
Nominal Compounds, the Principle of Compositionality and
Conceptual Graphs

Karl Heinz Wagner
Universität Bremen

1 Introduction
The starting point for the following remarks is WOLFGANG WILDGEN'S paper “Zur Dynamik
lokaler Kompositionsprozesse: Am Beispiel nominaler ad hoc-Komposita” (WILDGEN 1982)
written more than twenty years ago. Wildgen begins his paper with the following statement:

Nominal composition still is a challenge to the available models of grammar, since on the one hand it
exhibits quasi-syntactic properties and thus is comparable to noun phrases and relative clause
constructions, yet on the other hand the result of the composition process is a word and shares the
phonological and semantic integrity of words. Particularly problematic is the description of ad-hoc
compounds, which cannot be assigned a marginal place in the grammar as mere lexical phenomena
(free translation: KHW).1

Wildgen then formulates a number of assumptions (“Thesen”) concerning the composition
process, the first three of which will play a role in the following discussion:

Assumption 1: The distinction between relational and substantival constituents […] is an essential basis
for the semantic aspect of the composition process.2

Assumption 2: The functional incompleteness of non-relational compounds creates a semantic wake
whose result is that

(a) the information encapsulated in the word form is exploited,
(b) co-textual and contextual information is increasingly spliced into the composition process.

If both sources become unavailable the speaker/hearer can enrich the lexical semantics and the context
by his own invention.3

Assumption 3: The semantics of the constituents of the compound which is made accessible by the
functional wake has several levels of accessibility. The relations or predicate constants derived from
sentences or propositions in traditional research on compounds can be obtained from the lexical
semantics (unless they are explicated by co-texts and contexts).4

In contrast to lexicalized compounds, whose idiosyncratic properties render their semantics
increasingly opaque and non-compositional, ad-hoc compounds in order for them to be
interpretable by the hearer must obey some version of the principle of compositionality. This

1 Die nominale Komposition stellt immer noch eine Herausforderung an die vorhandenen Grammatikmodelle
dar, da sie einerseits quasi-syntaktische Eigenschaften aufweist und insofern mit Nominalphrasen und
Relativsatzkonstruktionen vergleichbar ist, andererseits ist das Ergebnis des Kompositionsprozesses ein Wort
und es teilt die phonologische und semantische Ganzheitlichkeit von Wörtern. Besonders problematisch ist die
Beschreibung von ad hoc-Komposita, die man nicht als lexikalische Phänomene in Randbereiche der Grammatik
abschieben kann (WILDGEN: 297).
2 These 1: Die Unterscheidung zwischen relationalen und substantivischen Konstituenten […] ist eine
wesentliche Grundlage für den semantischen Aspekt des Kompositionsprozesses (WILDGEN: 298).
3 These 2: Die funktionale Unvollständigkeit nichtrelationaler Komposita erzeugt einen semantischen Sog,
welcher dazu führt, daß
(a) die in der Wortgestalt verkapselte Information ausgebeutet wird,
(b) ko- und kontextuelle Informationen verstärkt in den Kompositionsprozeß einfließen.
Wenn beide Quellen versiegen, kann der Sprecher/Hörer noch die Wortsemantik und den Kontext durch freie
Erfindung anreichern (WILDGEN: 300).
4 These 3: Die Semantik der Konstituenten des Kompositums, welche durch den funktionalen Sog erschlossen
wird, hat verschiedene Zugänglichkeitsebenen. Die in der traditionellen Kompositionsforschung aus Sätzen oder
Satzbegriffen abgeleiteten Relationen bzw. Prädikatskonstanten können aus der Wortsemantik gewonnen werden
(sofern sie nicht durch Ko- und Kontexte expliziert sind)(WILDGEN: 301).

principle assumes that meaning of an expression is derivable from the meanings of its
constituent elements together with its syntactic structure and surrounding context.
This is not the place to review the many proposals that have been made to account for the
various problems one encounters when dealing with nominal compounds. These proposals
include frameworks as diverse as case grammar (HÜLLEN 1976:71–95;WAGNER 1971;
KÜRSCHNER 1974), Montague grammar (FANSELOW 1981), Discourse Representation Theory
(DRT) (MEYER 1993), or even Head Driven Phrase Structure Grammar (HPSG) (REINHARD
2001).
In the following it will be argued that the theory of CONCEPTUAL GRAPHS (CGs) which has
been developed by John F. Sowa since the 1970s and has gained growing influence
particularly after the publication of his first book (SOWA 1984; cf. also SOWA 1988; 1991;
1992; 1993a; 1993b; and 2000) is sufficiently rich to account for many of the problems
discussed in WILDGEN'S paper in a comprehensive and unified manner, and includes many of
the advantages of other frameworks, notably case grammar, Montague grammar, and DRT.
For example, the distinction mentioned above between relational and substantival
constituents and their role in the interpretation of ad-hoc compounds can be accounted for by
role types and natural types, respectively. The theory provides precise representations and
operations defined on them that enable us to make the interaction between lexical semantics
and background knowledge explicit and transparent.

2 Conceptual Graphs
CONCEPTUAL GRAPHS (CGs) are a system of logic which is based on the EXISTENTIAL GRAPHS
of CHARLES SANDERS PEIRCE5, the semantic networks of artificial intelligence and cognitive
psychology, and contributions from linguistics. What makes them attractive is that they
express meaning in a form that is logically precise, computationally tractable, without
sacrificing human readability. Conceptual graphs have been implemented in a number of
computational projects including natural language processing.
In a nutshell, the system of conceptual graphs makes use of the following formal objects
(cf. SOWA & WAY 1986: 59; more details in SOWA 1992):

• Concepts with type labels and referents.
• Conceptual relations with type labels and arcs.
• Conceptual graphs, which consist of concepts linked by relations.
• Contexts, which are complex concepts of type proposition or situation and permit the

nesting of conceptual graphs to express negation, modality, tense, and propositional
attitudes (belief, certainty, uncertainty, etc.).

