A computational
grammar for Maltese

John J. Camilleri
Chalmers / University of Gothenburg

4th International Conference on Maltese Linguistics 2013 — Lyon, France

About me

M.Sc. student & research assistant

Language Technology Research Group
Department of Computer Science and Engineering
Chalmers University of Technology /

University of Gothenburg, Sweden

f
'hn-.-,,l‘ T' ﬁ lm'nf “'ﬁi«

E ' T. T !llllﬂﬂl i

-

About me

M.Sc. student & research assistant

Language Technology Research Group
Department of Computer Science and Engineering
Chalmers University of Technology /

University of Gothenburg, Sweden

Computational grammars

e Represent the grammar rules of a natural
language as software
e Morphology and syntax

Natural

| Computational grammar Syntax tree
anguage

e Convert between surface input and abstract
representation (e.g. parse trees)

e \/alidate input phrases as in/correct

e Produce grammatically-correct phrases

The Grammatical Framework

e A programming language for
multilingual grammars
e [anguage-independent

interlingua for modelling
semantics
e Tool for rule-based translation

e Created by Aarne Ranta in 1998
http://www.grammaticalframework.org/

http://www.grammaticalframework.org/
http://www.grammaticalframework.org/

Abstract & concrete syntaxes

Concrete syntax
English

Abstract syntax
Semantic model

Concrete syntax
Maltese

An example

that wine is very expensive

dak l-inbid ghali hafna

English parse tree

S

/ N\

NP VP

Det N V Adyv A

that wine 1S very expensive

Maltese parse tree

N\

NP AP

7/ N\ N

Det Art N A Adyv

dak - inbid ghali hafna

Common abstract syntax tree

Pred : Statement

RN

That : Item Very : Quality

| \

Wine : Kind Expensive : Quality

Parsing and linearisation

|
I |
: Pred (That Wine) (Very Expensive) :

Parsing Linearisation

that wine is very expensive dak l-inbid ghali hafna

e Same grammar for both directions
e Only one grammar per language (no pairs)

Demo

Let's try it out!

http://cloud.grammaticalframework.org/minibar/minibar.html

http://cloud.grammaticalframework.org/minibar/minibar.html
http://cloud.grammaticalframework.org/minibar/minibar.html

Grammars as libraries

e Software applications can use GF to power
multilingual interfaces

e The low-level details of a language shouldn't
be rewritten each time

e Application grammars are specific,
focusing on semantic modelling

e Resource grammars are reusable, handling
linguistic details of a each language

Application & resource grammars

Abstract syntax
Semantic model

Concrete syntax
English

7

Concrete syntax
Maltese

English resource
grammar

3

Maltese resource
grammar

'\

> Application grammar

Resource grammars

GF Resource Grammar Library

e Implementations for 28 world languages:

O O O O O O

O

English, Dutch, German

Danish, Swedish, Norwegian bokmal
Finnish, Latvian, Polish, Bulgarian, Russian
French, Italian, Romanian, Spanish, Catalan
Greek, Maltese, Interlingua

Chinese, Japanese, Thai

Hindi, Nepali, Persian, Punjabi, Sindhi, Urdu

e Single common interface, with optional
language-specific extensions
e Open-source (LGPL/BSD licenses)

Partial coverage

A Maltese resource grammar

e Modules for
o Morphology
m Noun, verb, adjective, adverb
m Structural words (prepositions, pronouns...)
o Syntax
m Noun, verb and adjective phrases
m Numerals
m Clauses, relative clauses, questions
m |diomatic constructions
o Mini multilingual lexicon (300 entries)
o Large-scale monolingual dictionary (in progress)

Paradigms

e Paradigm

o A function which builds an inflection table for a
lexical entry

e Smart paradigm

o A paradigm function which requires only a
lemmatised form to produce entire table

o Gradual degradation in smartness until we reach a
worst-case paradigm

Nouns

Linearisation table
fruit N = {

s Singulative = "frotta"

s Collective = "frott"

s Dual = "n

s Plural = "frottiet"
gender = Fem

takesPron = False

J

Smart paradigm
fruit N = mkN "frotta"

