEST]→(PTNT)→ [SOUP] from G'1 by type contraction. 

                                                 
17 The bold edge indicates the projection line identifying the syntactic head of the construction. 
18 Obviously soup spoon and silver spoon are not really ad-hoc compounds. However, what counts here is that 
they can be regarded as compositionally derivable. 
19 In this context the exact status of these canonical graphs, i.e. whether they are mere statements of selectional 
restrictions, or schemata, or result from type expansions, will not be elaborated. 
20 The concept type LIQUID-OR-PULPY is a derived type formed by the union LIQUID ∪ PULPY and is thus a 
common supertype of both, i.e. LIQUID ∪ PULPY > LIQUID, PULPY.



5 Conclusion 
Due to the limited space available, the application of the system of conceptual graphs outlined 
in the major part of this paper to the problem domain adressed in WOLFGANG WILDGEN's 
study has admittedly been rather sketchy. In particular, it has not been shown explicitly how 
background information can be integrated into the interpretation process. What is important, 
though, is the fact that the relevant information structures – conceptual schemata, prototypes, 
scripts, discourse structures – can all be represented as conceptual graphs and can be handled 
by the same operations. I hope that I have at least been able to demonstrate the potential of the 
theory of conceptual graphs. 
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