• Lambda abstractions, which are parameterized conceptual graphs used in the
definition of types, schemata, or prototypes.

• A lexicon for associating word forms with their syntactic categories and concept types.
Other objects in the theory such as canonical graphs, which will play an important role in the
discussion below, as well as type definitions, are derived from these in a controlled way.
Together they form a rich SEMANTIC NETWORK of general information about some domain of
discourse, which can be drawn upon in the interpretation of nominal compounds.

5 There is an accessible tutorial text by Peirce himself (PEIRCE 1909) with a commentary by John F. Sowa. For a
more detailed discussion see ROBERTS (1973) and SHIN (2002).

PERSON: John AGNT CUT ROPE: #

KNIFE

PTNT

INST

PAST

Figure 1. A conceptual graph in display form

A conceptual graph is an abstract structure that can be used to represent the meaning of an
expression such as a sentence. Conceptual graphs are formally defined by an abstract syntax

that is independent of any notation and can be
visualized in different ways.6 The most
transparent realisations are diagrams like
Figure 1 (display form DF) representing the
sentence John cut the rope with a knife.
Besides this graphical form there is also a
linear form (LF), which is intended as a more

compact notation than DF, retaining good human readability. It is exactly equivalent in
expressive power to the abstract syntax and the display form. Figure 2 shows the LF for
Figure 1.

(PAST) → [[CUT] –
 (AGNT) → [PERSON: John]
 (PTNT) → [ROPE: #]
 (INST) → [KNIFE]].

Figure 2. A conceptual graph in linear form

In graph-theoretical terms a conceptual graph is a finite connected directed bipartite graph. A
graph is called bipartite if the nodes it contains can be partitioned into two disjoint sets. In the
case of conceptual graphs these are concept nodes (represented by boxes in DF or square
brackets in LF) and relation nodes (represented by circles in DF or round parentheses in LF).7
The conceptual graph in Figure 1 contains four concepts: [PERSON: John] and [ROPE: #] refer
to specific instances of a person and a rope, whereas [CUT] refers to some unspecified instance
of cutting; and [KNIFE] refers to an unspecified knife.8

2.1 Concepts

Concepts represent the meanings of lexemes. They may refer to entities, properties, events,
activities or actions in the world. Every concept has a type and a referent. To distinguish the
type of the referent from the specific individual, the concept box is divided into two parts: a
type field and a referent field: [<type>:<referent>]. For example, the concept [PERSON: John]
is an individual concept with type PERSON and referent John. The concepts [KNIFE] and [CUT]
are called generic concepts, because they specify only the type but do not identify a particular
individual.

6 A definition of the abstract syntax can be found in an ISO-Standard proposal for CGs edited by John F. Sowa
(cf. URL: http://www.jfsowa.com/cg/cgstand.htm; see also Sowa 2000:476–491).
7 The exact shapes are irrelevant. "Circles" often take the form of ellipses to accommodate longer labels.
8 Since conceptual graphs are a system of logic, they can be translated to other versions of logic, such as
predicate calculus (cf. SOWA 1992).

2.2 Referents

In the basic notation for conceptual graphs only three kinds of referents are available:
• Existential referents, represented by the symbol *, indicating that there exists at least

one individual of the appropriate type. It thus corresponds to the existential quantifier
∃ in formal logic. The full notation [KNIFE: *] can be abbreviated to [KNIFE].

• Individual markers, represented by the symbol # followed by a positive integer, e.g.
#32415 (identification number): An individual marker uniquely identifies a single
individual in a given context and corresponds to an individual constant in formal logic.
Real-life examples are the matriculation number of a student (i.e. [STUDENT: #32145]
= ‘the student with the matriculation number 32145’), the chassis number of a car, the
serial number of a product etc.

• Literal: A literal identifies an individual on the basis of its form. Example: in “John”
is name the quoted string “John” indicates the word John, corresponding to the
concept [WORD: “John”]. Similarly strings of digits represent themselves, e.g. 3.14159
in the number 3.14159 is called Pi, corresponding to [NUMBER: 3.14159].

This list of referent types has been extended in a number of ways to enhance the expressive
power of the notation (cf. WAY 1991: 110):

Kind of referent Example English reading
Existential [CAT] or [CAT: *] a cat or some cat

Individual [CAT: #10872] the cat #10872

Definite Reference [CAT: #]9 the cat

Named individual [CAT: Muffy] Muffy or the cat Muffy

Specified set [CAT:{Muffy,Yojo}] Muffy and Yojo

Generic set [CAT: {*}] cats or some cats

Counted generic set [CAT: {*} @5] five cats

Definite set reference [CAT: {*}#] the cats

Universal quantifier [CAT: ∀] every cat

Universal negative [CAT: ~] no cat

Universal plural [CAT: {*}∀] all cats

Universal negative plural [CAT: {*}~] no cats

Fuzzy quantifier [CAT:{*}@many] many cats

Table 1: Referents

2.3 Conceptual Relations

The concepts in a conceptual graph are connected by conceptual relations that indicate what
kind of relationship holds between their referents. In the formal theory there is only one
primitive (dyadic) relation called LINK. In a system with only this primitive relation the
empirical content must obviously be contained in the type system. All other conceptual relations

9 The symbol # in [CAT: #] is a control mark. Although it occurs in the referent field of a concept, it does not
identify the individual referent directly, but triggers a search in the context for something that is known to both
speaker and listener. In the concept [ROPE: #] the marker # is an indexical referent which indicates a specific
rope whose identity is assumed to be known. Other examples of indexical referents include #I and #you for the
pronouns I and you; #this and #that for the demonstrative pronouns this and that and #now for the time in the
current context.

that might be needed in a specific domain must ultimately be defined in terms of LINK. For
convenience a number of relation types have been defined as a “starter set” (SOWA 1992:13).
These include

• Case relations or thematic relations identical to those of other frameworks like case
grammar, government and binding theory or lexical functional grammar.