Verbs: inflection table

Linearisation table (fragments)

s PresPart Sg Masc

sleep V = {
s Perf Pl
s Perf P3
s Impf P3
s Impf P3
s Imp Sg
form =
class =
root =

pattern

Sg
Sg Masc
Sg Fem
Pl

Forml
Strong
"r_q_d"
na_an

"rgadt"
"ragad"
"torgod"
"Jorgdu"
"orgod"
"rieged"

Verbs: paradigms

Smart paradigm (ideal case)
sleep V = mkV "ragad"

Verbs: paradigms

Smart paradigm (ideal case)
sleep V = mkV "ragad"

Other paradigms
mkV "dar" (mkRoot "d-w-r")

Verbs: paradigms

Smart paradigm (ideal case)
sleep V = mkV "ragad"

Other paradigms
mkV "dar" (mkRoot "d-w-r")
mkV "hareg" "ohrog" (mkRoot "h-r—g")

Verbs: paradigms

Smart paradigm (ideal case)
sleep V = mkV "ragad"

Other paradigms

mkV "dar" (mkRoot "d-w-r")

mkV "hareg" "ohrog" (mkRoot "h-r-—-g")

mkV forml (mkRoot "g-3-'") (mkPatt "ie" [])

"gejt" "gejt" "gie" "giet" "gejna"
"nigi" "tigi"™ "jigi"™ "tigi" "nigu"
"ejja" "ejjew"

"gej" "gejja" "gejjin"

Clauses

e Produces linearisation as a function of:
o Tense (present, past, future, conditional)
o Anteriority (simultaneous, anterior)
o Polarity (positive, negative)

PredVP

Pres
Pres
Past
Past
Past
Past
Fut
Fut
Fut
Fut
Cond
Cond

0N 0 0 n n O L n n »u 0 »n

(UsePron

Simul
Simul
Simul
Simul
Anter
Anter
Simul
Simul
Anter
Anter
Simul
Simul

Pos

(we Pron)) (AdvVP (UseV (live V))

Neg =

Pos
Neg
Pos
Neg
Pos
Neg
Pos
Neg
Pos

Neg =

"nghixu hawn"

"ma nghixux hawn"

"ghexna hawn"

"m'ghexniex hawn"

"konna ghexna hawn"

"ma konniex ghexna hawn"
"se nghixu hawn"
"m'ahniex se nghixu hawn"
"se nkunu ghexna hawn"
"m'ahniex se nkunu ghexna hawn"
"konna nghixu hawn"

"ma konniex nghixu hawn"

(here Adv))

Limitations with the grammar

e In general, paradigms are not very smart
e Verb stem allomorphy is not perfect

e Pattern changes must often be explicit

e Participles must be added explicitly
®
®

-ree word order not handled
Coverage unknown

Limitations with GF

e Restricted definition of word boundaries
o articles, euphonic /, enclitic pronouns

e Unable to handle out-of-lexicon words,
despite containing morphological rules

e In general cannot parse open text

e Computational limitations (next slide)

Computational limitations

e Ultimately the grammar must be tractable
e Size and compile-time considerations

O

~3.5GB memory to import entire resource grammar

e Refactoring to please the compiler

O
O
O

Choosing less-natural representations

Throwing away information

Enclitic pronouns not treated as part of inflection
table, harder to choose correct stem

Non-existent forms not efficiently supported
Avoiding exponential explosions in space and time

What's next?

e Use in application grammars
e Test morphological paradigms against
Corpus

e Monolingual lexicon
o Semi-automatic extraction

e Use grammar to generate full-form lexicon

Access and use

e Released under the LGPL license
o Can be used for any purpose, including commercial

e Stable release (part of GF):

http://www.grammaticalframework.org/download/

e Bleeding-edge source code and project page:

https://github.com/johnjcamilleri/Maltese-GF-Resource-
Grammar

http://www.grammaticalframework.org/download/
http://www.grammaticalframework.org/download/
https://github.com/johnjcamilleri/Maltese-GF-Resource-Grammar
https://github.com/johnjcamilleri/Maltese-GF-Resource-Grammar
https://github.com/johnjcamilleri/Maltese-GF-Resource-Grammar

References, acknowledgements

e Aarne Ranta, Grammatical Framework: Programming with Multilingual
Grammars, CSLI| Publications, Stanford, 2011.

e Aarne Ranta, The GF Resource Grammar Library, Linguistic Issues in
Language Technology, 2 (2), 2009.

e John J. Camilleri, A Computational Grammar and Lexicon for Maltese, M.
Sc. thesis, Chalmers University of Technology, Gothenburg, 2013
(forthcoming).