• Spatial relations
• Attributive relations
• Intersentential relations

Case relations or thematic relations indicate how states, processes, activities or actions,
expressed by predicators are linked to other participants (or actants), expressed by the subject,
objects, or other complements. Typical examples for thematic roles of this sort are agent
(AGNT), patient (PTNT), theme (THME), experiencer
(EXPR), recipient (RCPT), instrument (INST), destination
(DEST) and result (RSLT). In the ubiquitous example of an
“opening act”: The man opened the door with a key (the
entity expressed by) the phrase the man is the agent, the
door is the object (patient) affected by the act and a key
the instrument which is used in the act (Figure 3).

[OPEN] —
 (AGNT) → [MAN: #]
 (PTNT) → [DOOR: #]
 (INST) → [KEY: *].

Figure 3.

Spatial relation types represent spatial relationships that hold between two or more objects.
These relation types include location (LOC) and a number of more specific relations such as IN,
ON and ABOV, corresponding to spatial prepositions (in, on, above). For example, the sentence
There is man at the door would be represented by the graph [MAN] → (LOC) → [DOOR: #].
Attributive relations indicate that an object has a certain property. These include the more
general attribute relation (ATTR) as well as more specific relations such as part-of (PART) or
characteristic (CHRC), where CHRC is used for inherent properties of an entity. The sentence The
ball is red, for example, can be represented by the CG [BALL: #] → (CHRC) → [COLOR: red].
Intersentential relations express relationships between sentences (or propositions) and are
comparable to conjunctions such as because, after, before or logical operators such as and and
or. These relations link concepts of a special type called CONTEXT which have one or more
conceptual graphs as their referent.

2.4 Contexts

The large box in Figure 1 represents a context containing the conceptual graph in Figure 4.
This is actually an abbreviation for a concept of type SITUATION described by the graph in its

referent field: [SITUATION: <graph>].10 Contexts are a special
kind of concept type, whose referent field may consist of
several graphs. Contexts are useful for describing situations or
propositions. Thus the types PROPOSITION and SITUATION are
subtypes of CONTEXT. Contexts are needed to form collections
of one or more graphs such as schemata, prototypes or scripts.

They permit the nesting of conceptual graphs to express negation, modality, tense, and
propositional attitudes such as belief, certainty, or uncertainty.11 For the problem under
consideration contexts are important, because they permit the representation of the
background information that may come into play in the interpretation of ad-hoc compounds.

[CUT] –
(AGNT) → [T PERSON: John]
(PTNTT) → [ROPE: #]
(INST) → [T KNIFE].

Figure 4.

10 More precisely, it represents a SITUATION which is described by a PROPOSITION stated by a specific GRAPH:
[SITUATION] → (DSCR) → [PROPOSITION] → (STMT) → [GRAPH] (cf. SOWA 1992:13ff.).
11 The type field of CONTEXT is often omitted, so we just put brackets around to mark a context, e.g.: T

(PAST) → [[T PERSON: John] ← (AGNT) ← [OPEN] → [DOOR: #]].

3 Type hierarchy
Concept types are organized in a hierarchy called a type hierarchy according to degrees of
generality. Figure 5 shows a partial type hierarchy with the universal type at the top and the
general types ENTITY and SITUATION as proper subtypes. A type hierarchy is a partially
ordered set of type labels which are specified as either primitive or defined. The partial
ordering is achieved by the subtype relation "≤" ("<" for proper subtype, and its inverses "≥"
for supertype, and ">" for proper supertype). The subtype relation is transitive, i.e. from
PROCESS < EVENT and EVENT < SITUATION we can conclude that PROCESS < SITUATION. Every
type of concept or relation in the semantic network organized around the type hierarchy may
be associated with information structures such as type definitions, canonical graphs,
schemata, and prototypes.

T

entity situation

representation

phys-object process

state

image

mobile-entity

living nonliving

event

own believe

plant
animal vehicle building

action

tree
dog

alsation pet-dog

pet car truck house

drive eat walk jump

cat
flower

church

Figure 5. A partial type hierarchy (cf. SOWA 1992:8)

3.1 Canonical graphs

Every concept and relation type in the semantic network is associated with a conceptual graph
that specifies the selectional constraints expected for the types of concepts and relations it
contains. Such a graph is called a canonical graph. The case
frames of FILLMORE'S case grammar (FILLMORE 1968) are
examples of canonical graphs. Figure 6 shows one of
FILLMORE'S frames written in conceptual graph notation.
This graph specifies that OPEN requires an animate agent,
any entity as its patient, and a physical object as instrument.

[OPEN] –
 (AGNT)→[ANIMATE]
 (PTNT) → [ENTITY]
 (INST) →[PHYS-OBJ].

Figure 6. Canonical graph

A graph is canonical if it is the representation of an observable situation. It is also canonical if
it is the representation of an imaginable situation derivable from observable situations or
gained by insight or creativity. The set of all such graphs in the lexicon, called the canonical
basis or canon, determines selectional constraints. By definition, all graphs in the canon are
canonical. All other canonical graphs are derivable from the canon by means of canonical
formation rules (see below). Any graph derived by these rules will observe the constraints in
the canon. Canonical graphs are not definitions. They only represent the structural constraints
that must be obeyed to yield semantically well-formed sentences. In general, a type definition
(see below) is much more detailed than a canonical graph.

3.2 Natural types and role types

Subtypes of ENTITY can be classified as natural types (PLANT, CAT, or BUILDING) or role types
(PET, TEACHER, or CHILD), a classification that can account for the distinction between
“relational” and “substantival” constituents made by Wildgen in his first assumption.
An individual is an instance of a natural type if it can be identified as belonging to this type
on the basis of its inherent attributes and characteristics. Thus a cat can be recognized as such
with reference to its observable features, similarly with a dog or a person.
An individual can only be identified as belonging to a
role type by virtue of its relationship to other entities
and situations. The type PERSON, for example, is a
natural type, whereas TEACHER is a subtype of PERSON
in the role of teaching.
Other examples of role types include CHILD < PERSON,
PET < ANIMAL, PARENT < PERSON, FOOD < PHYSICAL-SUBSTANCE, TOOL < ENTITY.

TEACHER < PERSON
[TEACHER] —
 (AGNT) ← [TEACH] —
 (RCPT) → [ANIMATE]
 (PTNT) → [SUBJECT-MATTER].
Figure 7. Canonical graph of the role type TEACHER

Each of these role types is associated with a canonical graph specifying the implicit pattern of
relationships it enters into. A child is a role played by one person with respect to another
person who plays the role of parent; and conversely. A pet is an animal owned by some
person and treated with care and affection. Food is a substance that people or animals eat or
drink. A tool is an entity that plays the role of instrument for an act.
The distinction between natural types and role types is not always that clear-cut, because very
often an object can play a certain role by virtue of its inherent properties. For example, a
hammer is normally recognizable by its characteristic shape and can thus be regarded as a
natural type. On the other hand it serves as a specific tool.

3.3 Canonical formation rules

All operations on conceptual graphs are based on combinations of six canonical formation
rules, each of which performs one basic graph operation making a CG more specialized, more
generalized, or transforming it while leaving it logically equivalent to the original.
The first two rules, which are illustrated in Figure 8, are copy and simplify. At the top is a CG
for the sentence (The person) John is cutting a rope. The down arrow represents the copy
rule. One application of this rule copies the AGNT relation, and a second application copies the
subgraph → (PTNT) → [ROPE]. Both copies are redundant, since they add no new information.
The up arrow represents two applications of the simplify rule, which performs the inverse
operation of erasing redundant copies.

PERSON: John AGNT CUT ROPEPTNT

PERSON: John

AGNT

CUT ROPEPTNT

ROPEPTNT

AGNT

Copy Simplify

Figure 8. Canonical formation rules: copy and simplify

To show that the two copies of [ROPE] are coreferent (refer to the same individual), they are
connected with a broken line, called a coreference link. Alternatively, coreference can be
indicated by variables in the referent field preceded with an asterisk. The conceptual graphs
[PERSON: John] – – – [TEACHER] and [PERSON: John *x] [TEACHER: *x] are equivalent.
Figure 9 illustrates the rules that restrict and generalize. At the top is a CG for the sentence A
person is cutting some physical object. This is transformed to the CG for The person John is
cutting a rope by first restricting the concept [PERSON], which represents some indefinite
person, to the more specific concept [PERSON: John], which represents an individual person
named John (restriction by referent). The second step is a restriction by type of the concept
[PHYSICAL-OBJECT] to a concept of the subtype [T ROPE]. Two applications of the generalize
rule perform the inverse transformation of the bottom graph to the top graph.

PERSON AGNT CUT PHYSICAL-OBJECTPTNT

Restrict Generalize

PERSON: John AGNT CUT ROPEPTNT

Figure 9. Canonical formation rules: restrict and generalize

Figure 10 illustrates the join and detach rules. At the top are two CGs for the sentences John
is cutting a rope and A rope is thick. The join rule unifies the two identical copies of the
concept [ROPE] to form a single CG for the sentence John is cutting a thick rope. The detach
rule performs the inverse operation.

PERSON:John AGNT CUT ROPE

Join Detach

PTNT ROPE THICKATTR

PERSON:John AGNT CUT ROPEPTNT THICKATTR

Figure 10. Canonical formation rules: join and detach

3.4 Type definitions

Concept and relation types are either primitive types that cannot be defined or types that are
defined by lambda abstractions. A lambda abstraction can be derived from a conceptual graph
by replacing one or more referents by variables bound by the lambda operator λ. For example,
from [PERSON: John] ← (AGNT) ← [CUT] → (PTNT) → [ROPE] we can derive the monadic
abstraction (λx) [PERSON: *x] ← (AGNT) ← [CUT] → (PTNT) → [ROPE]. This can also be
expressed by putting the λ in the referent field of the concept in question: [PERSON:λ] ←
(AGNT) ← [CUT] → (PTNT) → [ROPE], which represents the property of a person cutting a
rope. Lambda abstractions can be used in various ways in the theory:

• Definitions: Monadic abstractions are used to define concept types, and n-adic
abstractions are used to define n-adic relations types. They specify necessary and
sufficient conditions.