Partly supported by the MOLTO project

From the European Union's Seventh Framework
M I l O Programme (FP7/2007-2013) under grant

agreement no. FP7-ICT-247914

http://www.molto-project.eu/

http://www.molto-project.eu/
http://www.molto-project.eu/

Third GF Summer School 2013
Scaling up Grammatical Resources

18-30™" August 2013
Frauenchiemsee Island, Bavaria

Week 1: Introduction to
GF and multilingual
grammar programming

Week 2: Advanced work
in specialized tracks

http://school.grammaticalframework.org/

http://school.grammaticalframework.org/
http://school.grammaticalframework.org/

Thanks!

Doctor will only see
patients with
appointments

It-tabib ma’ jarax
minghajr
appuntament

=
B
fel
el

Extra slides...

RGL tense system

e Tense, anteriority, polarity (16 combinations)
e Mapped onto Maltese tenses as follows:

Temporal order Anteriority Maltese equivalent Example

Present Simultaneous Imperfective jorqod

Past Simultaneous Perfective raqgad

Future Simultaneous Prospective se jorqod
Conditional Simultaneous Past Imperfective [kieku] kien jorqod
Present Anterior Perfective raqad

Past Anterior Past Perfect kien ragad

Future Anterior Future Perfect se jkun raqad
Conditional Anterior Past Prospective kien jorqod

Example grammar: Foods

e Semantically model phrases about food
o “this fish is delicious”
o ‘these cheeses are very expensive”
e Linearise into multiple languages
e Parse multiple languages
e Single grammar for both directions!

Abstract syntax: Nouns

abstract Foods = {
cat

Kind ;

fun

Cheese, Fish : Kind ;

Abstract syntax: Quantifiers

abstract Foods = {

cat
Item ; Kind ;

fun

This, These : Kind — Item ;
Cheese, Fish : Kind ;

Abstract syntax: Adjectives

abstract Foods = {
cat

Ttem ; Kind ; Quality ;

fun

This, These : Kind — Item ;
Cheese, Fish : Kind ;

Expensive, Delicious : Quality ;

Abstract syntax: Very

abstract Foods = {

cat
Ttem ; Kind ; Quality ;

fun

This, These : Kind — Item ;
Cheese, Fish : Kind ;

Very : Quality — Quality ;
Expensive, Delicious : Quality ;

Abstract syntax: Predication

abstract Foods = {
flags startcat = Comment ;
cat
Comment ; Item ; Kind ; Quality ;
fun
Pred : Item — Quality — Comment ;
This, These : Kind — Item ;
Cheese, Fish : Kind ;
Very : Quality — Quality ;
Expensive, Delicious : Quality ;

Abstract syntax tree (1)

Pred : Comment

/N

This : [tem Delicious : Quality

Fish : Kind

Abstract syntax tree (2)

Pred : Comment

/N

These : ltem Very : Quality

| |

Cheese : Kind Expensive : Quality

Concrete syntax: English

concrete
lincat

1lin

lincat

1lin

lincat

1lin

1lin
Pred

{s

FoodsEng of Foods = {

Kind = { s : Number => Str } ;

Cheese = { s = table { Sg => ; P1
Fish = { s = table { => P o
Quality = { s Str } >

Expensive = { s = b
Delicious = { s = Yo

Item = { s : Str ; n : Number } ;

This = { s = ; n=5g } ;
These = { s = ; n =Pl } ;

item quality =

= item.s ++ copula ! item.n ++ quality.s} ;

|

Concrete syntax: Maltese

concrete FoodsMlt of Foods = {
lincat Kind = { s : Number => Str ; g : Gender } ;
lin Cheese = { s = table { Sg => ; P1 =>
I
lincat Quality = { s : Number => Gender => Str } ;
lin Expensive = { s = table {
Sg => table { Masc => ; Fem => }
Pl => table { _ => | R
lincat Item = { s : Str ; n : Number ; g : Gender
lin This kind = { s = case kind.g of {Masc =>

Fem =>
n=Sg ; g= kind.g } ;
Pred item quality =
{s = item.s ++ copula ! item.n ! item.g

++ quality.s ! item.n ! item.g} ;

}

.
14