• Nameless types: Instead of a permanently defined type label, the type field of a
concept may contain a lambda abstraction that is created for temporary use. Nameless
types can be used for restrictive modifications such as a knife with a sharp blade,
which can be represented by [[KNIFE:λ] → (PART) → [BLADE] → (ATTR) →
[SHARP]:*].

• Schemata: Like type definitions, schemata are defined by lambda abstractions.
However, schemata differ from type definitions in that they only specify default
values and expectations.

• Prototypes: Lambda abstractions also play a role in the characterization of prototypes
representing a typical individual.

3.4.1 CONCEPT TYPES

A concept type definition specifies that a type label t is defined by a monadic abstraction (λx) G,
where G is a canonical graph. This can also be expressed by the notation type t(x) is G. The
body G is called the differentia of t, and the type label of x is called the genus of t.
Any generic concept in a given canonical graph can be selected as the genus of a type
definition. Given the canonical graph [PERSON] ← (AGNT) ← [CUT] → (PTNT) → [ROPE] with
the generic concepts [PERSON], [CUT], and [ROPE] we can derive three different type
definitions by lambda abstraction, only two of which really make sense:
type ROPE-CUTTER (x) is
 [PERSON:*x] ← (AGNT) ← [CUT] → (PTNT) → [ROPE]
This new type will enter the type hierarchy as a subtype of PERSON: ROPE-CUTTER < PERSON

type CUTTING-ROPE (x) is
 [PERSON] ← (AGNT) ← [CUT] → (PTNT) → [ROPE:*X]
CUTTING-ROPE < ROPE12

type rope-cutting (x) is
 [PERSON] ← (AGNT) ← [CUT:*X] → (PTNT) → [ROPE]
ROPE-CUTTING < CUT.
If we include the instrument we can also derive a type ROPE-CUTTING-KNIFE as a subtype of
KNIFE.
type ROPE-CUTTING-KNIFE (x) is
 [CUT] –
 (AGNT) → [PERSON]
 (PTNT) → [ROPE]
 (INST) → [KNIFE:*x]

A type definition simply assigns a label to a λ-expression to represent it in specific contexts
such as the type field of a concept. Consequently, the type label in any concept can be
replaced by the λ-expression that defines it, whose internal structure then becomes available
for further processing if the need should arise. This is called type expansion.
3.4.2 RELATION TYPES

As has already been pointed out, the formal theory of conceptual graphs contains only one
primitive relation type called LINK. This is a dyadic relation type from which others can be
derived by relational definitions.

12 This is similar in structure to eating apple but somewhat odd.

A relational definition, relation t(x1 ... xn) is G, specifies that the type label t for a conceptual
relation is defined by the n-adic abstraction (λ x1 ... xn) G. The body G is called the relator of t.
For example, the relation type AGNT may be defined in terms of a concept of type AGENT as
follows:

T

relation AGNT(x, y) is
[ACT:*x] ← (T LINK) ← [AGENT T

] → (LINK) → [ANIMATE:*y]
The number of concepts required by a relation type is called its valence. The signature of a
relation type is the sequence of the most general concept types to which it can be linked.
Since the AGNT-relation links an ACT to an ANIMATE, its signature is <ACT, ANIMATE>. The
signature poses restrictions on the use of a relation. A relation can only be linked to concepts
whose types are either identical to those specified in the signature or are subtypes of them.
Thus the conceptual graph [STONE] ← (AGNT) ← [CRY] in its literal meaning is not
semantically well-formed, because while CRY is a subtype of ACT, STONE is not a subtype of
ANIMATE.
Although the primitive relation type LINK is dyadic, we can define relation types of arbitrary
adicity. The conceptual graph represented in Figure 1 contains the monadic relation type PAST
which is defined in terms of the dyadic relation types point of time (PTIM), successor (SUCC)
and the contextually defined time #now as follows:
relation PAST(x) is

[SITUATION: *x] → (PTIM) → [TIME] → (SUCC) → [TIME: #now].
Relational expansion is the counterpart of type expansion. Given the relational definition:
relation BUILD(x, y) is

[PERSON: *x] ← (AGNT) ← [MAKE] → (RSLT) → [BUILDING: *y] or equivalently
BUILD = [PERSON: λ1] ← (AGNT) ← [MAKE] → (RSLT) → [BUILDING: λ2],
the type label build in [PERSON: John] ← (BUILD) → [HOUSE:*] can be replaced by its
definition yielding
[PERSON: John] ← ([PERSON: λ1] ← (AGNT) ← [MAKE] → (RSLT) → [BUILDING: λ2]) → [HOUSE:*],
which can be simplified to [PERSON: John] ← (AGNT) ← [MAKE] → (RSLT) → [HOUSE: *] by a
form of λ-conversion.

3.5 Schemata and Prototypes

Whereas types are defined by stating the necessary and sufficient conditions that distinguish
them from other types, which is formally achieved by canonical graphs specifying a supertype
(genus proximum) and the distinguishing concepts and relations (differentia specifica),
schemata specify the concepts and relations that are commonly associated with a certain
concept type. Schemata go beyond type definitions in that they incorporate domain-specific
knowledge about the typical constellations of entities, attributes, and events in the real world.
A concept type may have at most one definition, but arbitrarily many schemata.13

A prototype is a specialisation of a type by a collection of one or more schemata which show
the form of a typical representative. Prototypes exhibit default values that are valid for a typical
case, but not necessarily for a particular case.14

13 The set of related schemata associated with a concept is called a schematic cluster.
14 Although metaphors are important for an analysis of compounding I will not consider them here. Metaphors
appear to violate the rules for combining canonical graphs. However, WAY (1991) developed a technique for
handling metaphors by dynamically extending the type hierarchy.

4 Conceptual graphs in action

4.1 The compositionality principle

As has been pointed out in the beginning, the interpretation of non-lexicalised compounds
presupposes some version of the principle of compositionality, assuming that the meaning of
an expression is derivable from the meanings of its constituent elements together with its
syntactic structure and surrounding context.
The close relationship between syntax and semantics can be illustrated with sentences that are
structurally ambiguous:
(1) John talked to the man in the garden
In this sentence the reference of the local prepositional phrase in the garden is ambiguous:
(2) [[John]NP [talked [to the man]PP [in the garden]PP]VP]S

(3) [[John]NP [talked [to [the man [in the garden]PP]NP]PP]VP]S

These different syntactic structures correspond to different semantic structures. In terms of
conceptual graphs (4) is the reading corresponding to the analysis in (2) and (5) is the reading
of analysis (3):
(4) in the garden specifies the location (LOC) of talk

[TALK] –
(AGNT) → [PERSON:John]
(RCPT) → [MAN:#]
(LOC) → [GARDEN:#].

(5) in the garden specifies the location of the man:
[PERSON:John] ← (AGNT) ← [TALK] → (RCPT) → [MAN:#] → (LOC) → [GARDEN:#].

The semantic representation (in terms of conceptual graphs) is incrementally derived by joining
the conceptual graphs associated with each constituent under the (partial) control of the syntactic
rules. In the present context these are assumed to be based on some version of the X -schema,
preferably with binary branching, augmented by arguments representing conceptual graphs and
operations that perform a join on these graphs. We will assume the following framework:
1. A lexicon that associates each word with a concept type and one or more canonical graphs. In

the case of natural types the graph may consist of a single concept. With verbs, adjectives and
role types the associated canonical graphs can be quite complex. Concept types may be
primitive or defined, in which case the type definition may come into play. Concept types
may be associated with schemata and prototypes to account for background knowledge.

2. Every canonical graph associated with a node in the syntax tree contains a concept marked
as its head concept. The head concept is the starting point for the unification of this graph
with the graphs of other nodes.

3. Each phrase structure rule has the general form Xn(G) → Y(G1) Xn–1(G0) Z(G2),
{G = join(G0, G1, G2), where Y and Z may be empty. If both Y and Z are empty, G = G0.

4. The canonical graph of category Xn-1 is formed by unifying the head concepts of the
categories Y and Z either with the head concept of Xn-1 or with another concept in the
graph associated with Xn-1. The head concept of Xn is identical with that of Xn–1.

5. If there are more alternatives for the unification of the head concept with the concepts of the
other graphs, the decision may be controlled by the syntax rule. The selection of the thematic
role of the subject may follow a thematic hierarchy like (AGNT < EXPR < INST < PTNT < … etc.).

6. Syntactic ambiguities may be resolved by constraints that hold for the unification of
conceptual graphs.

7. More complex conceptual structures may be built on the basis of schemata and prototypes.

Unfortunately, the limited space available does not permit demonstrating this system in
extenso. However, the general principles can be explained satisfactorily even with simple

phrases such as a passionate girl* vs. a passionate
teacher*.15 After all, the syntax of nominal
compounds is very simple. Although these phrases
have the same phrase structure (see Figure 11),
they obviously differ in meaning. In the phrase a

ive passionate refers to
the attribute of a person, whereas in the most
natural interpretation of a passionate teacher it
refers to the manner of teaching. This can be
accounted for in the following way:

passionate girl the adject

girl

N2:G1

Det:G2 N1:G3

a N0:G5A2:G4

passionate
Figure 11. Noun phrase structure

The adjective passionate has two canonical graphs associated with it:
1. [PASSIONATE] ← (ATTR) ← [PERSON]
2. [PASSIONATE] ← (MANR) ← [ACT] T

The graph associated with the noun girl is simply the concept [GIRL]. Since GIRL < PERSON, the
most likely reading of passionate is the first one. Thus we can assume the following equations:
G4 = [PASSIONATE] ← (ATTR) ← [PERSON] [GIRL*] = G5

G3 = G4 G5, where symbolizes the “maximal join” operator.16

In order to be able to perform the join, the concept [PERSON] must be type-restricted to [GIRL],
which is permissible since GIRL < PERSON:
G'4 = [PASSIONATE] ← (ATTR) ← [GIRL].
Since the concept node in G5 has no relations attached to it, it can be merged with the concept
node [GIRL] in G'4:
G3 = G'4 = [PASSIONATE] ← (ATTR) ← [GIRL*]
The canonical graph associated with the indefinite article in this context is the generic concept
[:*], where is the universal concept type. Merging this with the head concept in G3 by
type-restricting to girl (GIRL <) adds no information, hence G1 = G3.

The noun teacher in a passionate teacher is a role type and
associated with a more elaborate canonical graph specifying
its role (see Figure 12). Here we have a potential ambiguity
between passionate as a person and passionate as a
teacher. Since TEACHER < PERSON the concept [PERSON] in
the first reading of passionate can be type-restricted to
[TEACHER] and unified with the agent in Figure 12.

[TEACH] –
 (AGNT) → [T TEACHER*]
 (THME) → [SUBJECT-matter]
 (RCPT) → [PERSON].

Figure 12. Canonical graph for TEACHER

[TEACH] –
 (AGNT) → [T TEACHER*] [TEACHER] → (ATTR) → [PASSIONATE]
 (THME) → [SUBJECT-matter]
 (RCPT) → [PERSON].

Figure 13: Joining two graphs

15 Here the asterisk is used to mark the head of the phrase.
16 Informally we can define a maximal join as an operation that derives the simplest CG from a set of CGs with
a maximal number of join operations.

The join is achieved by deleting the identical concept node [TEACHER] and attaching the
dependent subgraph → (ATTR) → [PASSIONATE] to the head node. The result is shown in
Figure 14

[TEACH] –
 (AGNT) → [T TEACHER*] → (ATTR) → [PASSIONATE]
 (THME) → [SUBJECT-MATTER]
 (RCPT) → [PERSON].

Figure 14: Conceptual graph for a passionate teacher

In the more natural reading passionate modifies the act of teaching.
[PASSIONATE] ← (MANR) ← [ACT]

[TEACH] –
 (AGNT) → [TEACHER*]
 (THME) → [SUBJECT-MATTER]
 (RCPT) → [PERSON].

Figure 15: Canonical graphs for passionate and teacher.

Since TEACH < ACT the concept [ACT] can be type restricted to [TEACH], permitting the join in
Figure 16. This can be done by deleting the first of the identical concept nodes [teach] and
attaching the dependent subgraph [passionate] ←(manr) ← to the remaining node (Figure 16
[PASSIONATE] ← (MANR) ← [TEACH] –

 (AGNT) → [TEACHER*]
 (THME) → [SUBJECT-matter]
 (RCPT) → [PERSON].

Figure 16: Canonical graph for passionate teacher

Figure 17 is a visual representation of the bottom-up derivation under the control of the
phrase structure. The canonical graphs associated with the indefinite article and the words
passionate und teacher in the lexicon are assigned to the nodes Det, A2 and N0, respectively.
In the next step the join of these two graphs is assigned to the node N1. And finally this is
joined with the graph associated with Det and assigned to the node N2.

teacher

N2:

Det: [T:*] N1:

a N0:A2:

passionate

[passionate] ←(manr) ← [act] [teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]

[teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]
(manr) → [passionate]

[teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]
(manr) → [passionate]

teacher

N2:

Det: [T:*] N1:

a N0:A2:

passionate

[passionate] ←(manr) ← [act] [teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]

[teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]
(manr) → [passionate]

[teach] –
(agnt) →[teacher*]
(thme) → [subject-matter]
(rcpt) → [person]
(manr) → [passionate]

Figure 17: A conceptual graph derivation

4.2 The compositionality of nominal compounds

The derivation of the meaning of compounds like silver spoon vs. soup spoon is quite
analogous to that of phrases. Since their syntax is very simple (see Fig. 1817), there is no

syntactic ambiguity either. Nevertheless, their interpretation is
quite different.18 Again the different interpretation of silver
spoon vs. soup spoon can be explained with the different
canonical graphs associated with their constituents.19 For
example, silver (concept [SILVER], SILVER < METAL) can be
characterized as the material used in the production of an
object. This can be accounted for by the canonical graph
[SILVER] ← (MATR) ← [MAKE] → (RSLT) → [PHYS-OBJ]. A
canonical graph for spoon (concept [SPOON]) would have to

contain the information that it is a tool (SPOON < TOOL, relation INST), which is used to ingest
liquid (or pulpy) food: [SPOON] ← (INST) ← [INGEST] → (PTNT) →[FOOD] →(ATTR) → [LIQUID-OR-PULPY].20
The concept [SOUP] is compatible with "liquid (cooked) food".

spoon

N:G1

N:G3N:G2

silver
soup

Figure 18: Compound structure

For silver spoon the exact semantics of spoon does not really matter. It is sufficient to assume
that SPOON is a subtype of PHYS-OBJ.
G2 = [SILVER] ← (MATR) ← [MAKE] → (RSLT) → [PHYS-OBJ] [SPOON*] = G3

Type restriction of PHYS-OBJ to SPOON produces G'2:
G'2 = [SILVER] ← (MATR) ← [MAKE] → (RSLT) → [SPOON*]. This trivially joins with G3 to
yield G1 = G'2.
The derivation of the semantics of soup spoon is more complicated. Spoon can be considered
both a natural type and a role type. For the interpretation of the compound the information
related to its role is more relevant. Other information that may be contained in the schematic
cluster associated with the type, e.g. the fact that a spoon consists of a "shallow bowl with a
handle", can be added if required. Assuming for the sake of the argument a very simple type
definition for soup like SOUP = [FOOD:λ] → (ATTR) → [LIQUID], i.e. ignoring the fact that soup
is made by boiling certain ingredients in water or stock, the basic meaning of the compound
can be derived as follows:
G2 = [SOUP]
G3 = [SPOON] ← (INST) ←[INGEST]→(PTNT)→ [FOOD]→(ATTR)→[LIQUID-OR-PULPY]
G'2 = [FOOD] → (ATTR) → [LIQUID] from G2 by type expansion
G'3 = [SPOON] ← (INST) ←[INGEST]→(PTNT)→ [FOOD]→(ATTR)→[LIQUID] by type restriction
since LIQUID < LIQUID-OR-PULPY

G'1 = G'2 G'3 = G'3
G1 = [SPOON] ← (INST) ←[INGEST]→(PTNT)→ [SOUP] from G'1 by type contraction.

17 The bold edge indicates the projection line identifying the syntactic head of the construction.
18 Obviously soup spoon and silver spoon are not really ad-hoc compounds. However, what counts here is that
they can be regarded as compositionally derivable.
19 In this context the exact status of these canonical graphs, i.e. whether they are mere statements of selectional
restrictions, or schemata, or result from type expansions, will not be elaborated.
20 The concept type LIQUID-OR-PULPY is a derived type formed by the union LIQUID ∪ PULPY and is thus a
common supertype of both, i.e. LIQUID ∪ PULPY > LIQUID, PULPY.

5 Conclusion
Due to the limited space available, the application of the system of conceptual graphs outlined
in the major part of this paper to the problem domain adressed in WOLFGANG WILDGEN's
study has admittedly been rather sketchy. In particular, it has not been shown explicitly how
background information can be integrated into the interpretation process. What is important,
though, is the fact that the relevant information structures – conceptual schemata, prototypes,
scripts, discourse structures – can all be represented as conceptual graphs and can be handled
by the same operations. I hope that I have at least been able to demonstrate the potential of the
theory of conceptual graphs.

6 References
EVENS, MARTHA WALTON (ED.)
1988 Relational models of the lexicon: Representing knowledge in semantic networks. Cambridge

University Press: Cambridge (England) [u.a.]

FANSELOW, GISBERT
1981 Zur Syntax und Semantik der Nominalkomposition: Ein Versuch praktischer Anwendung der

Montague-Grammatik auf die Wortbildung im Deutschen. Max Niemeyer Verlag: Tübingen
(= Linguistische Arbeiten; 107)

FILLMORE, CHARLES J.
1968 The case for case. In: Fillmore (2003), 23–122

2003 Form and Meaning in Language. Volume I: Papers on Semantic Roles. CSLI Publications:
Stanford (Cal.)

HÜLLEN, WERNDER
1976 Linguistik und Englischunterricht 2: Didaktische Analysen. Heidelberg: Quelle & Meyer

KÜRSCHNER, WILFRIED
1974 Zur syntaktischen Beschreibung deutscher Nominalkomposita: Auf der Grundlage generativer

Transformationsgrammatiken. Niemeyer: Tübingen (= Linguistische Arbeiten; 18)

MEYER, RALF
1993 Compound Comprehension in Isolation and in Context: The contribution of conceptual and

discourse knowledge to the comprehension of German novel noun-noun compounds.
Niemeyer: Tübingen (= Linguistische Arbeiten 299)

MINEAU, GUY W., BERNARD MOULIN & JOHN F. SOWA (EDS.)
1993 Conceptual Graphs for Knowledge Representation. Springer-Verlag: Berlin [u.a.] (= Lecture

Notes in AI; 699)

NAGLE, TIMOTHY E., JANICE A. NAGLE, LAURIE L. GERHOLZ, PETER W. EKLUND (EDS.)
1992 Conceputal Structures: Current Research and Practice. Ellis Horwood: New York [u.a.]

PEIRCE, CHARLES SANDERS
1909 Existential Graphs. MS 514 with commentary by John F. Sowa

[URL: http://www.jfsowa.com/peirce/ms514.htm]

PUSTEJOVSKY, JAMES (ED.)
1993 Semantics and the Lexicon. Kluwer Academic Publishers: Dordrecht

REINHARD, SABINE
2001 Deverbale Komposita an der Morphologie-Syntax-Semantik-Schnittstelle: ein HPSG Ansatz.

Diss. Tübingen. [URL: http://w210.ub.uni-tuebingen.de/dbt/volltexte/2002/466]

ROBERTS DON D.
1973 The Existential Graphs of Charles S. Peirce. Mouton: The Hague

SHIN, SUN-JOO
2002 The Iconic Logic of Peirce's Graphs. The MIT Press: Cambridge (Mass.) - London

SOWA, JOHN F.
1984 Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley:

Reading (Mass.) [u.a.]

1988 Using a lexicon of canonical graphs in a semantic interpreter. In: EVENS (1988), 114–137.

1991 Toward the expressive power of natural language. In: SOWA (ed.) (1991), 157–189

1992 Conceptual Graphs Summary. In: NAGLE et al. (1992), 3–51

1993a Relating diagrams to logic. In: MINEAU et al. (1993), 1–35

1993b Lexical Structures and Conceptual Structures. In: PUSTEJOVSKY (1993), 223–262

2000 Knowledge Representation: Logical, Philosophical, and Computational Foundations.
Brooks/Cole: Pacific Grove [u.a.]

SOWA, JOHN F. (ED.)
1991 Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan

Kaufmann Publishers: San Mateo (Cal.)

SOWA, JOHN F. & EILEEN C. WAY
1986 Implementing a semantic interpreter using conceptual graphs. In: IBM Journal of Research

and Development 30:57–69

WAGNER, KARL HEINZ
1971 Zur Nominalisierung im Englischen. In: ARNIM VON STECHOW (ed.), Beiträge zur

generativen Grammatik. Referate des 5. Linguistischen Kolloquiums Regensburg. 1970.
(Schriften zur Linguistik; 3) Vieweg: Braunschweig, 1971, 264–272.

WAY, EILEEN CORNELL
1991 Knowledge Representation and Metaphor. Kluwer Academic Publishers: Dordrecht [u.a]

WILDGEN, WOLFGANG
1982 Zur Dynamik lokaler Kompositionsprozesse: Am Beispiel nominaler ad hoc-Komposita im

Deutschen. In: Folia Linguistica 16:297–344

	1 Introduction
	2 Conceptual Graphs
	2.1 Concepts
	2.2 Referents
	2.3 Conceptual Relations
	2.4 Contexts

	3 Type hierarchy
	3.1 Canonical graphs
	3.2 Natural types and role types
	3.3 Canonical formation rules
	3.4 Type definitions
	3.4.1 Concept types
	3.4.2 Relation types

	3.5 Schemata and Prototypes

	4 Conceptual graphs in action
	4.1 The compositionality principle
	4.2 The compositionality of nominal compounds

	5 Conclusion
	6 References

